Highlights of This Issue 2593

SPECIAL FEATURES

CCR Translations

2595 Oncolytic Virotherapy Needs Trials, Not Access Programs Kevin J. Harrington See article, p. 2734

Molecular Pathways

2598 Molecular Pathways: Tumor-Derived Microvesicles and Their Interactions with Immune Cells In Vivo Ferdinando Pucci and Mikael J. Pittet

CCR Focus

2606 PFS: The Endpoint We Love and Love to Hate Susan E. Bates

2607 Overview: Progression-Free Survival as an Endpoint in Clinical Trials with Solid Tumors Ronald L. Korn and John J. Crowley

2613 Missing Data and Measurement Variability in Assessing Progression-Free Survival Endpoint in Randomized Clinical Trials Rajeshwari Sridhara, Sumithra J. Mandrekar, and Lori E. Dodd

2621 The Imaging Viewpoint: How Imaging Affects Determination of Progression-Free Survival Daniel Carl Sullivan, Lawrence H. Schwartz, and Binsheng Zhao

2629 The Clinical Viewpoint: Definitions, Limitations of RECIST, Practical Considerations of Measurement Liza C. Villaruz and Mark A. Socinski

2637 Assessment of Audit Methodologies for Bias Evaluation of Tumor Progression in Oncology Clinical Trials Jenny J. Zhang, Lijuin Zhang, Huanyu Chen, Anthony J. Murgo, Lori E. Dodd, Richard Pazdur, and Rajeshwari Sridhara

HUMAN CANCER BIOLOGY

2657 Aberrant BAF57 Signaling Facilitates Prometastatic Phenotypes Sucharita Balasubramaniam, Clay E.S. Comstock, Adam Ertel, Kwang Won Jeong, Michael R. Stallcup, Sankar Addya, Peter A. McCue, William F. Ostrander Jr, Michael A. Augello, and Karen E. Knudsen


CANCER THERAPY: PRECLINICAL


ABOUT THE COVER

This image is taken from a bone metastasis in a patient with stage IV relapsed invasive CDH1 mutated lobular carcinoma of the breast. The tumor was negative for ERBB2 (HER2) amplification (FISH). The targeted next generation sequencing assay used in this study found an ERBB2-GRB7 putative gene fusion that has not been previously reported. The fusion retains the kinase domain of ERBB2 (uniprot.org) which suggests that it could result in ERBB2 activation. The 17q12-21 amplicon which includes both ERBB2 and GRB7 is frequently amplified in breast cancer and preclinical studies suggest that it may be a recombination hotspot. An expression screening study has reported that GRB7 can function as an ERBB2-dependent oncogene. GRB7 encodes an adaptor protein that interacts with ERBB2 and has been shown in a preclinical study to enhance its transformative capacity and increase ERBB2 phosphorylation in fibroblasts. For details, see the article by Ross and colleagues on page 2668 of this issue.