In Vivo Phosphoantigen Levels in Bisphosphonate-Treated Human Breast Tumors Trigger Vγ9Vδ2 T-cell Antitumor Cytotoxicity through ICAM-1 Engagement

Ismahène Benzaid1,2,3, Hannu Mönkkönen1,2,3, Edith Bonnelye1,2,3, Jukka Mönkkönen4, and Philippe Clézardin1,2,3

Abstract

Purpose: Nitrogen-containing bisphosphonates (N-BP) such as zoledronate and risedronate exhibit antitumor effects. They block the activity of farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway, leading to intracellular accumulation of mevalonate metabolites (IPP/ApppI), which are recognized as tumor phosphoantigens by Vγ9Vδ2 T cells. However, mechanisms responsible for Vγ9Vδ2 T-cell recognition of N-BP–treated tumors producing IPP/ApppI remain unclear.

Experimental Design: The effects of N-BPs on Vγ9Vδ2 T-cell expansion and anticancer activity were evaluated in vitro and in animal models of human breast cancers. The modalities of recognition of breast tumors by Vγ9Vδ2 T cells in N-BP–treated animals were also examined.

Results: We found a strong correlation between Vγ9Vδ2 T-cell anticancer activity and intracellular accumulation of IPP/ApppI in risedronate-treated breast cancer cells in vitro. In addition, following risedronate treatment of immunodeficient mice bearing human breast tumors, human Vγ9Vδ2 T cells infiltrated and inhibited growth of tumors that produced high IPP/ApppI levels but not those expressing low IPP/ApppI levels. The combination of doxorubicin with a N-BP improved, however, Vγ9Vδ2 T-cell cytotoxicity against breast tumors expressing low IPP/ApppI levels. Moreover, Vγ9Vδ2 T-cell cytotoxicity in mice treated with risedronate or zoledronate did not only depend on IPP/ApppI accumulation in tumors but also on expression of tumor cell surface receptor intercellular adhesion molecule-1 (ICAM-1), which triggered the recognition of N-BP–treated breast cancer cells by Vγ9Vδ2 T cells in vivo.

Conclusion: These findings suggest that N-BPs can have an adjuvant role in cancer therapy by activating Vγ9Vδ2 T-cell cytotoxicity in patients with breast cancer that produces high IPP/ApppI levels after N-BP treatment. Clin Cancer Res; 18(22); 6249–59. ©2012 AACR.

Introduction

Bisphosphonates, especially nitrogen-containing bisphosphonates (N-BP), are widely used to treat bone loss disorders, such as postmenopausal osteoporosis and skeletal morbidity associated with malignant bone diseases, because they bind avidly to bone mineral and inhibit osteoclast-mediated bone resorption (1). N-BPs have anticancer benefits, acting on cells other than osteoclasts. Moreover, the disruption of the mevalonate pathway by N-BPs results in the accumulation of isopentenyl diphosphate (IPP), which is then converted to a cytoxic ATP analog called ApppI (triphosphoric acid I-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester; ref. 2).

In addition to their therapeutic activity in preserving bone tissue, there is extensive preclinical evidence that N-BPs have anticancer benefits, acting on cells other than osteoclasts, such as tumor cells and endothelial cells (2, 3). For example, the prenylation of small G proteins essential for cancer cell adhesion, migration, and invasion is impaired (2). N-BPs also inhibit angiogenesis in vivo (3). Moreover,
Translational Relevance

Human γδ T cells straddle the border between innate and adaptive immunity and have potent antitumor activity. We recently provided in vivo evidence that bisphosphonate zoledronate induces accumulation of IPP/ApppI phosphoantigens in human breast tumors implanted in animals, and that human Vγ9Vδ2 T cells infiltrate and inhibit growth of these tumors producing high IPP/ApppI levels but not those expressing low IPP/ApppI levels. We found here similar findings using the bisphosphonate risedronate, and we showed that estrogen receptor (ER)–positive breast tumors are more likely to produce IPP/ApppI after bisphosphonate treatment compared with ER-negative breast tumors. Moreover, our study shows for the first time that the ability of risedronate and zoledronate to activate Vγ9Vδ2 T-cell anticancer activity not only depends on IPP/ApppI accumulation in ER-positive tumors but also on expression of tumor cell surface receptor intercellular adhesion molecule-1, which triggers the recognition of bisphosphonate-treated breast cancer cells by Vγ9Vδ2 T cells in vivo.

by blocking the release of bone-derived growth factors during osteoclast-mediated bone resorption, N-BPs can indirectly slow tumor cell proliferation and survival (2). Importantly, there is now clinical evidence that adding zoledronate to endocrine therapy improves disease-free survival and overall survival of patients with estrogen-responsive early breast cancer in a low estrogen environment (i.e., following ovarian suppression therapy or in women with established menopause at diagnosis; refs. 4–6). How zoledronate mediates this antitumor activity remains however elusive.

Emerging data suggest that N-BPs have immunomodulatory properties by stimulating the expansion of Vγ9Vδ2 T cells, a subset of human T cells that straddles the border between innate and adaptive immunity and exhibits antitumor activity (7). Evidence for the stimulation of Vγ9Vδ2 T cells by N-BPs was first found when increased numbers of γδ T cells were observed in patients who had flu-like acute-phase reactions after their first intravenous infusion of pamidronate (8). N-BPs are indeed internalized by peripheral blood mononuclear cells (PBMCs), such as monocytes and dendritic cells, in which they inhibit the mevalonate pathway, leading to the intracellular accumulation of IPP, which in turn, activates Vγ9Vδ2 T cells and the release of inflammatory cytokines (TNF-α and IFN-γ), thereby contributing to the acute-phase reaction (7, 9, 10). In addition, ApppI could represent an inactive storage form of phosphoantigen, which would require conversion to IPP to activate Vγ9Vδ2 T cells from PBMCs (11).

N-BPs also induce intracellular accumulation of IPP/ApppI in a wide variety of human tumor cell lines in vitro, and these mevalonate metabolites can be sensed by Vγ9Vδ2 T cells as tumor phosphoantigens (2, 7). We recently provided in vivo evidence that zoledronate induces IPP/ApppI accumulation in human breast tumors implanted subcutaneously in animals and that human Vγ9Vδ2 T cells infiltrate and inhibit growth of these tumors producing high IPP/ApppI levels but not those expressing low IPP/ApppI levels (12). However, mechanisms responsible for Vγ9Vδ2 T-cell recognition of zoledronate-treated tumors producing IPP/ApppI remain unclear.

The modalities of recognition of N-BP–treated tumor cells by Vγ9Vδ2 T cells are likely γδ T-cell receptor (TCR)-dependent for IPP (7), but may also involve additional cell–cell contacts through unrelated TCR cell surface receptors expressed by Vγ9Vδ2 T cells, such as lymphocyte function-associated antigen-1 (LFA1), CD6, and natural killer group 2D (NKG2D; ref. 13). LFA1, CD6, and NKG2D interact with intercellular adhesion molecule-1 (ICAM-1), CD166, and MHC class I–related chains A/B (MICA/MICB), respectively, which are expressed by tumor cells (13). These cell surface receptors have been involved in mediating Vγ9Vδ2 T-cell cytotoxicity against zoledronate-treated tumor cells in vitro (13). However, there is no evidence of their engagement for recognition of zoledronate-treated tumors by Vγ9Vδ2 T cells in vivo. Another consideration is whether other N-BPs might exert in vitro immunomodulating effects similar to those we previously reported for zoledronate (12). This question is of great importance as different N-BPs (ibandronate, risedronate, alendronate, etc.) are used to prevent cancer treatment–induced bone loss in breast cancer, and clinical trials investigating their potential role in the adjuvant setting to prevent metastasis are ongoing (1, 14). In this study, we address whether risedronate can activate human Vγ9Vδ2 T cells in vitro and in animal models of breast cancer. In addition, we examine cell surface receptors through which Vγ9Vδ2 T cells could recognize human breast tumors from mice treated with risedronate or zoledronate.

Materials and Methods

Drugs

N-BPs risedronate, NE-58025, NE-58051, and NE-10790, and fluorescent risedronate were obtained from Procter & Gamble. Zoledronate was provided by Novartis Pharma AG. Recombinant interleukin-2 (IL-2) was provided by Novartis Pharmaceuticals Ltd. Sterile stock bisphosphonate solutions were prepared in PBS (pH 7.4; Invitrogen).

Human cells and cell culture

Blood donated from healthy volunteers or obtained from the Blood Transfusion Center (Etablissement Français du Sang, Beynost, France) was collected in heparin. Human PBMCs were isolated after Ficoll-Paque (Amersham Biosciences) density gradient centrifugation, as previously described (12). The Vγ9Vδ2 T cells were expanded by exposing PBMCs to 10-μmol/L risedronate plus 100-U IL-2 for 14 days. Vγ9Vδ2 T cells were purified by positive selection of TCR γδ cells using immunomagnetic cell sorting (12).
Human cell lines from breast cancer (T47D, MCF-7, BT-474, and ZR-75-1) and cervical carcinoma (HeLa) were obtained from the American Type Culture Collection (ATCC)-LGC Promochem and used within 6 months. The human B02 breast cancer cell line, a subpopulation of MDA-MB-231, was prepared as previously described (15). All cell lines were authenticated using short tandem repeat analysis. ZR-75-1 cells were cultured in RPMI-1640 medium supplemented with 10% (v/v) FBS and penicillin/streptomycin. BT-474 cells were cultured in Hybrid-Care medium (ATCC) supplemented with 1.5 g/L NaHCO3, 10% (v/v) FBS, and penicillin/streptomycin. MCF-7 cells were cultured in Eagle’s minimal essential medium (EMEM) (ATCC) supplemented with 0.01 mg/mL bovine insulin (Invitrogen), 10% (v/v) FBS, and penicillin/streptomycin. Other cancer cell lines were cultured in Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 10% FBS and penicillin/streptomycin.

Cellular uptake assay for risedronate

T47D, MCF-7, and B02 cells were seeded overnight to 10-cm Petri dishes at 3 × 10^6 cells per dish, then treated with fluorescent-labeled FAM-RIS for 1 hour. Cells were then rinsed with PBS, scraped, and extracted with acetonitrile and water. Extracts were separated by centrifugation (14,000 × g, 2 minutes). Precipitates were analyzed for total protein content by a modified Bradford procedure. The soluble acetonitrile/water extracts were measured at 445 nm for the intensity of the fluorescence using a 96-well fluorescent plate reader, and results were expressed as pmol/mg of total protein.

Animals

Five-week-old female nonobese diabetic/severe combined immunodeficient (NOD/SCID) immunocompromised mice were purchased from Charles River Laboratories. Animals were maintained in a 12-hour light–dark cycle and given free access to food and water. All procedures involving animals, including the method by which they were celled and experimental protocols were conducted in accordance with a code of practice established by the ethical committee of the University of Lyon (Lyon, France).

In vitro and in vivo Vy9V62 T-cell expansion

PBMCs were seeded in 24-well plates (1 × 10^6 cells/well), then treated with vehicle (PBS), or with bisphosphonates zoledronate, risedronate, NE-58025, NE-58051, and NE-10790 (10 μmol/L) ± IL-2 100 U/mL for 14 days. IL-2 was renewed at day 4 and then every 3 days. In vivo expansion of Vy9V62 T cells was conducted in NOD/SCID mice. Human PBMCs (3.5 × 10^7) were inoculated intraperitoneally and mice were treated with vehicle or risedronate (10, 30, 150, 300, or 600 μg/kg), intraperitoneally and 10,000-U IL-2. Mice then received IL-2 plus vehicle or risedronate every other days for 14 days. On day 14, mice were sacrificed and peritoneal cells collected for analysis of Vy9V62 T cells. Percentages of Vy9V62 T cells in PBMCs and peritoneal cells were determined by flow cytometry, as previously described (12). Human IFN-γ in the serum from mice was measured using a commercial ELISA kit (Biosource).

Vy9V62 T-cell–mediated cytotoxicity assay

Human T47D, MCF-7, BT-474, ZR75-1 (2 × 10^4 cells/well), and B02 (7,000 cells/well) breast cancer cells were incubated overnight, then treated for 1 hour with vehicle (PBS) or risedronate (1–25 μmol/L). Cell monolayers were then washed; 18 hours later, human cancer cells were cocultured with or without purified Vy9V62 T cells (cancer cell: Vy9V62 T-cell ratio was 1:12.5) for 4 or 24 hours. Viability was assessed by MTT assay (12).

Subcutaneous growth of human breast tumors in animals and treatments

Five-week-old female NOD/SCID mice were injected subcutaneously in the flank with 5 × 10^6 B02 or T47D cells in 100-μL PBS. For the estrogen receptor (ER)–positive T47D cells, host mice were implanted with subcutaneous 60-day release pellets containing 1.7-mg 17β-estradiol (Innovative Research of America) 4 days before tumor cell inoculation. Four weeks later, when B02 and T47D tumors had reached a volume of 50 mm^3, mice were randomly assigned to 4 treatment groups (n = 6–7 mice/group): placebo (PBS); risedronate at 150 μg/kg body weight; human PBMCs (3.5 × 10^7) injected intraperitoneally plus 10,000-U IL-2 administered alone or with 150-μg/kg risedronate. In the relevant groups, IL-2 and risedronate in 0.5-mL PBS were administered intraperitoneally every other days for 14 days. Tumor size was calculated by external measurement of the width (m1) and length (m2) of subcutaneous tumor xenografts using a Vernier caliper. Tumor volume (TV) was calculated using the equation, TV = (m1^2 × m2)/2. At the end of the protocols, anesthesized mice were culled by cervical dislocation and tumors collected for immunohistochemistry, real-time PCR (RT-PCR) and IPP/Apppl phosphoantigen measurements.

Combination experiments, using a sequential treatment with doxorubicin followed by zoledronate, were conducted as described by Ottewell and colleagues (16). Briefly, 5-week-old female NOD/SCID mice bearing subcutaneous B02 tumor xenografts were injected intraperitoneally on day 27 after tumor cell inoculation with (i) PBS, (ii) doxorubicin (2 mg/kg body weight), (iii) doxorubicin followed 24 hours later by zoledronate (100 μg/kg body weight), or (iv) doxorubicin followed 24 hours later by ZOL+PBMCs+IL-2. Doxorubicin treatment was administered again on day 33 after tumor cell inoculation. In the relevant groups, zoledronate and IL-2 were administered intraperitoneally every other days for 14 days. Tumor size was measured as described earlier.

IPP/Apppl analysis

Bisphosphonate-induced IPP/Apppl production was measured in human cancer cell lines in vitro and in subcutaneous tumors in vivo, as previously described (17). Briefly, following bisphosphonate treatments, tumor cells were
scraped, washed in PBS, and extracted using ice-cold acetone (300 μL) and water (200 μL) containing 0.25-mmol/L NaF and Na₂VO₄ to prevent degradation of IPP and ApppI. Tumor xenographs were collected from mice after sacrifice and snap-frozen in liquid nitrogen, pulverized, and extracted using ice-cold acetone. IPP and ApppI in cell and tumor extracts were then quantified by high-performance liquid chromatography negative ion electrospray ionization mass spectrometry.

Immunohistochemistry

Tumors were embedded in Tissue-Tek (Sakura), snap-frozen in liquid nitrogen-cooled isopentane, and stored at –70°C. Frozen 7-μm sections were cut in a cryostat, air-dried, and fixed in cold acetone. Vy9V62 T cells and proliferating tumor cells were immunodetected using a fluorescein isothiocyanate (FITC)–conjugated anti-human TCR 82 monoclonal antibody (Beckman Coulter) and a rabbit polyclonal anti-Ki-67 antibody (Abcam), respectively, as previously described (12).

Real-time PCR

Total RNA was extracted from T47D and B02 tumors and infiltrating Vy9V62 T cells. Tumors were homogenized with a Polytron device (Kinematica). RNA was extracted using the nucleoscript RNA II Kit (Macherey-Nagel) followed by DNase digestion (Macherey-Nagel). Samples of total RNA (1.5–5 μg) were reverse-transcribed using Superscript II (Invitrogen). Real-time PCR was conducted (IQ SYBR Green, Bio-Rad) with primers specific for the human housekeeping gene L32 (100 bp), a ribosomal protein used as an internal standard; 5'-caagagctggaagtcgt; 3'-agtcttctcagagtgac; human TCR V62 (162 bp); 5'-caacactcgtttgat; 3'-ctgacagctgtcccttc; and ICAM-1 (406 bp); 5'-aggcaccaaccagagca; 3'-cccttagatggctgctca. Real-time reverse transcription (RT)-PCR was carried out using the Mastercycler EP system (SYBR Green; Realplex2, Eppendorf). Amplifiers were quantified in triplicate samples in the pool of 3 independent tumors for each gene and normalized to corresponding L32 values.

Flow-cyt fluorimetric analysis

T47D, B02, and MCF-7 breast cancer cell lines were seeded at a density of 1.10⁶ cells per well in 6-well plates. After overnight incubation, the cells were incubated at 37°C for 24 hours with PBS, 10 ng/mL TNF-α, 0.5 ng/mL INF-γ (Biosource), or conditioned medium from risedronate-treated PBMCs. After this induction time, cells were stained with a phycoerythrin-conjugated human anti-ICAM-1 (CD54; Beckman Coulter) monoclonal antibody. All cells were resuspended in 500 μL PBS supplemented with 1% bovine serum albumin and analyzed immediately by cytometry (Canto II, Becton Dickinson). Similar experimental conditions were carried out with untreated T47D, B02, and MCF-7 cancer cells using phycoerythrin-conjugated monoclonal antibodies directed against antiadhesion molecule receptors Alcam (CD166, Beckman Coulter), and MICA/B (eBioscience).

Statistical analysis

All data were analyzed using StatView software (version 5.0; SAS Institute Inc.). Pairwise comparisons were carried out by conducting a nonparametric Mann–Whitney U test. P values less than 0.05 were considered statistically significant. All statistical tests were 2-sided.

Results and Discussion

N-BPs induced human Vy9V62 T-cell expansion in vitro and in vivo

The PBMCs were treated with different N-BPs to evaluate the relation between Vy9V62 T-cell proliferation and inhibition of recombiant human FPPS in vitro. Only potent FPPS inhibitors, such zoledronate (IC₅₀ of FPPS activity: 4.1 nmol/L), risedronate (IC₅₀: 5.7 nmol/L), and to a lower extent, the structural risedronate analog NE-58025 (IC₅₀: 42 nmol/L) significantly stimulated γδ T-cell proliferation in vitro (Fig. 1A). In contrast, structural risedronate analogs NE-58051 (IC₅₀: 337 nmol/L) and NE-10790 (IC₅₀: 250 × 10⁵ nmol/L) had no effect (Fig. 1A). Thus, there was a strong correlation between FPPS inhibition and Vy9V62 T-cell expansion induced by N-BPs in vitro.

The treatment of human PBMCs with increasing concentrations of risedronate stimulated in a time- and dose-dependent manner the expansion of Vy9V62 T cells (Supplementary Fig. S1A). Concomitant to Vy9V62 T-cell expansion, mass spectrometry revealed rapid IPP/ApppI accumulation in PBMCs after risedronate treatment (Supplementary Fig. S1B and S1C). These results extend previous findings showing that zoledronate stimulates Vy9V62 T-cell proliferation and IPP/ApppI formation in PBMCs in vitro (12). This effect was specific to Vy9V62 T cells. Neither human γδ T cells expressing the Vy9V61 TCR, nor human αβ T cells, monocyties, and B cells are responsive to N-BPs (13).

Murine PBMCs treated with N-BPs do not activate murine or human γδ T cells (7, 13). The effect of risedronate on Vy9V62 T-cell expansion was therefore studied in vivo after intraperitoneal injection of human PBMCs into NOD/SCID immunodeficient mice and RIS+-IL-2 treatment for 14 days. Risedronate (30, 150, 300, and 600 μg/kg), in the presence of IL-2, dose-dependently stimulated the expansion of Vy9V62 T cells, such that they comprised up to 50% of human T lymphocytes versus less than 10% for IL-2 alone or IL-2 plus risedronate at a dose of 150 μg/kg (Fig. 1B). We previously observed similar results with the effect of zoledronate treatment on Vy9V62 T-cell expansion from human PBMCs in vitro (12). This is explained by the fact that both zoledronate and risedronate are internalized by antigen-presenting cells from human PBMCs, leading to intracellular IPP/ApppI accumulation and subsequent activation of Vy9V62 T cells in a TCR-dependent manner.

Risedronate-induced IPP/ApppI production in human cancer cell lines in vitro

We have previously shown that zoledronate induces IPP/ApppI accumulation in human breast cancer cell lines (MCF-7, T47D, and BT-474) having a luminal molecular subtype [ER-positive and/or progesterone receptor
might also explain variation in IPP/Apppl production between breast cancer cell lines, the uptake of fluorescently labeled–risedronate (FAM-RIS) was measured in T47D, MCF-7, and B02 cells. FAM-RIS uptake in T47D and MCF-7 cells was similar but 2-fold lower in B02 cells (Supplementary Fig. S2C). We previously reported similar findings for the cellular uptake of zoledronate (12). In addition, we showed that f3-hydroxy-f3-methylglutaryl CoA reductase (HMG-CoA) reductase expression, a mevalonate pathway enzyme upstream of FPPS, was low in B02 cells as compared with that observed in T47D and MCF-7 cells (12). These results agree with an earlier report (18) that high HMG-CoA reductase expression correlated positively with ER expression in tumor tissue from patients with breast cancer. Taken together (12, 18, and this study), these results show that IPP/Apppl production in breast cancer cells depends on cellular uptake of N-BP and on mevalonate pathway activity associated with the ER status of the cell.

Risedronate-induced IPP/Apppl accumulation in human breast cancer cell lines correlates with Vγ9Vδ2 T-cell–mediated cancer cell death in vitro

We next examined whether the anticancer potency of Vγ9Vδ2 T cells might depend on intracellular IPP/Apppl production in risedronate-treated ER-positive and -negative breast cancer cells in vitro and in vivo. A 1-hour treatment with risedronate (1–25 μmol/L) did not affect survival of T47D, MCF-7, BT-474, ZR 75-1, and B02 cells in vitro (Fig. 2A, C, E, G, and I, respectively). However, coculturing risedronate-treated T47D and MCF-7 cells with purified Vγ9Vδ2 T cells led to dose-dependent cancer cell death, which was statistically significant with risedronate at concentrations as low as 3 μmol/L for 1 hour (Fig. 2B and D). Similarly, Vγ9Vδ2 T cells mediated cytotoxicity of risedronate-treated BT-474 cells (Fig. 2F). A minimum concentration of 25 μmol/L risedronate was, however, required to trigger the cytotoxicity of Vγ9Vδ2 T cells against this breast cancer cell line. In sharp contrast, Vγ9Vδ2 T cells did not exhibit cytotoxicity against risedronate-treated ZR 75-1 and B02 cells (Fig. 2H and J). Similarly, coculture of zolendronate-treated T47D and MCF-7 cells with purified Vγ9Vδ2 T cells leads to dose-dependent cancer cell death, whereas Vγ9Vδ2 T cells are not cytotoxic against zolendronate-treated B02 cells (12). Altogether, these results strongly suggested that N-BP–induced IPP/Apppl accumulation in breast cancer cells was responsible for Vγ9Vδ2 T-cell–mediated cancer cell death. Further experiments were therefore conducted in vivo, using breast tumors cells with low or high IPP/Apppl levels after N-BP treatment.

Cytotoxic effect of Vγ9Vδ2 T cells against human breast tumor xenografts in vivo

We observed that RIS+IL-2 treatment of NOD/SCID mice engrafted with human PBMCs stimulated the expansion of Vγ9Vδ2 T cells in vivo (Fig. 1B). Vγ9Vδ2 T cells are known only to exist in primates and humans (2, 13), and they only recognize tumor cells of human origin (13), making our animal model most suitable for studying the

Figure 1. Correlation between inhibition of recombinant human FPPS by N-BPs in vitro and expansion of human Vγ9Vδ2 T cells induced by N-BPs in vitro and in vivo. A, PBMCs were treated with 10 μmol/L zolendronate, risedronate, NE-58025, NE-58051, or NE-10790 plus 100 U/mL IL-2, or with IL-2 alone. Vγ9Vδ2 T-cell proliferation was analyzed by flow cytometry after 14 days culture. Data are expressed as mean ± SD with PBMCs from 3 independent blood donors. IC50 for inhibition of recombinant FPPS are in the nmol/L range and were obtained from Streising and colleagues (3). B, effect of risedronate on Vγ9Vδ2 T-cell expansion from human PBMCs in vivo. Proportion of human Vγ9Vδ2 T cells determined by flow cytometry from peritoneal cells of immunodeficient mice receiving a single intraperitoneal injection of human PBMCs and 10, 30, 150, 300, or 600 μg/kg risedronate plus 10,000 U IL-2 or IL-2 alone every 2 days for 14 days. Results are mean ± SD of 5 mice per group. **P < 0.01.
potential role of risedronate (and zoledronate) in cancer immunotherapy. Of note, this effect of risedronate on in vivo Vγ9Vδ2 T-cell expansion was observed at a dosing regimen calculated equivalent to 525 μg/kg body weight, weekly, whereas the approved weekly dose of risedronate for prevention of aromatase inhibitor–induced bone loss in breast cancer is 600 μg/kg body weight (14), further supporting the clinical relevance of our animal model. Therefore, in vivo experiments were carried out with NOD/SCID mice that were bearing subcutaneous T47D or B02 breast tumor xenografts. Treatment with risedronate alone or PBMC+IL-2 did not inhibit T47D and B02 tumor growth (Fig. 3A and B). In contrast, a 46% reduction of the volume of T47D tumors (P < 0.05) was observed in mice receiving PBMC+IL-2+RIS, when compared with placebo (Fig. 3A). A similar treatment of B02 tumor-bearing animals with PBMC+IL-2+RIS did not inhibit tumor growth (Fig. 3B).

In agreement with in vivo data, the in situ immunodetection of the Ki-67 nuclear antigen in T47D tumors from animals treated with PBMC+IL-2+RIS showed a reduction in the proliferative index, when compared with that observed with tumors from placebo-treated animals (Fig. 3C). In contrast, the proliferative index of B02 tumors from animals treated with PBMC+IL-2+RIS did not differ significantly from that obtained with placebo (Fig. 3D). Of note, Vγ9Vδ2 T-cell infiltrates were detected in T47D but not B02 tumors from mice treated with PBMC+IL-2+RIS, as judged by RT-PCR (Fig. 3E and F).

Vγ9Vδ2 T-cell–mediated cancer cell death in vivo correlates with risedronate-induced ApppI accumulation in breast tumor xenografts

Because Vγ9Vδ2 T cells were infiltrating subcutaneous T47D tumor xenografts in mice treated with PBMC+IL-2+RIS (Fig. 3E), mass spectrometry analysis of tumor extracts was conducted to measure ApppI contents. ApppI was barely detectable in T47D tumors from placebo-treated mice (Fig. 4A), whereas substantial ApppI amounts were detected 48 hours after PBMC+IL-2+RIS treatment (Fig. 4B). ApppI was also detected in T47D tumor extracts from mice treated with risedronate alone (data not shown). In contrast, risedronate-induced ApppI production was not detected in B02 tumor xenografts (data not shown). Low IPP levels were detected at 48 hours after the last risedronate dose in PBMC+IL-2+RIS–treated mice (not shown). We previously reported similar results about IPP/ApppI accumulation in T47D tumor extracts 48 hours after the last treatment of mice with PBMC+IL-2+ZOL (12). Conversely, IPP levels were high in T47D tumor extracts at 24 hours after the last zoledronate dose, whereas ApppI levels were barely detectable (12). We did not measure here IPP/ApppI levels in tumor extracts 24 hours after the last risedronate dose in PBMC+IL-2+RIS–treated animals.

Figure 2. Risedronate-induced IPP/ApppI phosphoantigen accumulation in human breast cancer cells correlates with Vγ9Vδ2 T-cell–mediated cancer cell death in vitro. T47D, MCF-7, BT-474, ZR 75-1, and B02 cells were pretreated with control (ctr; PBS) or 1 to 25 μmol/L risedronate for 1 hour, then cultured without drug for 18 hours. After incubation, cells were cocultured without (A, C, E, G, and I) or with (B, D, F, H, and J) purified Vγ9Vδ2 T cells for 24 hours. The ratio of cancer cells to Vγ9Vδ2 T cells was 1:12.5. A–J are representative of 3 independent experiments (mean ± SD). *, P < 0.05; ***, P < 0.001.
Nevertheless, our findings (12 and this study) are consistent with the fact that ApppI formation results from the intracellular accumulation of IPP after FPPS inhibition (2). Importantly, as shown here (Figs. 3 and 4) and in our previous study (12), N-BP uptake in tumors (as judged by IPP/ApppI production) is not enough for tumor growth reduction in vivo. Indeed, tumor growth reduction coincides with infiltration of Vγ9Vδ2 T cells in tumors that produced IPP/ApppI.

Induction of ICAM-1 expression in breast cancer cells in vitro and in vivo

Vγ9Vδ2 T cells recognize N-BP–treated tumor cells through costimulatory non-TCR receptors, such as CD6, NKG2D, and LFA1 in vitro (13). However, there is no evidence of their engagement for recognition of N-BP–treated tumors by Vγ9Vδ2 T cells in vivo. The presence of ligands for these cell surface receptors was evaluated by flow cytometry using T47D, MCF-7, and B02 breast cancer cell lines (Supplementary Fig. S3). Cell adhesion molecule Alcam (CD166), the ligand for CD6, was strongly expressed in all the 3 cell lines, whereas MICA/B (NKG2D ligand) was not expressed. ICAM-1 (CD54), the ligand for LFA-1, was poorly expressed by all 3 cell lines. ICAM-1 is a member of the transmembrane immunoglobulin superfamily whose expression is induced by TNF-α or IFN-γ (19). In addition, risedronate and zoledronate both strongly induced IFN-γ production by PBMCs in vitro (data not shown). We therefore carried out experiments with the conditioned medium from risedronate- and zoledronate-treated PBMCs to induce cell adhesion molecule expression in breast cancer cells. ICAM-1 expression was significantly increased by conditioned media from N-BP–stimulated PBMCs in all the 3 cell lines when compared with IFN-γ or TNF-α (Fig. 5A). MICA/B was not expressed under these experimental conditions (data not shown).
We next examined whether ICAM-1 could be induced in experimental human breast tumors in vivo. In our animal models of breast cancer, RT-PCR showed a 3-fold increase in ICAM-1 expression in T47D tumors from mice treated with PBMC + IL-2 + RIS or PBMC + IL-2 + ZOL versus placebo (Fig. 5B and C). T47D tumors from mice treated with risedronate (or zoledronate) alone or PBMC + IL-2 showed a modest but significant increased expression of ICAM-1 versus placebo (Fig. 5B and C). In sharp contrast, ICAM-1 was poorly expressed in B02 tumors, irrespective of the presence or absence of PBMCs and/or the use of a N-BP (risedronate or zoledronate; Fig. 5B and C). These results may be explained by the fact that tumor-derived IPP/Apppl phosphoantigens behave like rate-limiting factors. We have previously shown that phosphoantigen production by tumor cells recruits Vγ9Vδ2 T cells to breast tumors in vivo (12). Infiltrating Vγ9Vδ2 T cells then secrete IFN-γ that is growth inhibitory for tumor cells (7, 12, 13). Here, because of the lack of Apppl production by B02 cells, Vγ9Vδ2 T cells did not infiltrate B02 tumor xenografts (Fig. 3F). Consequently, there was no production of IFN-γ by Vγ9Vδ2 T cells and no activation of ICAM-1 expression within B02 tumors. This contention was supported by serum measurements of human IFN-γ. We observed that IFN-γ levels were high-to-moderate in T47D tumor-bearing mice treated with PBMCs + IL-2 + RIS (765 ± 357 pg/mL, n = 6) or

Figure 4. Mass spectrometry (MS) analysis of phosphoantigen Apppl in T47D breast tumor xenografts. Identification of Apppl in T47D tumors of placebo- and risedronate-treated mice was conducted by high-performance liquid chromatography negative ion electrospray ionization mass spectrometry. Chromatograms correspond to tumor extracts obtained from (A) placebo-treated mice and (B) animals that received PBMC + IL-2 + RIS whose tumors were collected 48 hours after the last risedronate injection. Similar chromatograms were obtained with tumor extracts from mice treated with risedronate alone. Tumor extracts were spiked with 0.11-pmol Apppl. Apppl chromatograms are drawn on the same scale. Results are mean ± SD of 6 to 7 mice per group. ns, not significant (P > 0.05); *, P < 0.05.
PBMCs + IL-2 (563 ± 370, n = 5), whereas the cytokine was barely detected in B02 tumor-bearing animals treated with PBMCs + IL-2 + RIS (22 ± 45 pg/mL, n = 5) or PBMCs + IL-2 (12 ± 23 pg/mL, n = 5; P < 0.001).

Thus, our study establishes that IPP/ApppI–producing tumors induce Vγ9Vδ2 T-cell infiltration and secretion of IFN-γ, which in turn, triggers the recognition of tumors by Vγ9Vδ2 T cells through ICAM-1 engagement, leading to tumor growth reduction in vivo.

A sequential treatment with doxorubicin and zoledronate sensitizes unresponsive B02 breast tumors to Vγ9Vδ2 T-cell cytotoxicity in vivo

We next determined whether combination of a N-BP treatment with chemotherapy might sensitize low IPP/ApppI–producing B02 tumors to Vγ9Vδ2 T-cell cytotoxicity in vivo. It has been previously shown by Otewell and colleagues (16) that a sequential treatment with doxorubicin followed 24 hours later by zoledronate reduces subcutaneous growth of ER-negative MDA-MB-436 tumors in animals. In addition, Mattarollo and colleagues (20) have shown that chemotherapy and zoledronate sensitize ER-negative MDA-MB-231 breast cancer cells to Vγ9Vδ2 T-cell cytotoxicity in vitro. The human B02 breast cancer cell line used in our study is a subpopulation of MDA-MB-231 (15). Because B02 cells were not susceptible to zoledronate-mediated Vγ9Vδ2 T-cell cytotoxicity, we therefore, carried out combination experiments using a sequential treatment with doxorubicin followed by zoledronate, alone or in combination with PBMC + IL-2 (Fig. 6). Doses of doxorubicin (2 mg/kg body weight) and zoledronate (100 µg/kg body weight) given to animals were calculated clinically equivalent to doses given in patients (16). On the first week of treatment, tumor-bearing animals treated with doxorubicin followed by ZOL+PBMC+IL-2 had statistically significantly smaller tumors (115 ± 43 mm³) than those of animals treated with doxorubicin + ZOL (228 ± 54 mm³; P = 0.0007) or with doxorubicin alone (242 ± 72 mm³; P = 0.0004; Fig. 6). However, on the second week of treatment, tumors

Figure 5. Induction of ICAM-1 expression on T47D, MCF-7, and B02 breast cancer cells by cytokines released from Vγ9Vδ2 T cells in vitro and in vivo. A, T47D, MCF-7, and B02 breast cancer cells were left untreated or treated with 10 ng/mL TNF-α, 0.5 ng/mL IFN-γ, or conditioned medium from risedronate-stimulated PBMC after 4 days. Percentage expression of ICAM-1 was determined by flow-cytometric analysis. B, mice were inoculated subcutaneously with T47D or B02 cells. Four weeks after tumor cell inoculation, when tumors became palpable, mice were engrafted with PBMCs from healthy human adult blood donors. In addition, mice were treated with IL-2 + RIS (150 µg/kg) every 2 days for 2 weeks. Relative ICAM-1 expression in T47D and B02 tumors from mice treated with risedronate was determined by RT-PCR. C, same as B using IL-2 + ZOL (30 µg/kg) every 2 days for 2 weeks. Results are mean ± SD of 6 to 7 mice per group. ns, not significant (P > 0.05); *, P < 0.05; **, P < 0.01; ***, P < 0.001. CM, conditioned medium.
from animals treated with doxorubicin followed by ZOL+PBMC+IL-2 reached volumes (254 ± 94 mm3) that were similar to tumor volumes of animals treated with doxorubicin+ZOL (300 ± 44 mm3; $P = 0.47$), whereas there was still a modest inhibitory effect compared with animals treated with doxorubicin alone (390 ± 143 mm3; $P = 0.05$; Fig. 6). Ottewell and colleagues (16) have previously shown that a 6-week course of sequential administration of doxorubicin followed by zoledronate elicited antitumor effects in animals. Here, we only used a 2-week course of sequential treatment, which probably explained why doxorubicin followed by zoledronate did not enhance the antitumor effect of the chemotherapy. However, the engraftment of PBMC+IL-2 to animals enhanced the antitumor effect of this sequential treatment by promoting the expansion and cytotoxicity of Vγ9Vδ2 T cells against doxorubicin-treated breast tumors. In vivo, our study provides new insights into how N-BP (rise-
Development of methodology: I. Benzaid, H. Mönkkönen, P. Clézardin
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): I. Benzaid, H. Mönkkönen, E. Bonnelye
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): I. Benzaid, H. Mönkkönen, E. Bonnelye, P. Clézardin
Writing, review, and/or revision of the manuscript: I. Benzaid, H. Mönkkönen, E. Bonnelye, I. Benzaid, H. Mönkkönen, P. Clézardin
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): I. Benzaid, H. Mönkkönen, E. Bonnelye
Study supervision: P. Clézardin

Acknowledgments
The authors thank J. Green (Novartis Pharma AG), F.H. Ebetino (Procter & Gamble Pharmaceuticals), and Charles McKenna (University of Southern California) for providing bisphosphonates. The authors also thank the nurses from Edouard Herriot Hospital (Lyon, France) for their valuable help.

Grant Support
P. Clézardin is supported by INSERM, the University of Lyon, INCa, and the LabEx DEVweCAN (ANR-10-LABX-61). I. Benzaid is supported by Agence Nationale de la Recherche (project MOTUS, grant n° 2DML11-0002). H. Mönkkönen was supported by INSERM (Poste Vert). I. Benzaid is supported by the Academy of Finland.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received March 19, 2012; revised September 25, 2012; accepted September 26, 2012; published OnlineFirst October 2, 2012.

References

www.aacrjournals.org
Clin Cancer Res; 18(22) November 15, 2012 6259

Phosphoantigens Mediate γδ T-cell Cytotoxicity through ICAM-1

Downloaded from clincancerres.aacrjournals.org on April 20, 2017. © 2012 American Association for Cancer Research.
In Vivo Phosphoantigen Levels in Bisphosphonate-Treated Human Breast Tumors Trigger Vγ9Vδ2 T-cell Antitumor Cytotoxicity through ICAM-1 Engagement

Ismahène Benzaïd, Hannu Mönkkönen, Edith Bonnelye, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-0918

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2012/10/02/1078-0432.CCR-12-0918.DC1

Cited articles
This article cites 22 articles, 5 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/18/22/6249.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/18/22/6249.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.