Predictive Biomarkers and Personalized Medicine

Genetically Defined Subsets of Human Pancreatic Cancer Show Unique In Vitro Chemosensitivity

Yunfeng Cui, Jacqueline A. Brosnan, Amanda L. Blackford, Surojit Sur, Ralph H. Hruban, Kenneth W. Kinzler, Bert Vogelstein, Anirban Maitra, Luis A. Diaz Jr, Christine A. Iacobuzio-Donahue, and James R. Eshleman

Abstract

Purpose: Pancreatic cancer is the fourth cause of death from cancer in the western world. Majority of patients present with advanced unresectable disease responding poorly to most chemotherapeutic agents. Chemotherapy for pancreatic cancer might be improved by adjusting it to individual genetic profiles. We attempt to identify genetic predictors of chemosensitivity to broad classes of anticancer drugs.

Experimental Design: Using a panel of genetically defined human pancreatic cancer cell lines, we tested gemcitabine (antimetabolite), docetaxel (antimicrotubule), mitomycin C (MMC; alkylating), irinotecan (topoisomerase I inhibitor), cisplatin (crosslinking), KU0058948 (Parp1 inhibitor), triptolide (terpenoid drug), and artemisinin (control).

Results: All pancreatic cancer cell lines were sensitive to triptolide and docetaxel. Most pancreatic cancer cells were also sensitive to gemcitabine and MMC. The vast majority of pancreatic cancer cell lines were insensitive to cisplatin, irinotecan, and a Parp1 inhibitor. However, individual cell lines were often sensitive to these compounds in unique ways. We found that DPC4/SMAD4 inactivation sensitized pancreatic cancer cells to cisplatin and irinotecan by 2- to 4-fold, but they were modestly less sensitive to gemcitabine. Pancreatic cancer cells were all sensitive to triptolide and 18% were sensitive to the Parp1 inhibitor. P16/CDKN2A-inactivated pancreatic cancer cells were 3- to 4-fold less sensitive to gemcitabine and MMC.

Conclusions: Chemosensitivity of pancreatic cancer cells correlated with some specific genetic profiles. These results support the hypothesis that genetic subsets of pancreatic cancer exist, and these genetic backgrounds may permit one to personalize the chemotherapy of pancreatic cancer in the future. Further work will need to confirm these responses and determine their magnitude in vivo.

Clin Cancer Res; 18(23); 6519–30. ©2012 AACR.

Introduction

Pancreatic cancer is the fourth leading cause of cancer-related death in the United States and leads to an estimated 227,000 deaths per year worldwide (1). Five-year survival rates for pancreatic cancer are estimated to be less than 5% because of its advanced stage at diagnosis, aggressive growth, and resistance to most anticancer drugs (2). Despite this, systemic chemotherapy is generally used to treat patients with pancreatic cancer. Gemcitabine is a nucleoside analog and historically the standard first-line choice for the treatment of advanced pancreatic cancer. The median overall survival of single-agent gemcitabine is approximately 6 months with a response rate of 10% in patients with metastatic disease (3). Recently, the combination of biweekly administered fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) was studied in a phase III trial yielding a response rate of 31.6% and a median overall survival of 11.1 months (4). De Jesus-Acosta and colleagues also showed a substantial survival benefit with gemcitabine, docetaxel, and capecitabine (GTX) chemotherapy in patients with metastatic and locally advanced pancreatic cancer, and achieved a median survival of 11.3 and 25.0 months, respectively (5).

Recent studies in human pancreatic cancer have revealed complex genetic alterations in its pathogenesis and progression. Jones and colleagues (6) sequenced 20,661 protein-coding genes in 24 pancreatic cancers and found alterations...
Translational Relevance

The costs of next generation sequencing are rapidly decreasing, and the US$1,000 genome is near. This “new tool” may permit more rational and effective use of chemotherapeutic drugs. We studied the chemosensitivity of a broad panel of genetically defined pancreatic cancers to 7 chemotherapeutic drugs with distinct mechanisms of cytotoxicity. We found 7 different gene–drug correlations in vitro. Additional work will be needed to confirm and determine the magnitude of these effects in vivo. These findings provide an initial framework for personalized chemotherapy of this nearly lethal malignancy.

in KRAS (≥95%), p16/CDKN2A (95%), TP53 (50–75%), and DPC4/SMAD4 (55%), the 4 high-frequency pancreatic cancer driver genes (6–8). Recent studies reported that inactivation of DPC4/SMAD4 was associated with poorer prognosis in patients with surgically resected pancreatic cancer and a widely metastatic phenotype in unresected patients (9, 10). Chemoresistance of tumor cells can be enhanced by mutations in oncogenes, loss of tumor suppressors, or dysregulation of genes involved in DNA repair, cell cycle, cell proliferation, signal transduction, angiogenesis, or apoptosis (11, 12).

Using genetic alterations to predict chemotherapeutic response may prove to be one of the most important concepts in the therapy of human cancer. The field of targeted therapy is rapidly expanding with more than 800 new agents developed, 140 of which are under clinical evaluation. For example, Her2/neu is closely associated with aggressive clinical behavior and poor outcome (13), and trastuzumab was the first Her2-targeted therapy approved by the FDA in 1998 for the treatment of metastatic Her2-mutated patients (14). Parp1 is a critical enzyme involved in cell proliferation and repair of single-stranded DNA breaks and multiple PARP1 inhibitors have been tested clinically with encouraging results, particularly in triple negative BRCA1/2-mutated breast cancer (15). Extrapolation of this finding to other BRCA1/2 defective cancers may not necessarily and directly follow (16). The cytogenetic lesion of chronic myelogenous leukemia is the Philadelphia chromosome, which arises from a balanced reciprocal translocation between the long arms of chromosomes 9 and 22 (17). This translocation produces a constitutively active tyrosine kinase (BCR-ABL; ref. 18) for which imatinib mesylate, a first-generation tyrosine kinase inhibitor (TKI), is a potent inhibitor (19). However, although numerous studies have addressed chemosensitivity testing in a variety of malignancies, yet there are few studies in pancreatic cancer (20–22).

We wished to test the hypothesis that the genetic mutations in pancreatic cancer might predict chemotherapeutic response. For these initial studies, we selected a panel of broadly acting anticancer agents including, an antimeta-

bolite drug (gemcitabine), an antimicrotubule drug (docetaxel), an allylitor (MMC; mitomycin C), a topoisomerase I (TopI) inhibitor (irinotecan), a cross-linking agent (cisplatin), a Parp inhibitor (KIU0058948), a terpenoid (triptolide), and a negative control drug (artemisinin). We tested this panel of drugs for cytotoxicity using a panel of genetically defined human pancreatic cancer cells. We also verified some initial findings using DPC4/SMAD4 and TP53 isogenic pairs of cancer cells. The preliminary data show that genetic subsets of pancreatic cancer correlate with in vitro chemosensitivity, and these genetic backgrounds may be useful for personalizing chemotherapy of patients with pancreatic cancer in the future.

Materials and Methods

Human pancreatic cancer cell lines, human pancreatic ductal epithelial cell line, human DPC4/SMAD4 isogenic pancreatic cancer cell lines, human TP53 isogenic colon cancer cell lines, and cell culture

Thirty-four human pancreatic cancer cell lines used in this study were isolated from the tumor samples of patients in Departments of Pathology and Oncology, Johns Hopkins School of Medicine (Baltimore, MD; Supplementary Table S1). Among them, 19 cell lines were used for the Discovery Screen and 10 cell lines were used for the Prevalence Screen of the original pancreatic cancer sequencing study (6). The sequences of 23,219 transcripts representing 20,661 protein-coding genes were determined, and somatic mutations identified in the discovery and prevalence screen, homozygous deletions, and SAGE gene expression data have been published in detail elsewhere (6). Twelve of the patients contributing samples to this study had a family history of the disease, defined as having at least 2 first-degree relatives affected with pancreatic cancer. The use of human tissue was approved by the local Institutional Review Board (Johns Hopkins University). All human pancreatic cancer cell lines were cultured in minimum essential medium (Gibco) supplemented with 10% FBS (Gibco), 100 U/mL penicillin, and 100 μg/mL streptomycin.

An HPV transfected normal human pancreatic ductal epithelial cell line (HPDE), generously provided by Dr Ming-Sound Tsao, Toronto, Ontario, Canada. was also analyzed. Apart from slightly aberrant expression of p53, molecular profiling of this cell line has shown that expression of other proto-oncogenes and tumor suppressor genes are normal (23). The HPDE cell line was grown in keratinocyte serum-free media (Invitrogen) supplemented with bovine pituitary extract and recombinant EGF.

Pa01C and Pa02C parental cell lines were both generated from liver metastases of patients with pancreatic cancer, both of which had homozygous deletions of DPC4. Pa01C and Pa02C cells were stably transfected with either a cDNA expression plasmid to overexpress DPC4 (pC3DNA-1-DPC4) or an empty plasmid (pC3DNA.1Mock) using the Attractene transfection agent (Qiagen). The Pa01C and
Pa02C derivative isogenic cells were both analyzed as single clones. All of the genetically complemented clones express DPC4, whereas the control cells do not (data not shown). TGF-β pathway activities were tested for these isogenic pairs using a previously reported luciferase assay (24). These cell lines were cultured in Dulbecco's modified Eagle medium (Gibco) supplemented with 10% FBS (Gibco). 100 U/mL penicillin, 100 μg/mL streptomycin, and 0.35 mg/mL G418 sulfate (Mediatech). Supplementary Table S2 summarizes the DPC4/SMAD4 isogenic cell lines.

The parental colorectal cancer cell lines HCT116, SW48, and RKO were from American Type Culture Collection. All the isogenic cell pairs for TP53 were created with genetic knockout/knockin method, as was previously reported (25). These cell lines were cultured in McCoy's 5A medium (Gibco) supplemented with 10% FBS (Gibco), 100 U/mL penicillin, and 10 μg/mL streptomycin. Supplementary Table S3 shows the characteristics of TP53 isogenic cell lines.

All cells were maintained at 37 °C in a humidified atmosphere with 5% CO2.

Preparation of anticancer drugs

Triptolide, docetaxel, MMC, cisplatin, irinotecan, and artemisinin were purchased from Sigma. Gemcitabine was obtained from Net Qem (Research Triangle Park). Parp1 inhibitor (KU6005948) was synthesized in Dr Vogelstein's lab. Artemisinin (an antimalarial drug) was selected as a negative control drug because it possessed no known anti-cancer activity. The 8 drugs were dissolved in dimethyl sulfoxide (DMSO; triptolide, docetaxel, cisplatin, irinotecan, and artemisinin) or PBS (MMC and gemcitabine), stock solutions of 10 mmol/L were made and they were stored at −80°C.

In vitro cell growth assay for drug screening

Cells were plated in 96-well plates at a density of 3,000 cells per well using standard culture media. Edge wells of the 96-well plate were filled with 1 × PBS. After overnight growth, media were removed and 200 μL of medium with drug was added into each well. Drugs were serially diluted to desired final concentrations with medium containing 10% serum and each dose had 6 replicate wells. Cells incubated in the medium with the vehicle dimethyl sulfoxide (DMSO; triptolide, docetaxel, cisplatin, irinotecan, and artemisinin) or PBS (MMC and gemcitabine), stock solutions of 10 mmol/L were added and they were incubated at 37 °C.

Statistical analysis

IC50 values were calculated by fitting sigmoid dose–response curves with GraphPad Prism 5.0 (GraphPad Software, Inc.). IC50 distributions were compared by genetic status (mutations, deletions, or both) and family history status with Wilcoxon rank sum tests. A drug response was defined as an IC50 value below the median or below the highest IC50 that did not exceed 10,000 (this happened for drugs where more than 50% of cell lines had IC50 values of 10,000 or more). The relationship between response and genetic status was summarized with an OR from a logistic regression model and Fisher exact test. When comparing the IC50 values between different drugs or to fold change in pathway activity, Spearman rank-based correlation was used. IC50 values between isogenic pairs were compared with a paired Student t test. Chemosensitivity correlation analysis of clustered cell lines was examined with heatmaps and a network map, which is a visual depiction of how cell lines cluster based on whether the Spearman correlation of the within-cell line standardized IC50 values between a pair of cell lines was 0.65 or higher. Statistical analyses were conducted using GraphPad Prism 5.0 and R (version 2.13.1). Because of the exploratory nature of the study, P values are not corrected for multiple comparisons and are included for descriptive purposes only.

Results

Substantial variation of pancreatic cancer cell lines to broad classes of chemotherapeutic agents

We screened 29 genetically defined pancreatic cancer cell lines with the 7 broad classes of anticancer drugs listed above. Pancreatic cancer cells were exposed to increasing concentrations of the drugs in 6 replicate wells and IC50 values calculated (Fig. 1 and Supplementary Tables S4 and S5). Most pancreatic cancer cell lines were sensitive to gemcitabine, triptolide, docetaxel, and MMC. The majority of pancreatic cancer cell lines were insensitive to cisplatin, irinotecan, Parp1 inhibitor, and the negative control drug. Among the generally sensitive drugs, some cell lines were notably less sensitive (Fig. 2A and D). For example, with gemcitabine, the vast majority of cell lines were sensitive with IC50s in the single digit nanomolar range, whereas 3 cell lines (Pa09C, Pa08C, and Pa43C) were significantly less sensitive (IC50s: 40–60 nmol/L). Similarly, for MMC, most of cell lines were sensitive with IC50s under 50 nmol/L, whereas 5 cell lines (Pa18C, Pa07C, Pa02C, Pa113C, and Pa19C) were substantially resistant. Surprisingly, among the generally ineffective drugs (Fig. 1), individual cell lines were uniquely sensitive (Fig. 3). For
example, with cisplatin, most cell lines were quite insensitive, whereas a few (Pa18C, Pa21C, and Pa228C) had relatively lower IC50 values (100–200 nmol/L). Similarly, for irinotecan, 3 cell lines (Pa21C, Pa37C, and Pa227C) showed IC50 values less than 200 nmol/L, and for the Parp1 inhibitor, 6 cell lines (Pa03C, Pa01C, Pa11C, Pa104C, Pa221C, and Pa227C) had IC50 less than 200 nmol/L. In summary, among the sensitive drugs, outlier pancreatic cancer cell lines were more resistant, whereas among the resistant drugs, unique cell lines were more sensitive.

DPC4/SMAD4 inactivation sensitized pancreatic cancer cells to cisplatin and irinotecan but reduced their sensitivity to gemcitabine

We attempted to explain the variation in drug response noted above by correlating it with the genetic status of these lines. We checked all the somatic mutations and homozygous deletions which existed in the 19 pancreatic cancer cell lines included in the discovery screen and the 10 pancreatic cancer cell lines included in the prevalence screen (Supplementary Table S1; ref. 6). We attempted to correlate drug responses to genotype (Fig. 4 and Supplementary Fig. S1 and S2), considering each gene as either mutated only (mut), deleted only (del), mutated or deleted combined (md), or wild-type (wt). We initially focused on DPC4/SMAD4 (Supplementary Tables S6 and S7). Pancreatic cancer cells with DPC4 homozygous deletions were modestly (2-fold) more sensitive to cisplatin (P = 0.02; Supplementary Table S6). In logistic regression analysis, comparisons of DPC4 deleted or SMADPath gene deleted or SMADPath gene defective (mutated or deleted) pancreatic cancer cells with wild-type cells treated with cisplatin confirmed this finding (ORs: 11.93, 15.07, and 7.56; P = 0.01, 0.001, and 0.05, respectively; Supplementary Table S7).

One concern about this study is that of multiple comparisons. Accordingly, to confirm these findings, we constructed isogenic cell lines from Pa01C and Pa02C with or without homozygous DPC4 deletions. With cisplatin, we found that IC50 values of DPC4-deficient cell lines for cisplatin were 1.8- and 1.2-fold lower than for DPC4-containing cell lines (Fig. 5A and Supplementary Table S8). This was less significant in another isogenic cell line pair derived from Pa02C, but this cell line showed lower TGF-β signaling even when DPC4 was present (Supplementary Fig. S3A). Because all the pairs of isogenic cells had different levels of TGF-β pathway signaling (Supplementary Fig. S3A), we attempted to correlate the cisplatin IC50 values with TGF-β pathway activities in these cells. Our results confirmed that IC50 values of cisplatin were positively correlated with TGF-β activity (r = 0.86, 95% CI: 0.39 to 0.97, P = 0.007), although this relationship is largely driven by the 2 cell lines with highest TGF βR activity (Supplementary Fig. S3B and Supplementary Table S9). The analysis of expression data showed that cytotoxicity of cisplatin was closely positively associated with MAP3K12 (an activator of the SAPK/JNK pathway), MAPK11 (most closely related to p38 MAP kinase), and MAP4K2 (involved in activation of MAP3K1/MEK1; Supplementary Table S10).

Pancreatic cancer cells with DPC4 defects (mutations or deletion combined) were 4.5-fold more sensitive to irinotecan than those with wild-type DPC4 (P = 0.04; Fig. 4A and Supplementary Table S6). In logistic regression analysis, comparison of DPC4-defective cells to wild-type cells treated with irinotecan produced an OR of 8.64 and a P value of 0.02, and when only DPC4-deleted cells were compared with wild-type cells, a P value of 0.02 was obtained (Supplementary Table S7). To verify these findings, we tested the pairs of DPC4 isogenic cell lines with irinotecan. We found IC50 values of DPC4-deficient cell lines were 1.2- and 1.7-fold lower than those of DPC4-complemented cell lines (Fig. 5B and Supplementary Table S8). Correlation analysis for IC50 values and TGF-β pathway activities was not significant (P = 0.067; Supplementary Table S9).

We tested 2 pairs of DPC4 isogenic cells for possible synergy between cisplatin and irinotecan at a constant ratio of 1:1 with simultaneous treatment. The combination indices (CI) were calculated using CompuSyn (26). Simultaneous treatment with the 2 drugs resulted in antagonistic interactions with DPC4-defective cells and synergistic interactions in DPC4-complemented clones at ID50, but these cell lines all showed antagonistic or additive interactions at ID75 (Supplementary Table S11).

Despite the lack of correlation between DPC4 status and gemcitabine response in the panel of pancreatic cancer cell
lines (Supplementary Fig. S1C and S1E), we tested the DPC4 isogenic cell lines with gemcitabine and found that DPC4-defective cells were about 2-fold less sensitive than wild-type cells ($P = 0.058$ and 0.033; Fig. 5C and Supplementary Table S8). We made the correlation analysis for IC$_{50}$ values and TGF-β pathway activities in these isogenic cells. Our results confirmed that gemcitabine IC$_{50}$s were negatively correlated with TGF-β pathway activities ($P = 0.015$; Supplementary Fig. S3C and Supplementary Table S11).

Figure 2. Responses of individual pancreatic cancer cell lines to the 4 sensitive drugs (note Y-axis scale, 0–120 nmol/L). Cytotoxic effects of gemcitabine (A), triptolide (B), docetaxel (C), and MMC (D) on pancreatic cancer cells. Gemcitabine (A) showed generally good responses, although unique cell lines showed more than 100-fold less sensitivities (** indicates outlier cell lines). Triptolide (B) and docetaxel (C) showed nearly universal toxicities at doses in the single-digit nanomolar concentration. MMC (D) showed more variation in response, and unique cell lines (*) showed more than 40-fold less sensitivity.

Chemotherapeutic effects of triptolide and a Parp1 inhibitor were related to TP53 inactivation
Pancreatic cancer cells with TP53 defects were 2.3-fold more sensitive to triptolide than wild-type TP53 cells, $P = 0.04$ (Fig. 4B and Supplementary Table S6). We confirmed
these results in logistic regression analysis, $P = 0.02$ (Supplementary Table S7), and confirmed a modest effect (1.5- to 2.7-fold) using 3 pairs of TP53 isogenic colon cancer cells (1.4- to 2.7-fold; $P < 0.05$; Fig. 5D and Supplementary Table S12).

Pancreatic cancer cells with defective TP53 were 4.3-fold more sensitive to Parp1 inhibitor than those with wild-type TP53 alleles, $P = 0.04$ (Fig. 4C and Supplementary Table S6). In this analysis, only 3 cell lines were wild-type, and the response of TP53-defective cell lines was clearly bimodal with one highly resistant population (IC_{50}: $> 10,000$ nmol/L), and a second variably sensitive population (IC_{50}: 20–4,000 nmol/L). Logistic regression analysis confirmed that a subset of TP53-defective cancer cells

Figure 3. Responses of individual pancreatic cancer cell lines to the 4 insensitive drugs (note Y-axis scale, 0–10,000 nmol/L). Cytotoxic effects of cisplatin (A), irinotecan (B), and Parp1 inhibitor (C) on pancreatic cancer cell viability showed variable drug responses, and unique cell lines showed more than 200-fold variation in their sensitivities to these drugs (** indicates uniquely sensitive cell lines). Artemisinin (D) showed the nearly invariant resistance at doses in greater than 10,000 nanomolar, although unique cell lines (*) were sensitive.
were more sensitive to the Parp1 inhibitor (an OR of 11.93 for TP53 mutation vs. wild-type, $P = 0.02$, and P value of 0.01 for TP53 mutation or deletion vs. wild-type; Supplementary Table S7). We investigated possible explanations for this effect (Supplementary Tables S13 and S14), and identified a possible association between sensitivity and wild-type P16 status, although this was not statistically significant. We attempted to confirm these findings using 3 pairs of TP53 isogenic colon cancer cell lines (Supplementary Fig. S3D and Supplementary Table S12); however, the opposite effect was seen, possibly because the different genetic and cellular backgrounds of the pancreatic cancer cells and the colon cancer cell lines.

P16/CDKN2A inactivation made human pancreatic cancer cells less sensitive to gemcitabine and MMC

Pancreatic cancer cells with P16 homozygous deletions showed approximately 3.1-fold higher IC$_{50}$ values for gemcitabine than those with wild-type P16 ($P = 0.04$; Supplementary Fig. S2A and Supplementary Table S6), although this difference did not achieve statistical significance ($P = 0.15$; Supplementary Fig. S2D). Pancreatic cancer cells with wild-type P16 alleles were 3.8-fold more sensitive to MMC than those with either P16 mutation or deletion ($P = 0.04$; Fig. 4D and Supplementary Table S5). We confirmed this in logistic regression analysis (an OR of 0.19 for P16 defects vs. wild type, $P = 0.05$; Supplementary Table S7). We attempted to explain the variation in drug response of the P16-defective cancer cells, but were unable to identify cooperating mutations in other genes (Supplementary Table S15).

Other findings in the anticancer drug screening

We selected the antimalarial drug, artemisinin, as a negative control drug, and the majority (88.2%) of cancer cells showed no response, as expected. To our surprise, 3 pancreatic cancer cell lines showed sensitive responses with IC$_{50}$s less than 300 nmol/L (Fig. 3D). We examined the SAGE expression data in attempt to explain these results. We noted significant the lack of expression of P16, p15, and a series of mitogen-activated protein kinase genes in the sensitive lines (Supplementary Table S16).

Other drug response–genotype associations, drug response–gene expression profile correlations and DPC4/SMAD4, TP53, or P16/CDKN2A status gene expression profile correlations are presented in Supplementary Results (Supplementary Table S6, S7, S10, S16–S21 and Fig. S4 and S5). With regard to gemcitabine sensitivity, we were

![Figure 4. Correlations of drug response to genotype. Cytotoxic effect of irinotecan (A) was related to DPC4/SMAD4 inactivation, those of triptolide (B) and Parp1 inhibitor (C) were related to TP53 inactivation, and that of MMC (D) was related to P16 inactivation. Wilcoxon rank sum tests were used to compare differences in the median IC$_{50}$ by mutation status. "md" indicates either mutation or deletion and the "wt" indicates wild-type. For TP53, md group in (C), solid circles indicate TP53-mutated pancreatic cancer cell lines, and triangles indicate TP53-deleted pancreatic cancer cell lines.](https://www.aacrjournals.org/content/clicancerres/18/23/6525/F1.large.jpg)
unable to correlate it with quasi-mesenchymal subtype (27) or ZEB1/2 expression (data not shown).

Cluster analysis for anticancer drug sensitivities

We also analyzed the chemosensitivity without consideration of the genetics using cluster analysis. Using an evolutionary cluster analysis, it seems that the drug pattern is dominant over the cell line clustering. As expected, sensitive drugs clustered on the right branch, and insensitive drugs clustered on the left branch (Fig. 6A). We found that cisplatin with irinotecan and gemcitabine with Parp1 inhibitors had similar drug response profiles. Some pancreatic cancer cell lines clustered together forming several groups with similar drug response profiles for 8 drugs (Fig. 6B). For example, Pa01C, Pa03C, and Pa21C in a triangle network showed similar drug responses and similar different gene expression profiles that distinguished them from other pancreatic cancer cell lines (Supplementary Table S22). Other attempts to identify genes responsible for the clustering were not successful.

Discussion

Personalized chemotherapy based on the pattern of genetic alterations and gene expression in a tumor can, in theory, identify drugs to which the tumor will be sensitive as well as those unlikely to provide a therapeutic response. Comprehensive germline and somatic changes in patients and their cancers can now be determined at a reasonable cost in 2012. However, the bioinformatics to translate these data to chemoprediction is years behind. Our study attempts to fill this gap. In our study, we screened a set of genetically defined pancreatic cancers to determine whether there were correlations between genetic and transcriptomic profiles and drug sensitivities. We found that somatic mutations or homozygous deletions of DPC4/SMAD4, TP53, and P16/CDKN2A genes correlated with...
in vitro drug responses, although the differential effects were not pronounced. Additional studies will be necessary to determine whether these correlations can be reproduced in preclinical animal models and in patients.

We identified an association between DPC4/SMAD4 defects and sensitivity to cisplatin and irinotecan in the initial panel of pancreatic cancer cell lines, and confirmed these effects using isogenic cell lines. The observation that cisplatin cytotoxicity was correlated with alteration of MAPKs indicates that the cytotoxic mechanism of cisplatin in pancreatic cancer cell may partly be linked to noncanonical TGF-β pathways. The activation of MAPK pathways by TGF-β depends upon the cell type, often in a DPC4-independent manner (28). For irinotecan, we observed that DPC4 inactivation sensitized pancreatic cancer cells to this drug. DNA Top1 is essential in metazoans for the relaxation of DNA supercoiling by forming Top1 cleavage complexes (Top1cc; ref. 29), and Top1 inhibitors can stabilize Top1cc and Top1-associated DNA damage (30). TGF-β signaling influences cellular proliferation through inhibition of G1-S transition by inducing expression of cyclin kinase inhibitors such as P15, P21, and P27, although TGF-β signaling represses c-Myc expression (31). Consistent with these prior studies, we observed downregulation of P15/CDKN1B and upregulation of CDCA4 and CDC2L6 with DPC4 inactivation in our panel of pancreatic cancer cells (Supplementary Table S19 and Supplementary Figs. S5A and S35B). In a recent study, Bornstein and colleagues (32) reported increased genomic instability in both normal head and neck tissues and squamous cell carcinoma of the head and neck (HNSCC) from HN-mice with selective inactivation of DPC4/SMAD4 in head and neck epithelium, which correlated with downregulated expression and function of genes encoding proteins in the Fanconi anemia/BRCA DNA repair pathway. Under inactivation of DPC4, cell-cycle checkpoint arrest is reduced, thereby increasing genomic instability and resulting in apoptosis, which may contribute to the sensitivity of DNA damaging drugs in pancreatic cancer cells. In our study, we also found that wild-type DPC4 was a sensitive factor for gemcitabine. Pancreatic cancers are represented by distinct genetic subtypes with significantly different patterns of failure (9). So it may be valuable to determine DPC4 status at initial diagnosis and stratify patients into personalized chemotherapy.

We found substantial variation in Parp1 inhibitor sensitivity among pancreatic cancer cell lines, where sensitivity correlated with inactivated TP53. All TP53 wild-type
pancreatic cancer cells were highly resistant to the Parp1 inhibitor, although there was considerable variation among TP53-inactivated cells. This variation was not correlated with the type of p53 mutation or mutation status at a second gene (Supplementary Table S13). Nor could we explain these results through differences in expression (Supplementary Table S14). TP53 downregulates homologous recombination (HR) either directly (33) or by interacting and/or regulating HR-related proteins, such as Rad51 (34). In this sense, TP53 inactivation results in increased exacerbated spontaneous or damage-induced HR (35, 36). TP53-deficient mice exhibit high HR frequency at different developmental stages (37) and TP53 mutations correlate with elevated recombination rates (38, 39). Moreover, TP53 preferentially suppresses both spontaneous and DSB-induced nonconservative intrachromosomal HR between imperfect homologous sequences (ICHR), susceptible of generating gross rearrangements such as deletions, duplications, or inversions (40). In our study, it was observed that RAD51 and other HR genes were upregulated in TP53-inactivated pancreatic cancer cells, which indicated a high HR frequency in TP53-deficient pancreatic cancer (Supplementary Table S20 and Fig. S5C). The correct balance between desirable and undesirable repair is attained by the finely tuned HR regulation of TP53, as evidenced by the fact that both excessive and defective HR are associated with cancer predisposition and resistance to therapeutic drugs (41). Therefore, TP53 inactivation may result in an imbalance between desirable and undesirable repair because of the lack of proper regulation by TP53 in HR.

Some studies report that cells lacking PARP1 also show a hyper-recombinogenic phenotype (an increased frequency of HR; ref. 42–44), which has also been observed in mice using the pun assay (45). We propose that TP53 inactivation may have a synthetic lethality with Parp1 inhibitor in pancreatic cancer cells because TP53 controls the fidelity of Rad51-dependent HR and represses aberrant processing of replication forks after stalling at unrepaired DNA lesions. In our study, we also found that the sensitivity of Parp1 inhibitor was related to expression profiles of some DNA damage and repair pathway genes (ERCC3, RAD17, SIUA01, MUTYH, CRY1, HSP90B1, CDC37, RXRA, USP5) in (Supplementary Tables S10, S14, and S16).

Triptolide covalently binds to human XBP (also known as ERCC3), a subunit of the transcription factor TFIIH, and inhibits its DNA-dependent ATPase activity, which leads to the inhibition of RNA polymerase II-mediated transcription and likely nucleotide excision repair (46). In our study, we found that the expression level of ERCC3 was upregulated in triptolide-sensitive pancreatic cancer cells and triptolide was more sensitive to pancreatic cancer cells with TP53 inactivation (Supplementary Table S16 and Fig. S4A). This indicates that ERCC3 may exert a synthetic lethality with TP53. Recent reports also indicate that triptolide causes pancreatic cancer cell death in vitro and in vivo by inducing apoptosis via inhibition of HSP70 that can inhibit apoptosis in cancer cells by attenuating cytosolic calcium and stabilizing lysosomes (47, 48). In our study, it was found that elevated expressions of HSF1 and HSPA9 were related to the triptolide sensitivities in pancreatic cancer cell lines (Supplementary Table S16).

In addition, we showed that pancreatic cancer cells with P16 inactivation were less sensitive to gemcitabine and MMC. These findings are consistent with those of Halloran, who reported that gemcitabine combined with adenoviral-mediated reintroduction of P16 greatly enhanced cytotoxicity in Panc-1 pancreatic adenocarcinoma cells (49). P16/CDKN2A is a tumor suppressor and plays a pivotal role in regulating the G1–S cell-cycle checkpoint (50). Gemcitabine and MMC can both cause DNA damage by incorporation of nucleoside analogs or production of crosslinks and wild-type P16 may facilitate the process for cycle checkpoint arrest and apoptosis in pancreatic cancer cells. Cell-cycle checkpoints are important in cellular response to DNA damage by arresting the cell cycle to provide time for repair and by inducing transcription of genes that facilitate repair (51). This is consistent with a clinical trial that suggested that the ability of cells to progress into the S-phase after gemcitabine and radiation treatment was the key factor in radiosensitization (52). A recent study indicated that the polymorphic genotypes of p16 were associated with significantly shorter time to tumor progression and poorer response to therapy (53). Our analysis of expression data also showed that cytotoxicity of gemcitabine was closely associated with the expression of genes regulating the cell cycle, apoptosis, autophagy. DNA repair, tumor suppressor gene, and anticancer drug metabolism pathway (Supplementary Table S16). So, we hypothesize that mutations and deletions in cell-cycle genes such as P16 may modulate the response to treatment with gemcitabine or MMC-based chemotherapy.

We also analyzed the chemosensitivity data by ignoring the genetics. For active drugs, we found uniquely insensitive lines, and among inactive drugs, including even the control drug, we found unique sensitive lines. By using cluster analysis, we found that some anticancer drugs have similar drug response profiles for pancreatic cancer cell lines, and some pancreatic cancer cell lines clustered together forming several groups with similar drug response profiles. Consistent with the findings of Collins and colleagues (27), this provides evidence that functional subsets of pancreatic cancer exist, however, despite our best effort, we were unable to correlate clusters in Fig. 6B with specific genetic defects. Drugs that closely cluster may indicate that they target a common pathway or downstream effector.

In vitro studies, such as ours, have limitations. Several hypotheses have been suggested to explain why purified malignant cells may exhibit sensitivities in vitro that do not extrapolate to in vivo tumors. Malignant cells may possess biologic properties that are lost in tissue culture. Alternatively, the resistance to systemic therapies in patients with pancreatic cancer might also be partly explained by inefficient drug delivery to malignant cells, because stromal microenvironment may create a hypovascular penetration barrier that impairs effective chemotherapeutic delivery (54). Furthermore, the degree of genetic heterogeneity of
a tumor is also likely to be an important determinant of therapeutic outcome (55), the reconstruction of tumor clonal architectures, and the identification of early driver mutations may provide more robust biomarkers and therapeutic approaches (36).

In conclusion, we screened broad classes of anticancer drugs for their antiproliferative properties in a panel of human pancreatic cancer cell lines. These results suggest that genetic subsets of pancreatic cancer exist, and that many are significantly correlated with chemosensitivity to specific agents. These genetic subsets may be valuable for personalizing pancreatic cancer chemotherapy in the future.

Disclosure of Potential Conflicts of Interest
B. Vogelstein is a consultant/advisory board member in Inostics, Morphotek, P.16 [NATST], and PGDx. L.A. Diaz has ownership interest (including patents) in Personal Genome Diagnostics and is a consultant/advisory board member in Inostics. J.R. Eshleman and R.H. Hruban disclose a patent licensed to Myriad Genetics. No potential conflicts of interest were disclosed by other authors.

Authors' Contributions
Conception and design: Y. Cui, A. Maitra, C.A. Iacobuzio-Donahue, J. R. Eshleman
Development of methodology: Y. Cui, S. Sur, A. Maitra
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): Y. Cui, J.A. Brosnan, S. Sur, B. Vogelstein

References
Writing, review, and/or revision of the manuscript: Y. Cui, J.A. Brosnan, A.L. Blackford, R.H. Hruban, B. Vogelstein, A. Maitra, L.A. Diaz, J.R. Eshleman
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): Y. Cui, J.A. Brosnan, C.A. Iacobuzio-Donahue, J.R. Eshleman
Study supervision: J.R. Eshleman

Acknowledgments
The authors thank Scott E. Kern, Christopher I. Wolfgang, and Leslie Cope, for helpful discussion, and Ming-Sound Tsao for generously providing the HPDE cell line in this project.

Grant Support
These studies were supported by PanCan (to J.R. Eshleman), CA130938 (to J.R. Eshleman), CA140599 (to C.A. Iacobuzio-Donahue), Lustgarten (to B. Vogelstein), the Sol Goldman Pancreatic Cancer Research Center, and the Michael Rolfe Foundation for Pancreatic Cancer Research (to A. Maitra, C.A. Iacobuzio-Donahue, J.R. Eshleman)
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received March 13, 2012; revised May 8, 2012; accepted June 16, 2012; published OnlineFirst July 2, 2012.

www.aacrjournals.org

Genetically Defined Subsets of Human Pancreatic Cancer Show Unique In Vitro Chemosensitivity

Yunfeng Cui, Jacqueline A. Brosnan, Amanda L. Blackford, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-0827

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2012/07/02/1078-0432.CCR-12-0827.DC1

Cited articles
This article cites 56 articles, 29 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/18/23/6519.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/18/23/6519.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.