HDL of Patients with Type 2 Diabetes Mellitus Elevates the Capability of Promoting Breast Cancer Metastasis

Bing Pan1, Hui Ren1, Yubin He2, Xiaofeng Lu2, Yijing Ma3, Jing Li3, Li Huang3, Baoqi Yu1, Jian Kong4, Chenguang Niu1, Youyi Zhang1, Wen-bing Sun4, and Lemin Zheng1

Abstract

Purpose: Epidemiologic studies suggested complicated associations between type 2 diabetes mellitus and breast cancer. High-density lipoprotein (HDL) is inversely associated with the risk and mortality of breast cancer. Our study is to determine the different effects of normal and diabetic HDL on breast cancer cell metastasis.

Experimental Design: MDA-MB-231 and MCF7 cells were treated with N-HDL, D-HDL, G-HDL, and Ox-HDL. Cell metastasis potency was examined using a tail-vein injection model, and cell adhesion abilities to human umbilical vein endothelial cells (HUVEC) and extracellular matrix (ECM) were determined in vitro. Integrin expression and protein kinase C (PKC) activity were evaluated, and PKC inhibitor was applied.

Results: D-HDL dramatically promoted cell pulmonary metastasis (103.6% increase at P < 0.001 for MDA-MB-231 with 1 × 105 cell injection; 157.1% increase at P < 0.05 for MCF7 with 4 × 105 cell injection) and hepatic metastasis (18.1-fold increase at P < 0.001 for MCF7 with 4 × 105 cell injection), and stimulated higher TC-HUVECs adhesion (21.9% increase at P < 0.001 for MDA-MB-231; 23.6% increase at P < 0.05 for MCF7) and TC-ECM attachment (59.9% and 47.9% increase, respectively, for MDA-MB-231 and MCF7, both at P < 0.01) compared with N-HDL. D-HDL stimulated higher integrin (β1, β2, β3, and αv) expression on cell surface and induced higher PKC activity. Increased TC-HUVECs and TC-ECM adhesion induced by D-HDL, G-HDL, and Ox-HDL could be inhibited by staurosporine.

Conclusions: Our study showed that glycation and oxidation of HDL in diabetic patients could lead to abnormal actions on breast cancer cell adhesion to HUVECs and ECM, thereby promoting metastasis progression of breast cancer. This will largely draw the attention of HDL-based treatments in the diabetes patients with breast cancer. Clin Cancer Res; 18(5); 1246–56. ©2012 AACR.

Introduction

Both cancer and diabetes are prevalent diseases, whose incidence is increasing globally, and have a tremendous impact on health worldwide (1–3). Epidemiologic evidence suggests that people with diabetes are at a higher risk of many forms of cancer (including breast, colon, pancreas, and etc.; ref. 1). Moreover, some studies show that patients diagnosed with cancer who have preexisting diabetes are at increased risk for long-term, all-cause mortality compared with those without diabetes (4). In terms of breast cancer, diabetes was associated with a close to 40% increase in mortality within the first 5 years following breast cancer (5). Metastasis of breast cancer is the major cause of tumor-related morbidity and mortality (6, 7), which involves multistep processes and various cytopathologic changes, including altered intercellular interaction between circulating tumor cells and the endothelial cells of blood vessels, and changed adhesion ability between tumor cells and subendothelial extracellular matrix (ECM; ref. 8). These interactions are considered as important events during tumor metastasis (9). Multiple and diverse adhesion molecules play a pivotal role in the intercellular and cell–ECM interactions of cancer (10), such as integrins, the immunoglobulin supergene family, selectins, cadherines, and etc (11). Integrins, which consist of an α subunit noncovalently linked to a β subunit, are members of a glycoprotein family...
Translational Relevance
Our study has shown that modifications (such as glycation and oxidation) are associated with the abnormal functions of diabetic high-density lipoprotein (HDL) in type 2 diabetes. HDL can promote breast cancer metastasis in vivo and the abilities of adhesion to human umbilical vein endothelial cells and extracellular matrix in vitro, involving integrin upregulation and protein kinase C activation in the process. This provides substantial supporting evidence that type 2 diabetes is closely related to breast cancer development, especially the metastasis progression, which may be partly due to modifications of HDL in the diabetic patients. It is suggested that diabetic HDL can be considered as potential risk markers and targets in the treatment of breast cancer with type 2 diabetes and that prospective HDL-based strategies for therapy are in urgent need.

that forms heterodimeric receptors via which cells attach to ECM, to the surfaces of each other or to different cell types (12). They have been implicated in a wide variety of cellular functions, including cell adhesion, migration, invasion, proliferation, and survival (12, 13). Protein kinase C (PKC) activity has been shown to be important in the regulation of integrins expression, localization (14, 15), and activity (16).

High-density lipoprotein (HDL) contributes importantly to cardiovascular disease risk, with a significant inverse relationship between HDL levels and the risk of cardiovascular disease (17–20). Similarly, it has been reported that HDL levels are inversely related to the rates of incident cancer, including breast cancer (21–24). However, emerging evidence indicates that HDL can be modified under certain circumstances, such as in diabetes (25) and cardiovascular diseases (26), and lose its protective effects or even become proatherogenic (25, 27). HDL isolated from patients with type 2 diabetes mellitus (T2DM) can be modified into glycated HDL and oxidized HDL (25, 28) and exhibits deficient activities in comparing with normal HDL of healthy subjects (25). Due to the difference between HDL from healthy subjects and T2DM patients, we speculate that normal and diabetic HDL may have different effects in the metastasis of breast cancer cells and finally lead to the increased mortality of breast cancer in patients with diabetes.

Materials and Methods

Patient characteristics
Written informed consent was obtained from all participants, and the study protocol was approved by the local ethics committee. Each patient volunteer underwent a medical history, physical examination, screening laboratory tests, and a 75 g oral glucose tolerance test. Patients were stable on antihypertensive, hypoglycemic, and lipid-lowering medications. There was no treatment change during the study. The healthy subjects had no family history of diabetes and had normal glucose tolerance. Characteristics of the study participants are shown in Table 1.

Animals
Four-week-old female BALB/c nude mice were obtained from the animal house, Academy of Military Medical Sciences, China. Throughout the experiments, mice were maintained with free access to pellet food and water. Animal welfare and experimental procedures were carried out strictly in accordance with the related ethical regulations.

Cell lines and cell culture
The hormone-independent MDA-MB-231 and hormone-dependent MCF7 human breast cancer cell lines were from Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and cultured in Dulbecco’s modified Eagle’s medium (DMEM; GIBCO) containing 10% FBS (GIBCO) in a humidified incubator at 37°C with an atmosphere of 5% CO2. Human umbilical vein endothelial cells (HUVEC) were isolated by collagenase digestion of umbilical veins from fresh cords (29). The cells were plated on gelatin-coated culture dishes in endothelial cell medium (ScienCell) consisting of 500 mL of basal media.

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Healthy controls (n = 102)</th>
<th>Patients with T2DM (n = 107)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>46 ± 14</td>
<td>60 ± 13</td>
<td><0.001</td>
</tr>
<tr>
<td>Sex, male/female</td>
<td>50:52</td>
<td>49:58</td>
<td>0.05</td>
</tr>
<tr>
<td>Fasting glucose, mmol/L</td>
<td>5.10 ± 0.56</td>
<td>8.95 ± 3.95</td>
<td><0.001</td>
</tr>
<tr>
<td>Triglycerides, mmol/L</td>
<td>1.05 ± 0.35</td>
<td>1.56 ± 0.95</td>
<td>0.01</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L</td>
<td>4.65 ± 0.75</td>
<td>4.77 ± 1.34</td>
<td>0.05</td>
</tr>
<tr>
<td>HDL-C, mmol/L</td>
<td>1.36 ± 0.30</td>
<td>1.22 ± 0.31</td>
<td><0.01</td>
</tr>
<tr>
<td>LDL-C, mmol/L</td>
<td>2.55 ± 0.60</td>
<td>2.94 ± 1.18</td>
<td><0.01</td>
</tr>
</tbody>
</table>

NOTE: Values are expressed as mean ± SD.
Abbreviations: HDL-C, HDL cholesterol; LDL-C, LDL cholesterol.
medium, 25 mL of FBS, 5 mL of endothelial cell growth supplement, and 5 mL of penicillin/streptomycin solution and then cultured in a humidified incubator at 37°C with an atmosphere of 5% CO₂. HUVECs were used at passages 2 to 5.

Isolation, glycation, and oxidation of HDL

Fresh, fasting plasma was separated by centrifugation from peripheral blood obtained from healthy subjects (n = 102) and type 2 diabetic patients (n = 107). Low-density lipoprotein (LDL; 1.019–1.063) and HDL (1.063–1.210) were isolated from fresh plasma by ultracentrifugation as previously described (30). HDL from each individual were dialyzed against 3 × 1 L of endotoxin-free PBS (pH = 7.4) and 100 μmol/L diethylenetriamine pentaacetic acid (Sigma), sterilized with 0.22-μm filter, stored in sealed tubes at 4°C in dark and used within 2 months. To create glycated HDL, fresh human HDL (5 mg protein) was incubated with 25 mmol/L glucose in PBS under sterile conditions for 1 week at 37°C (referred to as G-HDL; ref. 31). Glycation of the apoA-I components of HDL was measured using mass spectrometry. Oxidative modification of HDL was done by dialysis at lipoprotein concentration of 0.8 mg protein/ml against PBS containing 5 μmol/L CuSO₄ for 24 hours at 37°C (referred to as Ox-HDL; ref. 32). Lipid peroxidation of normal, diabetic, and oxidized HDL was determined by thiobarbituric acid reactive substances (TBARS; Nanjing Jiancheng Bioengineering Institute, Nanjing, China) kit which quantifies the malondialdehyde (MDA) content. TBARS were expressed as nanomoles of MDA per milligram apoA-I.

Tail vein metastasis assay

MDA-MB-231 and MCF7 cells were pretreated with normal, diabetic, glycated, and oxidized HDL for 24 hours. To produce experimental metastasis, BALB/c nude mice were injected intravenously with MDA-MB-231 cells (1 × 10⁶) or MCF7 cells (1 × 10⁵ or 4 × 10⁵) in 0.2 mL DMEM via tail veins. After 20 days, the mice were sacrificed, their lungs and livers were resected and photographs were taken after fixation in buffered formalin. The numbers of metastatic nodules on the surface of the lungs and livers were counted.

Histology

Tissues were fixed in buffered formalin for 24 to 48 hours. After washing in fresh PBS, fixed tissues were processed and embedded in paraffin. Sections (5 milli microns) were collected on microscope slides, deparaffinized, and stained with hematoxylin and eosin (H&E) stain. The images were captured at 10× magnification.

TC-HUVECs adhesion assay

TC-HUVECs adhesion was measured using rose Bengal stain as previously described method (33). Briefly, HUVECs were seeded onto 96-well plates at a density of 5 × 10⁴ cells per well. Then tumor cells (pretreated with or without HDL for 6 hours) were plated (5 × 10⁴ cells per well) and incubated for 30 minutes at 37°C. Then unattached cells were gently washed twice with 10% FBS-containing DMEM, and 100 μL of 0.25% rose Bengal (Sigma) was added. After 5 minutes, cells were gently washed twice and then 200 μL ethanol/PBS (1:1) was added to each well. After 30 minutes, the absorbance at 570 nm was recorded. Five parallel wells were set up for each group.

TC-ECM adhesion assay

Cell adhesion was measured using MTT assay as previously described method (34). Briefly, 96-well flat bottom plates were coated with 2 μg per well basement membrane matrix (Matrigel; BD) for an hour at 37°C, then blocked with 2% bovine serum albumin (BSA) for 2 hours at 37°C followed by washing twice. Tumor cells seeded on 12-well plate were treated with serum-free DMEM alone or HDL (normal, diabetic, glycated, or oxidized) for 6 hours. After detachment with trypsin, the cells (1 × 10⁴ per well) were plated on ECM-precoated 96-well plates and then washed twice with PBS to remove nonadherent cells after 45 minutes. MTT colorimetric assays at 490 nm were employed to measure the absorbance of adhesive cells. Four parallel wells were set up for each group.

Antibody-blocking experiments

To determine the contribution of individual integrins to the interaction of MDA-MB-231 and MCF7 cells with HUVECs and ECM, monoclonal antibodies (mAb) against integrin β1, integrin β2, integrin β3, and integrin αv (Abcam) were applied. Human polyclonal antibody of IgG (Boster) was served as negative control. The detached cells were treated with 5 μg/mL mAbs for 30 minutes at 37°C and then allowed to adhere to HUVECs and ECM for 30 minutes. Five parallel wells were set up for each group.

Determination of cell surface expression of adhesion molecules by enzyme immunoassay

Cells in 96-well plates were grown till 70% confluency, then treated with HDL (normal, diabetic, glycated, or oxidized) in serum-free medium for 6 hours at 37°C. Cells were washed with PBS and fixed with methanol for 5 minutes and then washed with PBS 3 times and blocked with 2% BSA for 2 hours at 37°C. Cell surface expression of adhesion molecules were determined by primary binding with specific mAbs for integrin β1, integrin β2, integrin β3, and integrin αv (1:200; Abcam), followed by secondary binding with a horseradish peroxidase–conjugated antibody (1:3,000; Boster) as described previously (35). Quantification was done by determination of colorimetric conversion at an optical density (OD) at 450 nm of 3,3',5,5'-tetramethylbenzidine using TMB peroxidase EIA substrate kit (Bio-Med innovation).

PepTag assay for nonradioactive detection of PKC activity

The PKC activity in the MDA-MB-231 and MCF7 cell lysates was determined by nonradioactive detection kit of protein kinase (PepTag Corporation), following the manufacturer’s instructions. Briefly, PKC in the HDL-treated cell...
HDL-treated cells (all at 103.6%, 81.4%, and 89.6% increase as compared with control, respectively, without statistical significance). Consistent results were obtained in the H&E-stained sections (Fig. 1E). Weight of mice during the study was shown (Supplementary Fig. S1A and S1B).

Statistical analysis

The results of multiple observations are presented as the means ± SD and as a representative result of 2 or 3 different separate experiments, unless otherwise stated. Data were analyzed using Student’s t test and ANOVA test and values were considered significant at P < 0.05.

Results

Participants

Baseline demographic and clinical characteristics of healthy subjects and patients with T2DM are shown in Table 1. Participants were included in the study between May 2009 and Jul 2011.

Pretreatment with diabetic, glycated, and oxidized HDL promotes metastasis of MDA-MB-231 and MCF7 cells

We previously found that diabetic HDL has elevated ability in promoting breast cancer cells proliferation, migration, and invasion compared with normal HDL in vitro (36). So we speculated that diabetic HDL may promote breast cancer cell metastasis progression. To test our hypothesis, we first checked the metastatic ability of HDL-treated MDA-MB-231 and MCF7 cells in nude mice by tail vein injection, and 6 mice were set for each group (Fig. 1A). Due to the higher levels of glycation and oxidation, as we previously determined in the diabetic HDL (36), we also tested glycated and oxidized HDL to partly mimic HDL in diabetes individuals. Twenty days after the injection of 1 × 10⁵ MDA-MB-231 cells, it was observed that D-HDL, G-HDL, and Ox-HDL significantly enhanced the lung homing of MDA-MB-231 cells as counted by the number of colonies on the surface of whole lung, with 84.3%, 64.2%, and 71.6% increase as compared with control (all at P < 0.001) and with 103.6%, 81.4%, and 89.6% increase as compared with N-HDL-treated cells (all at P < 0.001). By contrast, N-HDL reduced metastasis by 9.5% as compared with control, though no statistic significance was found (Fig. 1B). However, no visible nodules on the livers were found in the mice treated with 1 × 10⁵ MDA-MB-231 cells (data not shown). In addition, no pulmonary and hepatic metastasis was shown in the groups injected with 1 × 10⁵ MCF7 cells (data not shown). Then 4 × 10⁵ MCF7 cells were injected for further study. It is suggested that D-HDL, G-HDL, and Ox-HDL significantly promoted both pulmonary and hepatic metastasis of MCF7 cells. The nodules on the lungs of D-HDL, G-HDL, and Ox-HDL groups increased by 111.8%, 168.6%, and 149.1% as compared with control (P < 0.05 for D-HDL; P < 0.01 for G-HDL and Ox-HDL) and by 157.1%, 226.1%, and 202.4% as compared with N-HDL group (P < 0.05 for D-HDL, P < 0.001 for G-HDL, P < 0.01 for Ox-HDL; Fig. 1C); the nodules on the livers of D-HDL, G-HDL, and Ox-HDL groups increased by 275.3%, 229.2%, and 320.2% as compared with control (all at P < 0.01) and by 18.1%, 15.7%, and 20.4-fold as compared with N-HDL group (P < 0.01 for G-HDL; P < 0.001 for D-HDL and Ox-HDL; Fig. 1D). On the contrary, normal HDL reduced metastasis of MCF7 cells by 7.1% in the lung and 95.9% in the liver as compared with control, though without statistic significance. The adhesion of MCF7 cells pretreated with D-HDL, G-HDL, and Ox-HDL increased by 22.7%, 30.2%, and 29.5% as compared with control, respectively (all at P < 0.001); the adhesion of MCF7 cells pretreated with D-HDL, G-HDL, and Ox-HDL increased by 22.7%, 31.0%, and 32.6% as compared with control, respectively (all at P < 0.01), and increased by 23.6%, 31.9%, and 33.6% as compared with N-HDL, respectively (P < 0.05 for D-HDL; P < 0.01 for G-HDL and Ox-HDL). In the TC-HUVECs adhesion assay, the adhesion of MDA-MB-231 cells pretreated with D-HDL, G-HDL, and Ox-HDL increased by 33.7%, 40.3%, and 39.0% as compared with control, respectively, without statistical significance and have increased by 59.9%, 67.8%, and 66.2% as compared with N-HDL, respectively (all at P < 0.01); the attachment of MCF7 cells pretreated with D-HDL, G-HDL, and Ox-HDL increased by 29.4%, 22.1%, and 29.0% as compared with control, respectively, without statistical significance and have increased by 47.9%, 39.6%, and 47.4% as compared with N-HDL, respectively (P < 0.05 for G-HDL; P < 0.01 for D-HDL and Ox-HDL). By contrast, normal HDL reduced MDA-MB-231 and MCF7 cells adhesion to ECM by 16.4% and 12.5%, respectively, as compared with control, though no statistic significance was found. Furthermore, HDL from 6 normal controls and 6 diabetic patients at 100 µg/mL apoA-I were used for confirmation. It was suggested that normal HDL hardly stimulate MDA-MB-231 and MCF7 cells adhesion to both HUVECs and ECM, whereas diabetic HDL substantially enhanced the 2 adhesion capabilities. The adhesion of MDA-MB-231 and MCF7 cells which were induced by diabetic HDL was 40.6% (P < 0.001) and 20.5%
Figure 1. Effects of the different types of HDL on the pulmonary and hepatic metastasis of human breast cancer cells. A, MDA-MB-231 and MCF7 cells were left untreated (C), or treated with normal (N), diabetic (D), glycated (G), and oxidized (Ox) HDL. Control and HDL-treated cells (1 × 10⁵ for MDA-MB-231 cells and 4 × 10⁵ for MCF7 cells) were intravenously injected into BALB/c nude mice via tail vein. After 20 days, lungs and livers were resected and analyzed for metastasis. Representative pictures of lungs and livers are shown. B–D, quantitative evaluation of macroscopically detectable metastasis nodules on the surface of the whole lungs and livers. Data are expressed as mean ± SD. (†, P < 0.05; ‡, P < 0.01; ‡‡, P < 0.001 by one-way ANOVA). E, representative histologic photomicrographs of lung and liver tissue sections stained with H&E (10×). Arrows indicate tumor islands.
Diabetic HDL Promotes Breast Cancer Metastasis

Figure 2. Diabetic, glycated, and oxidized HDL promote more MDA-MB-231 and MCF7 breast cancer cell adhesion to HUVECs and attachment to ECM. A, MDA-MB-231 and MCF7 cells were pretreated with normal, diabetic, glycated, and oxidized HDL at 100 μg/mL apoA-I for 6 hours and then seeded onto HUVEC-coated 96-well plate for 30 minutes. Relative cell adhesion was determined by MTT assay and expressed as percentage of HDL-treated cells in comparison with control. Data are expressed as mean ± SD with 5 parallel wells. (*, P < 0.05; **, P < 0.01; *** P < 0.001 by one-way ANOVA). B, MDA-MB-231 and MCF7 cells were pretreated with normal, diabetic, glycated, and oxidized HDL at 100 μg/mL apoA-I for 6 hours and then plated onto Matrigel-coated 96-well plate for 30 minutes. Relative cell adhesion was determined by MTT assay and expressed as percentage of HDL-treated cells in comparison with control. Data are expressed as mean ± SD with 4 parallel wells. (*, P < 0.05; **, P < 0.01 by one-way ANOVA). C, MDA-MB-231 and MCF7 cells were pretreated with HDL from 6 normal subjects and 6 patients with type 2 diabetes for 6 hours at 100 μg/mL apoA-I. Cell adhesion to HUVEC stimulated by normal HDL versus diabetic HDL is shown. (*, P < 0.01; **, P < 0.001 by Student t test). D, MDA-MB-231 and MCF7 cells were pretreated with HDL from 6 normal subjects and 6 patients for 6 hours at 100 μg/mL apoA-I. Cell adhesion to ECM stimulated by normal HDL versus diabetic HDL is shown. (*, P < 0.05; **, P < 0.01 by Student t test).

(P < 0.01) higher, respectively, in the TC-HUVECs adhesion assay (Fig. 2C), and the attachment of MDA-MB-231 and MCF7 cells induced by diabetic HDL was 27.6% (P < 0.01) and 23.5% (P < 0.05) higher, respectively, in the TC-ECM adhesion assay (Fig. 2D).

Anti-integrin antibodies inhibit MDA-MB-231 and MCF7 cell adhesion to HUVECs and to ECM

Blocking antibodies to integrins were used to determine the roles of integrin β1, integrin β2, integrin β3, and integrin αv in the adhesion of MDA-MB-231 and MCF7 cells to HUVECs and ECM. Adhesion of MDA-MB-231 and MCF7 cells to HUVECs (Fig. 3A) and ECM (Fig. 3B) was significantly inhibited in the presence of anti-integrin antibodies. The adhesion of untreated cells was considered as 100%. The adhesion of MDA-MB-231 cells treated with mAbs of integrin β1, integrin β2, integrin β3, and integrin αv to HUVECs was (44.51 ± 19.25)%,(62.09 ± 4.75)%,(45.43 ± 18.48)%,(43.24 ± 29.15)% at P = 0.004,P = 0.0031, P = 0.0038 and P = 0.0135, respectively; the adhesion of MCF7 cells treated with mAbs of integrin β1, integrin β2, integrin β3, and integrin αv to HUVECs was (68.91 ± 6.59)%,(59.97 ± 16.08)%,(68.49 ± 14.29)% , and (71.25 ± 5.75)% at P = 0.0472, P = 0.019, P = 0.0395 and P = 0.0292, respectively. The adhesion of MDA-MB-231 cells treated with mAbs of integrin β1, integrin β2, integrin β3, and integrin αv to ECM was (86.56 ± 5.92)%,(83.42 ± 10.62)%,(76.37 ± 8.29)% and (87.33 ± 7.71)% at P = 0.0092, P = 0.0264, P = 0.0021 and P = 0.026, respectively; the adhesion of MCF7 cells treated with mAbs of integrin β1, integrin β2, integrin β3, and integrin αv to ECM was (71.53 ± 5.71)%,(69.77 ± 10.10)%,(67.56 ± 8.25)% , and (79.25 ± 14.52)% at P = 0.0024, P = 0.0038, P = 0.0017 and P = 0.0468, respectively.
Diabetic, glycated, and oxidized HDL induced higher integrin expression on the MDA-MB-231 and MCF7 cell surface

Integrins have been reported to play a key role in TC-HUVECs and TC-ECM adhesion. Diabetic, glycated, and oxidized HDL induced elevated expressions of integrin β1 (Fig. 4A), integrin β2 (Fig. 4B), integrin β3 (Fig. 4C), and integrin αv (Fig. 4D) compared with normal HDL on the MDA-MB-231 and MCF7 cell surface. Specifically, for MDA-MB-231 cells, integrin β1 was increased by 21.1%, 22.2%, and 24.5%, respectively (all at P < 0.001); integrin β2 was increased by 21.2%, 19.7%, and 27.9%, respectively (all at P < 0.001); integrin β3 was increased by 20.0%, 21.8%, and 19.3%, respectively (all at P < 0.001); integrin αv was increased by 18.7%, 17.3%, and 18.1%, respectively (all at P < 0.001); and for MCF7 cells, integrin β1 was increased by 30.1%, 27.8%, and 41.1%, respectively (P < 0.05 for G-HDL, P < 0.01 for D-HDL and Ox-HDL); integrin β2 was increased by 24.3%, 18.4%, and 17.1%, respectively (P < 0.001 for D-HDL, P < 0.01 for G-HDL and Ox-HDL); integrin β3 was increased by 25.5%, 23.1%, and 27.1%, respectively (all at P < 0.001); integrin αv was increased by 35.6%, 40.6%, and 52.1%, respectively (all at P < 0.001). Furthermore, 6 normal and 6 diabetic HDL samples at 100 μg/mL apoA-I were used for confirmation. It was suggested that normal HDL hardly stimulated integrins expression, whereas diabetic HDL induced higher integrins expression both on the hormone-independent and hormone-dependent human breast cancer cells. For MDA-MB-231 cells, diabetic HDL induced 17.4% higher integrin β1 (P < 0.001), 33.5% higher integrin β2 (P < 0.001), 23.4% higher integrin β3 (P < 0.001), and 25.5% higher integrin αv (P < 0.01) compared with normal HDL, respectively; for MCF7 cells, diabetic HDL stimulated 30.3% higher integrin β1 (P < 0.01), 17.5% higher integrin β2 (P < 0.001), 25.5% higher integrin β3 (P < 0.001), and 17.6% higher integrin αv (P < 0.001) compared with normal HDL, respectively (Fig. 4E).

Diabetic, glycated, and oxidized HDL-induced MDA-MB-231 and MCF7 cell metastasis involves PKC pathway

It is reported that PKC activity is associated with the regulation of integrin-related adhesion. Therefore, PKC activity induced by normal, diabetic, glycated, and oxidized HDL was examined. It was shown that diabetic, glycated, and oxidized HDL stimulated higher PKC activity compared with normal HDL both in MDA-MB-231 and MCF7 cells (Fig. 5A). So far, the results indicated that diabetic, glycated, and oxidized HDL may promote MDA-MB-231 and MCF7 cell metastasis via PKC pathway. Therefore, MDA-MB-231 and MCF7 cells were treated with staurosporine, a PKC inhibitor, to determine whether the suppression of the PKC pathway would result in the inhibition of breast cancer cell adhesion induced by diabetic, glycated, and oxidized HDL. Staurosporine presented to be powerful in inhibiting HDL-induced (D-HDL, G-HDL, and Ox-HDL) breast cancer cell adhesion to HUVECs (Fig. 5B) and to ECM (Fig. 5C). After pretreatment with staurosporine, MDA-MB-231 and MCF7 cell adhesion to both HUVECs and ECM was substantially reduced, and no statistical significance was found among the groups of staurosporine-treated cells in both of the adhesion assays. It was suggested that the increased abilities of diabetic, glycated, and oxidized HDL in promoting MDA-MB-231 and MCF7 cell adhesion to HUVECs and ECM were mainly owing to the increased PKC activity. Then next, the inhibitory effects of staurosporine on integrins expression on the MDA-MB-231 and MCF7 cell surface were examined. Integrin β1 (28.41% decrease, P < 0.01 for MDA-MB-231 cells; 26.49% decrease, P < 0.01 for MCF7 cells), integrin β2 (33.27% decrease, P < 0.01 for MDA-MB-231 cells; 57.57% decrease, P < 0.001 for MCF7 cells), integrin β3 (15.15% decrease, P < 0.01 for MDA-MB-231 cells; 57.11% decrease, P < 0.001 for MCF7 cells), and integrin αv (18.36% decrease, P < 0.01 for MDA-MB-231 cells; 22.47% decrease, P < 0.05 for MCF7 cells) were all significantly suppressed by staurosporine (Fig. 5D).
Discussion

Previous study suggests complex associations between T2DM and breast cancer (37). Diabetes may have direct biologic effects on breast cancer risk, clinical and pathologic characteristics and outcome. Moreover, certain antidiabetic therapies may have direct activity against breast cancer. Diabetes may also affect breast cancer outcome indirectly and has been shown to influence medical decision making about screening and management of breast cancer (37). In addition, some studies pointed that it is possible that cancer is well known to be a proinflammatory state, whereas the decreased level of HDL is inefficient to exert its anti-inflammatory effects, which allows tumor cell proliferation, survival, and migration (38, 39). Our study provides a novel view and shows the significant difference between diabetic and normal HDL on breast cancer cell metastasis progression.

We previously found that HDL in T2DM can be glycated and oxidized, and diabetic HDL was found to promote proliferation, migration, and invasion of breast cancer cells in vitro as compared with normal HDL (36). Glycated and oxidized HDL produced in vitro were used to partly mimic diabetic HDL. Diabetic, glycated, and oxidized HDL could induce higher synthesis and secretion of VEGF-C, matrix metalloproteinase (MMP)-2, and MMP-9 from MDA-MB-231 cells (36). It was indicated that diabetic, glycated, and oxidized HDL promote MDA-MB-231 cell migration and invasion through extracellular signal–regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) pathways, and Akt pathway plays an important role as well in MDA-MB-231 cell invasion (36). It drove us to speculate that diabetic HDL may have elevated ability of promoting breast cancer cell metastasis.

Figure 4. Diabetic, glycated, and oxidized HDL are more efficient in stimulating MDA-MB-231 and MCF7 cell surface integrins expression. MDA-MB-231 and MCF7 cells were treated with normal, diabetic, glycated, and oxidized HDL at 100 μg/mL apoA-I for 6 hours. Integrin β1 (A), integrin β2 (B), integrin β3 (C), and integrin αv (D) levels on the cell surface were measured by cell ELISA with 5 parallel wells. Results were expressed as percentage of HDL-treated cells in comparison with control and data are expressed as mean ± SD. (*, P < 0.05; **, P < 0.01; *** P < 0.001 by one-way ANOVA). E, MDA-MB-231 and MCF7 cells were treated with 8 normal and 8 diabetic HDL for 6 hours at 100 μg/mL apoA-I. Relative integrin expression on the cell surface stimulated by normal HDL versus diabetic HDL is shown. (***, P < 0.01; ****, P < 0.001 by Student t test).
In this study, we have shown that diabetic, glycated, and oxidized HDL, which were compared with normal HDL, could promote breast cancer cells metastasis in vivo and cell adhesion to HUVECs and ECM in vitro in similar ways and could induce much higher expression of integrins on the cell surface and increase the activity of PKC as well. Moreover, we observed that staurosporine, a PKC inhibitor, inhibited breast cancer cell adhesion to HUVECs and ECM which were induced by diabetic, glycated, and oxidized HDL, as well as the expression of integrins. The present data showed that the increased capabilities of diabetic, glycated, and oxidized HDL in promoting breast cancer cell adhesion to HUVECs and ECM is mainly due to the elevated PKC activity. The activated PKC could in turn stimulate secretion of integrin β1, integrin β2, integrin β3, and integrin αv, which are of vital importance in promoting breast cancer cell metastasis. Our study used a tail-vein injection model to investigate the effects of normal, diabetic, glycated, and oxidized HDL on breast cancer cell metastasis in vivo. A spontaneous metastatic model can be further employed to study the effects of different forms of HDL on breast cancer development in nude mice, including tumor growth and metastasis (40). In addition, fluorescence imaging techniques can be applied to visualize the interaction of breast cancer cells with vasculature and ECM in nude mice, including tumor cell mobility, invasion, metastasis, and angiogenesis (41, 42). All the studies were carried out on both hormone-independent (MDA-MB-231) and hormone-dependent (MCF7) cell lines. We found that MDA-MB-231 cells presented to have stronger abilities of metastasis both in vivo and in vitro for the reason that MCF7 cells seldom have lung or liver homing after injected with diabetic, glycated, and oxidized HDL.

Figure 5. Diabetic, glycated, and oxidized HDL stimulate MDA-MB-231 and MCF7 cell adhesion to HUVECs and ECM involving PKC pathway. A. MDA-MB-231 and MCF7 cells were treated with normal, diabetic, glycated, and oxidized HDL, and then cell lysates were subjected to the PepTag nonradioactive PKC assay. B and C, MDA-MB-231 and MCF7 cells were pretreated with 5 nmol/L staurosporine, a PKC inhibitor, for 3 hours and then coincubated with normal, diabetic, glycated, and oxidized HDL at 100 μg/mL apoA-I, respectively, for 6 hours. Cell adhesion to HUVECs (B) and attachment to ECM (C) were measured. (†, P < 0.05; ††, P < 0.01; †††, P < 0.001 by Student t test). D, MDA-MB-231 and MCF7 cells were pretreated with 5 nmol/L staurosporine for 6 hours and then integrins expression on the cell surface was measured by cell ELISA. (†, P < 0.05; ††, P < 0.01; †††, P < 0.001 by Student t test).
1 × 10^5 cells and that the absolute OD value of the adhesive MDA-MB-231 cells in both TC-HUVECs and TC-ECM assay was higher than that of MCF7 cells (data not shown). It has been reported that the effects of HDL on breast cancer cell proliferation have a higher response in the hormone-independent cells such as MDA-MB-231 cell line (43). However, our study observed similar effects of diabetic, glycated, and oxidized HDL on the cell adhesion to HUVECs and to ECM between hormone-independent (MDA-MB-231) cells and hormone-dependent (MCF7) cells compared with normal HDL.

HDL plays an extremely important role of protecting the cardiovascular system from atherosclerosis, including reversing cholesterol transport, anti-inflammatory, anti-oxidant properties, antithrombotic, and etc. For instance, HDL can mediate reverse cholesterol transport through its receptors of SR-BI and ABCA1 (44). Also, HDL is a potential carrier of enzymatic proteins, such as paraoxonase and platelet-activating factor-acetyl hydrolase, which can hydrolyze phospholipid peroxides and cholesterol ester peroxides (44). In addition, HDL may inhibit adhesion molecule expression through SR-BI and S1P receptors (especially S1P-1) when an inflammatory cytokine such as TNF-α is a proatherogenic stimulus (45). Furthermore, a recent study found that HDL can mediate signal transduction of ERK1/2 and Akt by an ABCA1-dependent mechanism, leading to increased proliferation and migration of prostate cancer cells (46). However, HDL is found to be modified in many ways under some diseases and such modification could impair the cardiovascular-protective abilities of HDL. For example, glycated HDL may lead to the deterioration of vascular function through altered production of reactive oxygen species (ROS) and reactive nitrogen species in endothelial cells (47); oxidized HDL induces a dose-dependent increase in ROS production and elicits a marked increase in the activation of the NF-κB pathway in the endothelial cells, a key player in the inflammatory response (48). Furthermore, oxidized HDL can promote the activation of a network of intracellular kinases, including ERK1/2 and p38 MAPK, in the endothelial cells (48). In this study, we found that glycated and oxidized HDL, as well as diabetic HDL, have increased capability of promoting breast cancer metastasis through upregulating the PKC pathway–related integrins expression. All the experimental evidence allows us to speculate that the promoting effects of diabetic HDL on breast cancer cell metastasis, at least partially, may be attributed to the glycation and oxidation of HDL. Owing to the complicated composition of HDL, it needs further intensive research to determine the altered parts of HDL (both in quality and in quantity) in diabetic patients and how they act in different ways to advance breast cancer development.

Evidence from epidemiologic studies also shows that some pathologic alterations including changes of lipids profile levels (22, 49) in T2DM could raise higher risk of breast cancer (43). Notably, low level of HDL, frequently presented in the patients with T2DM and metabolic syndrome, is strongly linked with breast cancer (49, 50). Our study here provided supporting biologic evidence (Supplementary Fig. S2A and S2B) in vitro that low concentration of normal HDL could promote MDA-MB-231 breast cancer cell capacities of adhesion to HUVECs and attachment to ECM, whereas high concentration of normal HDL is slightly inhibitory. All the evidence substantially supported the concept that T2DM is closely related to breast cancer, which could at least partially be attributed to the alterations of HDL in T2DM, not only to the declined quantity but also to the altered structures and compositions. Our study shows that the modifications of HDL in the diabetic patients could lead to accelerated breast cancer metastasis progression. This will bring more attention on the therapeutic strategies based on HDL function, especially in the patients of diabetes with breast cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Grant Support
This project was supported by grant 2010CB912504 and 2011CB503900 from “973” National S&T Major Project; by grant 30900595, 30621001, 81172500, 81170101 from the National Natural Science Foundation of China, by grant 7102104, 7122106 from the Natural Science Foundation of Beijing; by grant 2009J0112 from the Natural Science Foundation of Fujian, and by grant 70103-007 from Peking University Health Science Center. This Project was sponsored by the programs for “The Returned Overseas Chinese Scholars” and “New Century Excellent Talents in Universities” and grant 2009001120039 and 2010001120034, State Education Ministry of China. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received March 28, 2011; revised December 23, 2011; accepted December 30, 2011; published OnlineFirst January 18, 2012.

References

HDL of Patients with Type 2 Diabetes Mellitus Elevates the Capability of Promoting Breast Cancer Metastasis

Bing Pan, Hui Ren, Yubin He, et al.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-11-0817</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2012/01/18/1078-0432.CCR-11-0817.DC1</td>
</tr>
</tbody>
</table>

| Cited articles | This article cites 48 articles, 10 of which you can access for free at: http://clincancerres.aacrjournals.org/content/18/5/1246.full#ref-list-1 |
| Citing articles | This article has been cited by 2 HighWire-hosted articles. Access the articles at: http://clincancerres.aacrjournals.org/content/18/5/1246.full#related-urls |

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.