Stem-like Tumor-Initiating Cells Isolated from IL13Rα2 Expressing Gliomas Are Targeted and Killed by IL13-Zetakine–Redirected T Cells

Christine E. Brown1, Renate Starr1, Brenda Aguilar1, Andrew F. Shami1, Catalina Martinez1, Massimo D’Apuzzo2, Michael E. Barish3, Stephen J. Forman1, and Michael C. Jensen4

Abstract

Purpose: To evaluate IL13Rα2 as an immunotherapeutic target for eliminating glioma stem–like cancer initiating cells (GSC) of high-grade gliomas, with particular focus on the potential of genetically engineered IL13Rα2-specific primary human CD8+ CTLs (IL13-zetakine+ CTL) to target this therapeutically resistant glioma subpopulation.

Experimental Design: A panel of low-passage GSC tumor sphere (TS) and serum-differentiated glioma lines were expanded from patient glioblastoma specimens. These glioblastoma lines were evaluated for expression of IL13Rα2 and for susceptibility to IL13-zetakine+ CTL-mediated killing in vitro and in vivo.

Results: We observed that although glioma IL13Rα2 expression varies between patients, for IL13Rα2+ cases this antigen was detected on both GSCs and more differentiated tumor cell populations. IL13-zetakine+ CTL were capable of efficient recognition and killing of both IL13Rα2+ GSCs and IL13Rα2+ differentiated cells in vitro, as well as eliminating glioma-initiating activity in an orthotopic mouse tumor model. Furthermore, intracranial administration of IL13-zetakine+ CTL displayed robust antitumor activity against established IL13Rα2+ GSC TS-initiated orthotopic tumors in mice.

Conclusions: Within IL13Rα2 expressing high-grade gliomas, this receptor is expressed by GSCs and differentiated tumor populations, rendering both targetable by IL13-zetakine+ CTLs. Thus, our results support the potential usefulness of IL13Rα2-directed immunotherapeutic approaches for eradicating therapeutically resistant GSC populations. Clin Cancer Res; 18(8): 2199–209. ©2012 AACR.

Introduction

The prognosis of patients with high-grade gliomas remains grim despite improvements in standard therapies including surgery, radiation, and chemotherapy. The deadly nature of this disease is, in part, attributed to therapeutically resistant subpopulations of glioma stem-like cancer-initiating cells (GSC) that display many characteristics of normal stem cells, including expression of stem cell markers and the potential for sustained self-renewal (1, 2). GSCs exhibit potent tumor-initiating potential and are hypothesized to seed disease recurrence (3–5) because of their resistance to conventional chemotherapy and radiation regimens.

Cellular immunotherapies have the potential to target and eliminate this therapeutically resistant GSC population (6). Recent promising data have shown that tumor stem cells are susceptible to both CTL and natural killer perforin-dependent killing mechanisms (7–11). Furthermore, GSCs and differentiated tumor cells express equivalent levels of markers involved in immunologic synapse formation, and CD8+ CTL can eliminate cell populations capable of tumor engraftment (9). Although challenges remain in addressing the confounding effects of tumor immunosuppressive networks, particularly as they relate to specific strategies that may be employed by tumor stem cells (12–14), the intrinsic ability of immune cells to recognize and kill tumor stem cells is sufficiently powerful to warrant efforts to overcome these obstacles.

IL-13 receptor α2 (IL13Rα2) is a cell-surface receptor that has received significant attention from brain tumor therapy because it is overexpressed by a subset of high-grade gliomas, but not expressed at significant levels by normal brain tissue (15–18). Our group has developed an IL13Rα2-targeting immunotherapy platform for high-grade gliomas by genetically modifying T cells to express an IL13Rα2-
specific chimeric antigen receptor (CAR) termed IL13-zetakine+ (19). This CAR recognizes IL13Rα2 via a membrane-tethered IL13 ligand and initiates cytolytic killing via an intracellular CD3-ζ T-cell activating domain. It also incorporates a point mutation in the IL13 ligand domain (E13Y) for preferential binding to IL13Rα2 and reduced affinity to the more ubiquitously expressed IL13 receptor, IL13Rα1 (20). Previous studies using U87 and other long-established cell lines show that engineered IL13-zetakine+ T cells exhibit potent MHC-independent, IL13Rα2-specific anti-glioma cytolytic activity, and induce regression of orthotopic xenografts in vivo (19). Realization of the potential of therapies targeting IL13Rα2 for the treatment of malignant glioma, some of which are in clinical trial (21–24), will hinge, in part, on their ability to eradicate malignant stem/initiating tumor cell subpopulations. Here we assess the expression of IL13Rα2 on stem-like versus differentiated glioma populations and evaluate the relative susceptibility of glioma cell populations of varying differentiation status to IL13-zetakine+ CTL-mediated killing.

Materials and Methods

Cell lines

Glioma specimens, graded according to World Health Organization–established guidelines (Supplementary Table S1), were obtained from patients in accordance with Institutional Review Board (IRB)-approved protocols. Tumor specimens were deidentified and given unique patient tumor number (PBT) numbers. For one tumor derived from a patient who participated in our adoptive T-cell therapy clinical trial, it was also referred to by its UPN designation (UPN033). Healthy donor T cell lines were deidentified and designated unique healthy donor (HD) numbers. T-cell clones were cultured as described (19), and all assays were carried out between days 10 through 14 of the stimulation cycle. Lymphoblastoid lines (LCL) were established from Epstein–Barr virus–infected human PBMCs (19). LCL-OKT3 cell lines were engineered to express a membrane-bound OKT3 single-chain antibody (OKT3scFv) as described previously (26).

Flow cytometric analysis

Cell-surface expression of IL13Rα2 was detected using goat polyclonal anti-IL13Rα2 (AF146) (R&D Systems), followed by murine anti-goat fluorescein isothiocyanate (Jackson ImmunoResearch) (Supplementary Table S2). Percent of immunoreactive cells was determined and designated unique healthy donor (HD) numbers. T-cell clones were cultured as described (19), and all assays were carried out between days 10 through 14 of the stimulation cycle. Lymphoblastoid lines (LCL) were established from Epstein–Barr virus–infected human PBMCs (19). LCL-OKT3 cell lines were engineered to express a membrane-bound OKT3 single-chain antibody (OKT3scFv) as described previously (26).

Western blot analysis

Western blots were probed with goat polyclonal anti-IL13Rα2 (AF146) and anti-Olig2 (R&D Systems); rabbit polyclonal anti-Actin (Rockland), mouse monoclonal anti-β-III Tubulin (Millipore), anti-CD133 (Miltenyi), and anti-GFAP (Sigma-Aldrich) antibodies as per the manufacturers’ instructions (Supplementary Table S2). Western blots were imaged on the Odyssey Infrared Imaging System (LI-COR), and band intensities were quantified using Odyssey v2.0 software (LI-COR).

Immunofluorescence and immunohistochemistry

TSs were plated on poly-1-ornithine (Sigma) and mouse laminin (BD Biosciences) coated chamber slides to support adherent growth (27). When required, cells were grown for 7 to 10 days in 10% FCS-containing media to promote astrocytic differentiation (GFAP immunoreactive), or 0.5% FCS with 5 μmol/L forskolin (Sigma) to promote neuronal differentiation (β-III Tubulin immunoreactive). Cells were stained with primary antibodies anti-SOX2 (Abcam), anti-Nestin (Millipore), anti-GFAP (Sigma), and anti-βIII...
Tubulin (Millipore) (Supplementary Table S2), followed by anti-mouse or anti-rabbit Alexa-488 (Invitrogen), and costained with 4',6-diamidino-2-phenylindole (DAPI) mounting solution (Vector Laboratories, Inc.). Cells were visualized using an AX70 fluorescent microscope (Olympus), and exposure settings for each antibody were kept constant between growth conditions.

Glioblastoma IL13Rα2 immunohistochemistry (IHC) was done on 5-μm sections of formalin-fixed paraffin-embedded specimens, treated with EnVision FLEX Target Retrieval Solution Low pH (Dako) in a PT Link pretreatment module (Dako) for antigen retrieval. Sections were then blocked with serum-free protein block (Dako), incubated with 3.33 μg/mL goat polyclonal anti-IL13Rα2 (AF146), and detected using rabbit anti-goat (Dako) and the EnVision FLEX/HRP system (Dako). All staining was done using the DAKO polymer automated system.

For mouse brain IHC, brains were harvested, fixed, and embedded in paraffin as described previously (19). Horizontal brain sections (10 μm) were deparaffinized, underwent citrate-based antigen retrieval, and stained with anti-human Nestin (Millipore), anti-SOX2 (R&D Systems), anti-Olig2 (R&D Systems), or anti-GFAP (Dako) (Supplementary Table S2) followed by detection using the EnVision kit (Vector Laboratories) with 50% hematoxylin counterstain.

For mouse brain IHC, brains were harvested, fixed, and embedded in paraffin as described previously (19). Horizontal brain sections (10 μm) were deparaffinized, underwent citrate-based antigen retrieval, and stained with anti-human Nestin (Millipore), anti-SOX2 (R&D Systems), anti-Olig2 (R&D Systems), or anti-GFAP (Dako) (Supplementary Table S2) followed by detection using the EnVision kit (Vector Laboratories) with 50% hematoxylin counterstain.

Cytotoxicity and cytokine assays

Chromium release assays (CRA) were carried out as previously described (29). Cytotoxicity production was measured by coculturing T cells with tumor at a 10:1 effector:target (E:T) ratio. In blocking experiments, anti-IL13 antibody (BD Biosciences) and recombinant human IL-13 (Peprotech) were added at the indicated concentrations to responders and stimulators, respectively, 30 minutes before plating. After 20- to 24-hour incubation, supernatants were harvested and assayed using Luminesix multiplex bead technology (Upstate), and output data were analyzed via the Bio-Plex Manager 4.0 (BioRad).

Tumor xenografts and tumor volume determination

Mice were maintained under pathogen-free conditions, and all procedures were done with 6- to 8-week-old non-obese diabetic/severe combined immunodeficient (NOD-scid) or NOD/scid/IL2Rγ−/− (NSG) mice as approved by the COH Institute Animal Care and Use Committee. Intracranial tumor xenografts were prepared as previously described (19). No difference in tumor engraftment between NOD-scid and NSG mouse strains has been observed.

Fixed and paraffin-embedded brains were serially sectioned at 10-μm intervals over the entire extent of the tumor. In most cases, every 20th section was stained with a human-specific nestin antibody (any human cell will be tumor) and visualized with 3,3’-diaminobenzidine (DAB). These sections were scanned at high resolution (Chromavision ACS II). Brain slice images were aligned and DAB pixels in each brain slice were segmented and counted using Reconstruct software (http://synapses.clm.utexas.edu/tools/reconstruct/reconstruct.stm). In some cases, segmentation was based on color and cell density in hematoxylin and eosin–stained sections. In all cases pixel area was extrapolated over the 200-μm slice interval and total volumes computed accordingly.

Results

Incidence of glioma-associated IL13Rα2 expression is independent of tumor cell differentiation status

Our group has generated a panel of GSC lines from patient glioblastoma specimens grown as TSs in serum-free media supplemented with epidermal growth factor (EGF) and fibroblast growth factor (FGF) (9). These GSC TS lines were derived either from freshly dispersed human biopsy specimens or after heterotopic subcutaneous passageing of patient biopsy tissue in immunocompromised mice (9, 31). The expanded GSC TS lines exhibited stem cell–like characteristics: formation of secondary TSs as an indication of in vitro self-renewal potential (Fig. 1A), expression of stem cell markers such as CD133, SOX2 and Nestin (Fig. 1B and C), differentiation to express lineage-specific markers such as GFAP and β-III tubulin (Fig. 1C), and formation of orthotopic intracranial tumors in immunocompromised mice (see also ref. 9; Supplementary Table S4).

This resource of patient-derived GSCs allowed us to assess expression of IL13Rα2 on stem-like TS and serum-differentiated (DIF) glioma lines. For these studies, we compared IL13Rα2 protein and mRNA levels by Western, flow cytometry, and quantitative RT-PCR (qRT-PCR) (Fig. 2). The specificity of receptor recognition in these assays was confirmed by detection of this receptor on known IL13Rα2-positive glioma lines U251T and U87 (19, 32), but not on the IL13Rα2−/− T98 glioma and Daudi lymphoma cell lines (refs. 19, 32; Fig. 2A–C). It is important to note that IL13Rα2-specific commercial antibodies display significant differences in glioma IL13Rα2 detection. We find that clone B-D13 (Cell Sciences) and GW22455A (GenWay) do not recognize an antigen on gliomas that is consistent with either IL13Rα2 mRNA expression or functional recognition of IL13Rα2 by IL13-zetakine+ CTL (Supplementary Fig. S1; Figs. 2 and 4, refs. 19, 32). These findings raise questions about previously published reports which used these antibodies, particularly the commonly used anti-IL13Rα2 B-D13 antibody (Cell Sciences), to assess the frequency of IL13Rα2 expression on gliomas (18, 33). This inconsistency...
may also underlie the lack of correlation between IL13Rα2 mRNA and protein expression for primary glioma biopsy specimens when the anti-IL13Rα2 B-D13 antibody (Cell Sciences) was used for IHC (34). We have therefore used the goat polyclonal anti-IL13Rα2 AF146 antibody (R&D Systems) for all experiments, as it is the only antibody tested that shows a consistent correlation between IL13Rα2 protein levels and mRNA expression [Western and flow cytometry vs. qRT-PCR; Fig. 2A–C, and Supplementary Fig. S1].

We next evaluated IL13Rα2 on stem-like TS lines and found that expression was highly variable between tumor specimens, with a subset of TSs (i.e., PBT015-UPN033, PBT017-4, and PBT030) expressing significant levels of IL13Rα2 (>70% positive by flow cytometry), and approximately half of the tumor lines (i.e., PBT003-4, PBT008, and PBT009-2) not expressing detectable levels of this receptor by either flow cytometry or Western blot (Fig. 2D and E). IL13Rα2 transcript levels, as measured by qRT-PCR, correlated with the observed IL13Rα2 protein expression (Fig. 2C). Our observations are thus in agreement with previous studies showing that the IL13Rα2 receptor is expressed by a subset of patient glioblastoma tumor samples (16, 34).

An expanded normal fetal brain neural stem cell line did not express IL13Rα2 as assessed by flow cytometry and qRT-PCR (Fig. 2C and D). This observation suggested that the IL13Rα2 receptor is not expressed by normal neural stem cells and is in concordance with previous reports that this receptor is not expressed at significant levels in normal brain tissue (15–17, 35).

Significantly, we found that IL13Rα2 is expressed independently of glioma differentiation status. As exemplified by the IL13Rα2pos lines (PBT015-UPN033, PBT017-4, and PBT030), receptor expression is maintained on the stem-like TS (CD133pos Olig2pos), the 7- to 14-day serum-differentiated (GFAPpos; DIF), and the long-term serum-expanded cell populations (ADH; Fig. 2D and E). A small decrease in IL13Rα2 levels was consistently observed following short-term differentiation, but not after long-term growth in serum-containing media (comparing DIF vs. ADH), possibly due to the withdrawal of EGF mitogen (36). Reciprocally, IL13Rα2neg primary lines (PBT003-4, PBT008, and PBT009-2) do not upregulate IL13Rα2neg upon differentiation and growth in serum-containing media (Fig. 2D and E). We concluded that although IL13Rα2 expression by high-grade gliomas is heterogeneous between different tumor samples, its expression on any given low-passage glioma line is independent of cell differentiation status. Thus, these data suggested that, for gliomas expressing IL13Rα2, therapeutic strategies targeting this receptor could potentially eliminate the stem-like brain tumor subpopulation. These studies also indicated the presence of glioma stem–like tumor-initiating populations that do not express IL13Rα2, as detected for the IL13Rα2neg tumors.

To assess the extent to which expression of IL13Rα2 on expanded primary cell lines correlates with the originating patient tumor, IL13Rα2 IHC was done on paraffin-embedded patient tumor tissue. As shown in Fig. 3, patient tumors...
with the highest overall IL13Rα2 expression levels (>40% of cells positive) as detected by IHC (PBT015-UPN033, PBT017, and PBT030), generated both TS and DIF/ADH lines with correspondingly high IL13Rα2 expression (compare with Fig. 2D and E). Likewise, patient tumors with low IL13Rα2 levels (<20% positive cells) gave rise to cell lines that lacked receptor expression (PBT008 and PBT009). Importantly, these findings indicated that expression levels of IL13Rα2 on expanded primary glioma cell lines are consistent with its expression by the originating patient tumor. However, on a cell-by-cell basis, IL13Rα2 expression levels on glioma cells in situ were more variable, as detected by IHC, than those of the corresponding donor-derived TS or ADH cell lines (Fig. 2 vs. Fig. 3; refs. 16, 35). This difference may be explained by the more heterogeneous cellular composition of glioma tumors in situ.

IL13Rα2 expression renders GSCs susceptible to IL13-zetakine–mediated T-cell killing

We next addressed whether IL13Rα2-positive GSCs and differentiated tumor lines display comparable sensitivity to CAR-engineered CTL-mediated killing. For these studies, primary
human IL13-zetakine+ CD8+ CTL lines (Supplementary Fig. S2A and B) were evaluated for their ability to kill TS and matched differentiated glioma lines in vitro. We observed that autologous (UPN033) or allogeneic (HD003) IL13-zetakine+ T-cell clones efficiently lysed IL13Rα2moG PBT015-UPN033 stem-like TSs, as assessed by chromium-release assay (Fig. 4A). For both autologous and allogeneic CTLs, TSs were killed at least as much as matched serum-differentiated (DIF) or serum-expanded (ADH) low-passage primary lines, or established glioma line U87 (average difference in cytotoxicity at all E:T ratios 17% ± 9% with killing of TS ≥ DIF/ADH lines). Lymphoblastic (LCL) targets engineered to express the membrane-bound agonistic antibody scFv-OKT3 (LCL-OKT3), which activates T cells via engagement of the CD3 complex, served as a reference target denoting the maximal activation potential of a T-cell line. To establish that the capacity of IL13-zetakine CTLs to target and kill IL13Rα2moG GSCs is not specific to a particular TS line, we showed in a similar set of experiments that IL13Rα2moG PBT017-4 and PBT030 TS, DIF, and ADH cells were also recognized and killed independently of differentiation status (Supplementary Fig S3). In all cases, the stem-like TS lines were killed with comparable potency as the serum-differentiated lines.

Following engagement of TS, DIF, ADH, or U87 targets, IL13-zetakine+ CTL clones were also activated to produce several T1 cytokines INF-γ and TNF-α (Fig. 4B, Supplementary Fig. S4). CTL coculture with PBT015-UPN033 TSs resulted in...
Targeting IL13Rα2 on Glioma Stem–Like Cells

slightly less Tc1 cytokine production as compared with serum-differentiated (DIF) cells (average ± SD decrease in IFN-γ for TS vs. ADH and DIF is 42% ± 7% and 14% ± 2%, respectively; average decrease in TNF-α for TS vs. ADH and DIF is 58% ± 2% and 45% ± 13%, respectively). This decrease in T-cell–mediated IFN-γ and TNF-α cytokine release is observed on engagement of all IL13Rα2pos primary glioma lines tested (average 2- to 3-fold decrease) (Supplementary Fig. S4).

Several lines of evidence confirmed that the IL13-zetakineα CTL killing and Tc1 cytokine responses we observed are specific to engagement of IL13Rα2 tumor antigen. First, IL13-zetakineα CTL clones were not activated for killing or cytokine production when incubated with the IL13Rα2pos PBT003-4 TS and T98 glioma lines or the IL13Rα2pos LCL line (Fig. 4A, B, and D, and data not shown). Second, blocking CAR-IL13Rα2 engagement by either preincubation of PBT015-UPN033 TS targets with recombinant human IL13 (rh-IL13), or IL13-zetakineα CTL with anti-IL13 antibody eliminated cytokine production (Fig. 4C). Third, the parental UPN033 bulk CTL line, which is not engineered to express the IL13-zetakineα CAR, did not initiate tumor. For this study, we examined the antitumor efficacy of IL13-zetakineα T cells against IL13Rα2pos GSC TS lines PBT030-2 and PBT017-4 (Fig. 2 and Supplementary Fig. S5). To facilitate imaging of tumor growth kinetics, PBT030-2 TS were engineered by lentiviral transduction to express a fusion protein consisting of EGFP and firefly luciferase (flLuc; EGFP-flLuc; ref. 9). EGFP-flLuc+ PBT030-2 or non-engineered PBT017-4 TS cells were orthotopically implanted into the right forebrain of NSG mice. Five days later, after tumor establishment, mice were treated intracranially with 3 infusions of either IL13-zetakineα CD8+ CTL clone 2D7 or control CD19Rα2 CTL clone E8. By comparing flLuc+ tumor flux over time (PBT030-2; Fig. 6A and B) and by quantifying tumor volume 15 days after the last T-cell treatment by IHC (PBT017-4; Fig. 6C and D), we showed that IL13-zetakineα CTL, as compared with control CD19Rα2 CTL, mediate statistically significant anti-glioma activity against both PBT030-2- and PBT017-4–established tumors.

The ability of IL13-zetakineα CTL to regress GSC-initiated established glioblastoma tumors is consistent with our previous observations that IL13-zetakineα CTL can kill IL13Rα2pos TS cells (Fig. 4) and ablate their tumor-initiating activity (Fig. 5). For those mice in which residual tumor was detected following treatment with IL13-zetakineα CTL, we sought to understand the etiology of tumor escape by evaluating the expression of IL13Rα2 in relationship to stemness (SOX2 and Olig2) and differentiation (GFAP) by IHC (day 15 post final T-cell treatment; day 28 post tumor injection). We found that IL13-zetakineα CTL– and control CD19Rα2 CTL–treated tumors express comparable levels of IL13Rα2 (Fig. 6E), suggesting that residual tumors did not evade therapy due to antigen loss. At this 15-day time point, we were not able to detect any persisting CD3+ human T cells by IHC (data not shown). Also, we detected comparable levels of SOX2, Olig2, and GFAP (Fig. 6F), suggesting that there is no major difference in the frequency of stem-like versus differentiated cells in the recurrent tumor following IL13-zetakineα CTL-mediated tumor targeting. Although the largest IL13-zetakineα CTL–treated tumor was found in the leptomeninges (Fig. 6D), the significance of this engraftment pattern is not clear as this highly invasive PBT017-4 line (Fig. 5) is known to engraft at this anatomical site. Taken together, these data indicated that exposure to
IL13-zetakine\(^+\) CTL has the capacity to reduce tumor growth and tumor burden of established IL13R\(^{a2}\) expressing tumors. At the same time, these data also suggested that a more potent CAR\(^+\) T-cell capable of sustained persistence may be required to completely eliminate all IL13R\(^{a2}\) expressing tumor cells.

Discussion

Although immunotherapy strategies targeting IL13R\(^{a2}\) for brain tumors are being clinically pursued (21–24), based on its selective expression on malignant versus normal brain tissue (15–18), the power of IL13R\(^{a2}\)-directed therapies will depend, in part, on the ability of these approaches to be effective against the highly tumorigenic glioma cancer stem–like population (3, 4). Our data provide direct evidence that IL13R\(^{a2}\) expression is not limited to differentiated glioma cells and that IL13R\(^{a2}\) targeting can potentially eliminate the refractory GSC component of malignant gliomas. We show that GSC TSs derived from IL13R\(^{a2}\) GSC tumors express IL13R\(^{a2}\) and that its expression renders the IL13R\(^{a2}\) GSC population susceptible to IL13-zetakine\(^+\) CAR-engineered T-cell cytolytic lysis. Importantly, in vitro GSC TSs were killed at equivalent potency as matched differentiated glioma lines. We also show that IL13-zetakine\(^+\) CTL ablate the \textit{in vivo} tumor-initiating activity of IL13R\(^{a2}\) GSCs and, further, mediate robust antitumor activity and limit progression of established IL13R\(^{a2}\) GSC TS-initiated intracranial tumors in mice.

Although our work and others have shown that GSCs are intrinsically susceptible to effector T-cell killing (7, 8, 9), mechanisms to suppress and/or evade immune function and effector T-cell killing are likely employed by GSCs.

Figure 5. IL13R\(^{a2}\)-specific CTLs ablate the tumor initiation population of IL13R\(^{a2}\) expressing GSCs. A, PBT017-4 TS (2 \times 10\(^5\)) were coinjected intracranially with the specified CTL (2 \times 10\(^5\)) or PBS into NOD-scid mice; \(n = 6\) mice per group. Mice were euthanized after 8 weeks, and harvested brains were analyzed by IHC for tumor engraftment using anti-human nestin (number of mice with engrafted tumors per group of 6 is indicated). Representative images from 2 mice per group are depicted (tiled horizontal brain sections). B, U87 cells (2 \times 10\(^5\)), and (C) PBT003-4 TS cells (2 \times 10\(^5\)) were coinjected intracranially with CAR\(^+\) CTLs or PBS in NOD-scid mice as described in (A).
Recent studies suggest that GSCs may reduce T-cell activation–dependent proliferation and downmodulate T-cell activation–dependent cytokine production (12, 37). We also find that GSC TSs are less potent at stimulating IL13-zetakine\(^+\) CTLs for antigen-dependent INF-\(\gamma\) and TNF-\(\alpha\) cytokine production (Fig. 4; Supplementary Fig S4). The underlying mechanism of these compromised functionalities and the consequences for antitumor efficacy remain to be resolved. In addition, the malignant stem cell niche is associated with secreted TGF-\(\beta\) and VEGF, as well as activated STAT3, important signals known to inhibit immune responses and thus may protect GSCs in established tumors from efficient T-cell eradication (12, 38–40). Despite these hurdles, our findings that CD8\(^+\) CTLs can be engineered to successfully kill the otherwise therapeutically resistant GSC population suggests that efforts to overcome these obstacles are worthwhile.

Clinical trials for recurrent high-grade gliomas using IL13-zetakine–redirected CTLs are in early feasibility/safety stages, and although transient tumor regressions have been observed, sustained regressions are still an unrealized outcome (Jensen; unpublished and ref. 24). This study focused on targeting IL13R\(\alpha2\) on Glioma Stem–Like Cells.
on the potential barrier of GSCs as a therapeutically resistant reservoir of tumor cells. We provide evidence that disease recurrence following IL13Ra2-directed therapies is not due to the absence of IL13Ra2 expression by all GSC subpopulations, but rather that other mechanisms of escape may also be at play. Furthermore, we show that IL13-zetakine+ CTLs can target and kill IL13Ra2pos GSCs and regress established GSC-initiated tumors. However, for established tumors, IL13Ra2 expressing glioma populations were not completely eliminated, suggesting that a more powerful T-cell product is needed. To this end, CAR-engineered T-cell lines optimized for T-cell persistence and/or serial tumor killing are under development (26, 41, 42).

In addition, clinical targeting of IL13Ra2pos cells may selectively eliminate not only malignant cells, but also cells within the microenvironment that are involved in immune evasion. Of particular interest, tumor-infiltrating macrophages (CD11b high/Gr-1 intermediate) have been shown to upregulate cell-surface IL13Ra2 expression in the tumor microenvironment and are stimulated by IL-13 to secrete TGF-β, resulting in inhibition of antigen-specific CTL function (43). Blocking induction of IL13Ra2 on tumor-infiltrated macrophages correspondingly inhibits TGF-β production and restores the antitumor activity of CD8+ T cells. In these ways, targeting IL13Ra2 expressed by other cells in the tumor microenvironment may also enhance the efficacy of clinically targeting this receptor.

Importantly, the heterogeneity of IL13Ra2 receptor expression by high-grade gliomas, rather than persistence of refractory GSC populations, is anticipated to be a critical barrier to overcome for clinical responses (Figs. 2 and 3 and refs. 16, 34, 35). A guiding principle now emerging from a variety of clinical trials suggests that immunotherapeutic approaches targeting single antigens will not be sufficient for durable long-term antitumor responses. Our data showing that IL13Ra2 is expressed by a subset of glioma stem-like–initiating populations susceptible to cell immunotherapy highlight the relevance of translational strategies targeting IL13Ra2 for malignant glioma, particularly when incorporated into combinatorial targeting approaches.

Disclosure of Potential Conflicts of Interest

M.C. Jensen is an inventor of licensed patents and equity holder in ZetaRx, Inc., a licensee of these patents. Other authors have no conflicts of interest to disclose.

Acknowledgments

The authors thank Gustavo Mendez, COH Cytogenetics, and Pathology shared resources for technical assistance; Suzette Blanchard for statistical advice, Dr. Julie Ostberg for manuscript preparation, and Vaidahi Ahadayev for helpful discussions.

Grant Support

This research was supported by NCI (R01 CA103959), NIH (CCSG P30 CA 33572), General Clinical Research Center (M01 RR00043), and a generous donation from Joan and Larry Flax.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 28, 2011; revised February 16, 2012; accepted February 23, 2012; published OnlineFirst March 8, 2012.
Targeting IL13Rα2 on Glioma Stem–Like Cells

Stem-like Tumor-Initiating Cells Isolated from IL13Rα2 Expressing Gliomas Are Targeted and Killed by IL13-Zetakine–Redirected T Cells

Christine E. Brown, Renate Starr, Brenda Aguilar, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-11-1669

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2012/03/08/1078-0432.CCR-11-1669.DC1

Cited articles
This article cites 44 articles, 24 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/18/8/2199.full#ref-list-1

Citing articles
This article has been cited by 13 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/18/8/2199.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.