Increasing Use of Radical Prostatectomy for Nonlethal Prostate Cancer in Sweden

Ruth Etzioni1, Lorelei Mucci3,4, Shu Chen2, Jan-Erik Johansson5, Katja Fall5, and Hans-Olov Adami3,6

Abstract

Purpose: The number of patients in Sweden treated with radical prostatectomy for localized prostate cancer has increased exponentially. The extent to which this increase reflects treatment of nonlethal disease detected through prostate-specific antigen (PSA) screening is unknown.

Experimental Design: We undertook a nationwide study of all 18,837 patients with prostate cancer treated with radical prostatectomy in Sweden from 1988 to 2008 with complete follow-up through 2009. We compared cumulative incidence curves, fit Cox regression and cure models, and conducted a simulation study to determine changes in treatment of nonlethal cancer, in cancer-specific survival over time, and effect of lead-time due to PSA screening.

Results: The annual number of radical prostatectomies increased 25-fold during the study period. The 5-year cancer-specific mortality rate decreased from 3.9% [95% confidence interval (CI), 2.5–5.3] among patients diagnosed between 1988 and 1992 to 0.7% (95% CI, 0.4–1.1) among those diagnosed between 1998 and 2002 (P_trend < 0.001). According to the cure model, the risk of not being cured declined by 13% (95% CI, 12%–14%) with each calendar year. The simulation study indicated that only about half of the improvement in disease-specific survival could be accounted for by lead-time.

Conclusion: Patients overdiagnosed with nonlethal prostate cancer appear to account for a substantial and growing part of the dramatic increase in radical prostatectomies in Sweden, but increasing survival rates are likely also due to true reductions in the risk of disease-specific death over time. Because the magnitude of harm and costs due to overtreatment can be considerable, identification of men who likely benefit from radical prostatectomy is urgently needed.

Introduction

The techniques used to conduct radical prostatectomy were refined in the 1980s (1), and soon thereafter, prostatectomy became a widespread curative treatment for localized prostate cancer (2). Concomitantly, the clinical landscape of prostate cancer was transformed following widespread prostate-specific antigen (PSA) screening (3, 4) which dramatically increased prostate cancer incidence, with a larger proportion of cases presenting with localized disease (5, 6, 8). In Sweden, PSA testing in men aged 55 to 69 years was estimated to have increased to 56% over 10 years in 2007 (9). As a corollary, the number of patients eligible for radical prostatectomy has grown. Many of these cancers have an indolent course even without therapeutic intervention (10–12). Consequently, PSA screening entails overdiagnosis of cancer that would never present clinically during the patient’s lifetime (4, 5, 13).

In this context, it is timely to assess whether the growth in number of prostatectomies in Sweden has generated increasing treatment of nonlethal cancer which by definition can convey no survival benefit and for which men experience only the attendant consequences of increased morbidity and poorer quality of life associated with the treatment (14, 15). To address the hypothesis, we examine data from a nationwide cohort comprising all patients with prostate cancer in Sweden treated with prostatectomy and followed prospectively for mortality from 1988 to 2008.

Materials and Methods

The study cohort

We undertook a nationwide study in Sweden, including all patients with prostate cancer who underwent radical prostatectomy between 1988 and 2008. The men were identified through linkage of the Swedish Cancer Register (16) with the Inpatient Register using the unique national registration number assigned to all Swedish inhabitants.
Translational Relevance

Our findings have potentially profound translational relevance. It is now clear that a major surgical procedure is being used on an industrial scale for many patients who can experience only potentially severe side effects but no survival benefit. Because the number of patients treated with radical prostatectomy is at least two-fold higher in the United States than in Sweden (after adjustment for population size), the proportion of patients with nonlethal disease is likely even larger than in our study. Consequently, means to reduce overtreatment needs serious consideration. Active surveillance is becoming a more widely used alternative for low-risk cases and was recently endorsed by an NIH consensus panel as a preferred approach for managing low-risk cases. Optimal approaches for active surveillance need to be determined, and patients and their clinicians need to be convinced that this provides a preferred approach in the case of newly diagnosed, low-risk prostate cancer.

Information on prostatectomy procedures was gleaned from the Inpatient Register (17) with national coverage of 100% since 1987. This register includes information on surgical procedures, discharge diagnoses, as well as date of admission/discharge. Neither the cancer nor the in-patient register includes information on clinical stage, Gleason score, or other predictors of outcome. We identified 18,837 patients with prostate cancer who had undergone prostatectomy between 1988 and 2008 using the Swedish Classification of Operations and Major Procedures codes: 6631, 6633, 6611 until 1995 and KE00, KE01, KE10, and KE20 from 1996 onward.

Follow-up

Through linkage to the Swedish Death Register and the Emigration Register, the men were followed from the date of prostate cancer diagnosis until the date of death, emigration, or the end of the study period (December 31, 2009), whichever occurred first. Individuals with prostate cancer as the underlying cause were classified as having died from prostate cancer. The validity of the causes of death diagnosis among patients with prostate cancer has been reported to be high (18, 19).

Statistical analysis

We plotted cumulative incidence curves for prostate cancer death, stratified by year of diagnosis to examine trends in cancer-specific survival. We graphed the distribution of age at cancer diagnosis across time to evaluate whether there was a shift toward younger ages as an indicator of increased early detection. Relative risks of prostate cancer death were estimated using Cox proportional hazards models.

We fitted a cure model (20, 21) that estimated the fraction of cases cured and the risk of disease-specific death among those not cured. The cure model is appropriate when the risk of disease-specific death is zero for a significant fraction of the case population. This fraction represents the cured portion of the case population. The model allows separate identification of predictors of being in the cured portion and predictors of the risk of death if not cured. We used a logistic regression model to estimate the likelihood of cure and a Cox model to estimate the survival among those not cured using the PSPCM macro in SAS (13).

To determine whether improvements in observed disease-specific survival over time were consistent with a screening effect, we conducted a simulation study which replicated 100,000 patients with prostate cancer who underwent radical prostatectomy. We assumed that screening was initiated after 1992, yielding a specified fraction of cases diagnosed by screening each year thereafter. We increased the fraction of screen-detected cancers from 0% in 1992 to 10% in 1996 and to 40% in 2005 on the basis of estimates from the National Prostate Cancer Register (22).

The goal of the simulation was to compare observed and simulated disease-specific survival curves, under the assumption that screening only advances disease diagnosis with no change in life expectancy. Cases randomly assigned as screen-detected were allocated a disease-specific survival time consisting of the sum of a lead-time and a randomly generated pre-PSA survival time. The pre-PSA survival time was generated from the distribution of survival times among cases diagnosed from 1988 to 1992, before screening. We used a range of mean lead-times based on estimates from screening trials and simulation studies in the United States and Europe (13, 23). We considered mean lead-times of 5, 8, 10, and 15 years for the “screen detected cases” and assumed an exponential distribution. For each case, a time from diagnosis to other-cause death was generated from the distribution of other-cause survival among cases diagnosed from 1988 to 2008. Each man was assigned a cause of death and survival time from the minimum of the simulated disease-specific and other-cause survival times. We then graphed the simulated and observed disease-specific survival curves based on diagnoses from 1993 onward to determine whether the addition of the lead-time associated with screening was sufficient to account for the observed improvement in survival over time.

Results

Across the study period, the number of radical prostatectomies in Sweden increased with a high of 2,500 in 2005 followed by a modest decline in 2008 (Fig. 1). Robotic procedures accounted for a growing proportion with almost 40% of prostatectomies conducted with the robot in 2008. The change in the number of prostatectomy procedures parallels the change in incidence of prostate cancer in Sweden, which peaked in 2004 and has been declining since (8). Of men undergoing prostatectomy, 90% were between 55 and 75 years at prostate cancer diagnosis (Table 1). The mean age at diagnosis has decreased over time, with a mean of 66.1 years in 1988, 62.5 years in 1998, and 62.4 years in 2008.
During a median follow-up of 5 years (range, 0–22 years), 1,920 of all 18,837 men in the cohort had died, of whom 686 (3.6%) died of prostate cancer and 1,234 (6.6%) from other causes. Table 1 presents the number of total and cancer-specific deaths, stratified by age at diagnosis and calendar interval of diagnosis. Figure 2 presents the cumulative incidence of prostate cancer death among men who underwent radical prostatectomy in Sweden. The 5-year cancer-specific mortality rate decreased from 3.9% [95% confidence interval (CI), 2.5–5.3] among patients diagnosed between 1988 and 1992 to 0.7% (95% CI, 0.4–1.1) among those diagnosed between 1998 and 2002 (P trend < 0.001). Compared with men who underwent radical prostatectomy in 1988 to 1992, those operated in 2003 to 2008 were at a 67% lower risk of dying from prostate cancer (Table 2). Compared with younger patients, men aged 65 to 74 years were at 62% higher and men aged 75 years and older at 12.9-fold higher risk of prostate cancer death.

Table 1. The total number of radical prostatectomy procedures and deaths by calendar interval year of diagnosis and age at diagnosis, Sweden 1988–2008

<table>
<thead>
<tr>
<th>Age group, y</th>
<th>Year of diagnosis</th>
<th>Total number</th>
<th>Total number of deaths</th>
<th>Number of prostate cancer deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1993–1997</td>
<td>183</td>
<td>37</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1998–2002</td>
<td>485</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2003–2007</td>
<td>1,053</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1993–1997</td>
<td>820</td>
<td>180</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>1998–2002</td>
<td>2,621</td>
<td>195</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2003–2007</td>
<td>6,034</td>
<td>108</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1993–1997</td>
<td>702</td>
<td>253</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>1998–2002</td>
<td>1,653</td>
<td>196</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2003–2007</td>
<td>4,025</td>
<td>103</td>
<td>29</td>
</tr>
<tr>
<td>75+</td>
<td>1988–1992</td>
<td>85</td>
<td>83</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>1993–1997</td>
<td>73</td>
<td>69</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>1998–2002</td>
<td>67</td>
<td>52</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2003–2007</td>
<td>71</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18,837</td>
<td>1,920</td>
<td>686</td>
</tr>
</tbody>
</table>
This trend likely reflects more restrictive use of radical prostatectomy among elderly men with low-risk disease. The risk of other-cause death declined among patients diagnosed in later calendar years (figure not shown). The 10-year cumulative incidence of other-cause death was 14% (11.5%–16.6%) among men diagnosed from 1988 to 1992 and 11.5% (9.7%–13.3%) among men diagnosed from 1993 to 1997. This decline is particularly marked when comparing patients diagnosed before 1992 with those diagnosed thereafter; time to other-cause death does not improve noticeably after 1992. The decline in other-cause death is consistent with the trend toward younger ages at diagnosis and also with the well-documented “healthy screenee effect” (24).

The results of the cure model indicated that the likelihood of being cured by prostatectomy depends significantly on both age and year of diagnosis. Accounting for age at diagnosis, the risk of not being cured declined by 13% (95% CI, 12%–14%) with each calendar year. The risk of disease-specific death among those not cured, however, does not vary significantly with calendar interval.

The results of the cure model indicated that the likelihood of being cured by prostatectomy depends significantly on both age and year of diagnosis. Accounting for age at diagnosis, the risk of not being cured declined by 13% (95% CI, 12%–14%) with each calendar year. The risk of disease-specific death among those not cured, however, does not vary significantly with calendar interval.

Figure 3 presents the simulation model of the potential influence of PSA screening and lead-time bias on prostate cancer death. The figure plots the observed prostate cancer survival among men before and after 1992, assuming introduction of PSA screening in 1993 and that 10% of cases in 1996 and 40% of cases in 2005 are detected by screening. Cases detected by screening are assigned a time to disease-specific death that is the sum of a lead-time with the specified mean and a disease-specific survival time that is generated on the basis of the survival among cases diagnosed from 1988 to 1992. The simulated models examine mean lead-times of 5, 8, 10, and 15 years.

The results of the cure model indicated that the likelihood of being cured by prostatectomy depends significantly on both age and year of diagnosis. Accounting for age at diagnosis, the risk of not being cured declined by 13% (95% CI, 12%–14%) with each calendar year. The risk of disease-specific death among those not cured, however, does not vary significantly with calendar interval.

Figure 3 presents the simulation model of the potential influence of PSA screening and lead-time bias on prostate cancer death. The figure plots the observed prostate cancer survival among men before and after 1992, assuming introduction of PSA screening in 1993 and that 10% of cases in 1996 and 40% of cases in 2005 are detected by screening. Cases detected by screening are assigned a time to disease-specific death that is the sum of a lead-time with the specified mean and a disease-specific survival time that is generated on the basis of the survival among cases diagnosed from 1988 to 1992. The simulated models examine mean lead-times of 5, 8, 10, and 15 years.

The results of the cure model indicated that the likelihood of being cured by prostatectomy depends significantly on both age and year of diagnosis. Accounting for age at diagnosis, the risk of not being cured declined by 13% (95% CI, 12%–14%) with each calendar year. The risk of disease-specific death among those not cured, however, does not vary significantly with calendar interval.

Figure 3 presents the simulation model of the potential influence of PSA screening and lead-time bias on prostate cancer death. The figure plots the observed prostate cancer survival among men before and after 1992, assuming introduction of PSA screening in 1993 and that 10% of cases in 1996 and 40% of cases in 2005 are detected by screening. Cases detected by screening are assigned a time to disease-specific death that is the sum of a lead-time with the specified mean and a disease-specific survival time that is generated on the basis of the survival among cases diagnosed from 1988 to 1992. The simulated models examine mean lead-times of 5, 8, 10, and 15 years.

The results of the cure model indicated that the likelihood of being cured by prostatectomy depends significantly on both age and year of diagnosis. Accounting for age at diagnosis, the risk of not being cured declined by 13% (95% CI, 12%–14%) with each calendar year. The risk of disease-specific death among those not cured, however, does not vary significantly with calendar interval.

Table 2. Relative risk and 95% CIs from a Cox proportional hazards model for prostate cancer death among 18,837 men who underwent radical prostatectomy in Sweden, 1988–2008

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>Relative risk (95% CI)</th>
<th>(P_{\text{trend}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calendar time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988–1992</td>
<td>1.00 (Ref.)</td>
<td><0.001</td>
</tr>
<tr>
<td>1993–1997</td>
<td>0.75 (0.64–0.89)</td>
<td></td>
</tr>
<tr>
<td>1998–2002</td>
<td>0.42 (0.34–0.51)</td>
<td></td>
</tr>
<tr>
<td>2003–2008</td>
<td>0.33 (0.25–0.42)</td>
<td></td>
</tr>
<tr>
<td>Age group, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td><55</td>
<td>1.00 (Ref)</td>
<td><0.001</td>
</tr>
<tr>
<td>55–64</td>
<td>0.98 (0.75–1.28)</td>
<td></td>
</tr>
<tr>
<td>65–74</td>
<td>1.62 (1.24–2.12)</td>
<td></td>
</tr>
<tr>
<td>75 and older</td>
<td>12.94 (9.52–17.59)</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

We set out to investigate whether trends in age at diagnosis, disease-specific, and other-cause survival among men...
treated with radical prostatectomy in Sweden were consistent with increased diagnosis of nonlethal prostate cancers as a consequence of opportunistic PSA screening. It is now clear that even in the absence of a national policy, PSA screening in Sweden did increase over the interval of our study (9). We took advantage of health care registers in Sweden to identify a large, nationwide cohort of patients with prostate cancer undergoing prostatectomy with virtually complete follow-up. Using several complementary analytic approaches, we found supportive evidence for our hypothesis that radical prostatectomy was increasingly used to treat nonlethal tumors. However, we could not conclusively link all of the apparent improvement in survival to overdiagnosis and overtreatment.

Despite the fact that there was no official screening policy in Sweden during the years of our study, cases treated with prostatectomy during this time clearly exhibit features of a population in which early detection is becoming more frequent. These are (i) a dramatic increase in disease-specific survival, (ii) a decline in the average age at diagnosis and an increase in other-cause survival, and (iii) a decrease in the uncured fraction over time. The results of the cure model, in particular, are consistent with the interpretation that the increase in radical prostatectomy may be largely driven by the overtreatment of patients who even without surgical intervention would probably have died from causes other than prostate cancer. We found that when fitting a cure model, the probability of cure increased dramatically with year of diagnosis whereas the survival among those not cured stayed relatively constant. This is consistent with the addition of indolent cases to the mix of diagnosed prostate cancers, as indolent cases have, by definition, no disease-specific mortality and, therefore, perfect disease-specific survival.

The findings of the simulation study are also consistent with the addition of screen-detected cases over time to the case population in the sense that they indicate that lead-time associated with screening could account for about half of the observed improvement in disease-specific survival. However, we were not able to match observed increases in disease-specific survival without adding a real, post–lead-time survival improvement to the simulated survival times for early-detected cases. Note that our modeling of lead-time also allows for overdiagnosis, as cases in the simulation study can and do die of other causes within the generated lead-time. Importantly, in this modeling exercise, we expressly did not model any benefit of early detection or early treatment because we wanted to determine whether the apparently improved survival could be attributed solely to the addition of lead-time.

Our results are likely generalizable to other Western populations with widespread PSA screening and use of prostatectomy for treatment of prostate cancer. Nevertheless, alternate interpretations of our data must be considered. Studies have suggested with more experience, surgical treatment achieves cure in a growing proportion of operated patients (25, 26). It is possible that our results could reflect improved outcomes of radical prostatectomy or improved life expectancy due to the synergy of early detection and early treatment.

Defined as the time interval between detection through screening and the hypothetical time of clinical diagnosis, the lead-time due to PSA testing is at least 5 years (13, 23) but will vary depending on the background incidence of disease in the absence of screening and the screening protocol. The lead-time will be longer under more frequent screening and whenever a lower cutoff for biopsy referral is used because this will lead to cancer being detected earlier during the preclinical detectable phase. Even PSA testing used for diagnostic purposes can induce a lead-time if it produces a disease diagnosis in advance of that occurring in the absence of PSA testing. Longer lead-times are associated with a greater frequency of overdagnosis. However, our simulation results indicated that even lead-times at the high end of a plausible range could not fully explain the observed improvements in disease-specific survival, given our best estimates of the prevalence of screen detection in the Swedish population.

Overtreatment of nonlethal prostate cancer is of major concern because radical prostatectomy is associated with substantial costs and harms. Some loss of erectile function occurs in 80% of patients (14, 15, 27). In addition, up to 20% of all operated men will live with incontinence ranging from mild to severe during their remaining life span, a condition with considerable impact on quality of life (27). Moreover, the average age at diagnosis has shifted considerably to younger men as a result of PSA screening, and thus men are living with these quality of life issues for a significantly longer time. Although radical prostatectomy might have prevented future obstructive symptoms in a few patients, such problems can usually be treated effectively with hormonal manipulation or transurethral resection. Costs to society and the health care system are considerable and remain consistently higher following prostatectomy than with watchful management with no primary local treatment (28).

Clearly, indolent and lethal cancers need to be reliably separated allowing a much more selective use of radical prostatectomy among men who are likely to benefit. Although this is an area of much ongoing effort, validated molecular markers and signatures have yet to be implemented clinically (29). Together with the adoption of active surveillance protocols (30), this work promises to enhance our ability to identify and treat those men who will benefit the most from radical prostatectomy.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: J.-E. Johansson, H.-O. Adami
Development of methodology: R. Etzioni
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J.-E. Johansson, K. Fall, H.-O. Adami
Overtreatment with Radical Prostatectomy

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): R. Ezioni, L. Mucci, S. Chen, H.-O. Adami

Writing, review, and/or revision of the manuscript: R. Ezioni, L. Mucci, J.-E. Johansson, K. Fall, H.-O. Adami

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): K. Fall, H.-O. Adami

Study supervision: J.-E. Johansson, H.-O. Adami

Acknowledgments

The authors thank David F. Penson for comments on an earlier draft of this work.

References

Grant Support

This work was supported by Karolinska Institutet, Distinguished Professor Award (grant Dnr: 2368/10-221), and by award number U01CA157224 from the National Cancer Institute and the Centers for Disease Control.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 22, 2012; revised August 8, 2012; accepted August 8, 2012; published OnlineFirst August 27, 2012.

www.aacrjournals.org

Published OnlineFirst August 27, 2012; DOI: 10.1158/1078-0432.CCR-12-1537
Increasing Use of Radical Prostatectomy for Nonlethal Prostate Cancer in Sweden

Ruth Etzioni, Lorelei Mucci, Shu Chen, et al.

Updated version Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-1537

Cited articles This article cites 27 articles, 5 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/18/24/6742.full#ref-list-1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.