Sorafenib or Placebo with Either Gemcitabine or Capecitabine in Patients with HER-2–Negative Advanced Breast Cancer That Progressed during or after Bevacizumab

Abstract

Purpose: We assessed adding the multikinase inhibitor sorafenib to gemcitabine or capecitabine in patients with advanced breast cancer whose disease progressed during/after bevacizumab.

Experimental Design: This double-blind, randomized, placebo-controlled phase IIb study (ClinicalTrials.gov NCT00493636) enrolled patients with locally advanced or metastatic human epidermal growth factor receptor 2 (HER2)–negative breast cancer and prior bevacizumab treatment. Patients were randomized to chemotherapy with sorafenib (400 mg, twice daily) or matching placebo. Initially, chemotherapy was gemcitabine (1,000 mg/m² i.v., days 1, 8/21), but later, capecitabine (1,000 mg/m² orally twice daily, days 1–14/21) was allowed as an alternative. The primary endpoint was progression-free survival (PFS).

Results: One hundred and sixty patients were randomized. More patients received gemcitabine (82.5%) than capecitabine (17.5%). Sorafenib plus gemcitabine/capecitabine was associated with a statistically significant prolongation in PFS versus placebo plus gemcitabine/capecitabine [3.4 vs. 2.7 months; HR = 0.65; 95% confidence interval (CI): 0.45–0.95; P = 0.02], time to progression was increased (median, 3.6 vs. 2.7 months; HR = 0.64; 95% CI: 0.44–0.93; P = 0.02), and overall response rate was 19.8% versus 12.7% (P = 0.23). Median survival was 13.4 versus 11.4 months for sorafenib versus placebo (HR = 1.01; 95% CI: 0.71–1.44; P = 0.95). Addition of sorafenib versus placebo increased grade 3/4 hand–foot skin reaction (39% vs. 5%), stomatitis (10% vs. 0%), fatigue (18% vs. 9%), and dose reductions that were more frequent (51.9% vs. 7.8%).

Conclusion: The addition of sorafenib to gemcitabine/capecitabine provided a clinically small but statistically significant PFS benefit in HER2-negative advanced breast cancer patients whose disease progressed during/after bevacizumab. Combination treatment was associated with manageable toxicities but frequently required dose reductions. Clin Cancer Res; 19(10); 2745–54. ©2013 AACR.

Introduction

Angiogenesis plays a critical role in the development and local progression of breast and other cancers and is associated with progression of metastatic disease (1). Therefore, inhibition of angiogenesis with targeted therapies has become a key research strategy for drug development. The single-agent activity of antiangiogenics has been limited in metastatic breast cancer (MBC; refs. 2–4). However,
paclitaxel improved progression-free survival [PFS; medi-
ative MBC showed that adding bevacizumab to first-line
human epidermal growth factor receptor 2 (HER2)-neg-
chemotherapy (5–8). A phase III trial in patients with
the phase III setting when used in combination with
chemotherapy has not been shown to improve overall
survival (OS) to date.

There are a number of potential reasons for these obser-
vations with bevacizumab. The PFS benefit in the initial
study of bevacizumab with frontline paclitaxel may have
been an outlier (9). OS data can be confounded by the use
of subsequent therapy at the time of progression (10). In late
stages of tumor development, redundant and compensato-
ry angiogenic mechanisms may overcome inhibition with
bevacizumab, despite an initial response (11) and may
lead to more aggressive disease at the time of progression
(12, 13), or a rebound effect could occur after discontinu-
ation of antiangiogenic therapy (6).

Translational Relevance
Angiogenesis plays a critical role in the development
and local progression of breast cancer. Bevacizumab, a
monoclonal antibody targeting the proangiogenic vas-
cular endothelial growth factor, has shown clinical activ-
ity in metastatic breast cancer (MBC) in the phase III
setting when used in combination with chemotherapy.
Sorafenib is an orally administered small-molecule
inhibitor of multiple tyrosine kinases and has antipro-
liferative and antiangiogenic activities. Unlike bevacizu-
mab, sorafenib affects angiogenesis at multiple steps and
may target pathways involved in bevacizumab resist-
tance. Sorafenib treatment has shown evidence of
activity in patients with metastatic clear cell renal cell
carcinoma refractory to sunitinib or bevacizumab. The
randomized, placebo-controlled phase II study assessed
the efficacy and safety of adding sorafenib to gemicfa-
bine or capecitabine in patients with MBC whose disease
progressed during or after treatment with bevacizumab.
The addition of sorafenib was associated with a clinically
small but statistically significant improvement in the
primary endpoint of progression-free survival.

In November 2011, the U.S. Food and Drug Administra-
tion revoked bevacizumab’s indication for use in combi-
nation with paclitaxel. Despite this, the use of bevacizumab
in MBC continues to be supported by the Centers for
Medicare and Medicaid Services, the National Comprehen-
sive Cancer Network, and the European Medicines Agency.
Furthermore, ongoing studies in MBC are exploring bev-
acizumab in specific subsets of patients as part of adjuvant
treatment regimens (14, 15). Thus, it is important to devel-
op alternative treatment approaches targeting angiogenesis
in general and to identify treatment strategies for patients
whose disease progresses during or after bevacizumab ther-
apy specifically. In this regard, clinical studies suggest that
sequential use of antiangiogenic treatments may be benefi-
cial in some solid tumors (16, 17).

Sorafenib is an orally administered small-molecule
inhibitor of multiple tyrosine kinases indicated for unre-
sectable hepatocellular carcinoma or advanced renal cell
carcinoma. Sorafenib has antiproliferative and antiangio-
genic activities, targeting RAF kinases, c-KIT, and Fli-3 and
the proangiogenic VEGF receptor, and platelet-derived
growth factor receptor tyrosine kinases (18). Because sor-
afenib affects angiogenesis at multiple steps, it may target
pathways involved in bevacizumab resistance. Data from a
phase II sorafenib trial showed evidence of activity in
patients with metastatic clear cell renal cell carcinoma
refractory to sunitinib or bevacizumab (16).

To rapidly assess sorafenib in combination with known
effective palliative treatments for HER2-negative MBC, a
series of 4 double-blind, randomized, placebo-controlled,
phase IIb screening Trials to Investigate the Efficacy of
Sorafenib (TIES) were developed. Three of these studies
have been completed. SOLTI-0701 and NCI07B1 assessed
the treatment effect of sorafenib when added to capecta-
bine and paclitaxel, respectively, in patients not previously
previously treated with VEGF inhibitors (19, 20). A separate TIES trial,
investigating sorafenib in combination with docetaxel and/or
letrozole in specific subpopulations without prior VEGF-
targeted treatment, reported primary analysis of PFS and is
ongoing (21).

Here, we report the final results of AC01B07, a TIES trial
designed to assess whether sorafenib in combination with
gemcitabine or capecitabine (GEM/CAP) could overcome
clinical bevacizumab resistance in patients with MBC.
Initially, gemcitabine was the only chemotherapy option
based on the available safety data of sorafenib combina-
tions and practice patterns at the time the study was
launched. Gemcitabine is approved for MBC in combina-
tion with paclitaxel but is frequently used as a single agent
within sequential monotherapy strategies as studies indi-
cate that sequential use of chemotherapies is as effective as
combination strategies and is better tolerated (22, 23). The
rationale for combining sorafenib and gemcitabine was
based on both preclinical and clinical studies that have
shown the potential of sorafenib to enhance antitumor
activity or disease stabilization when combined with che-
motherapy agents including but not limited to gemcitabine,
the distinct mechanisms of action with nonoverlapping
toxicities for sorafenib and gemcitabine, the good tolerability of the combination, and the lack of drug-to-drug interactions (24). Capecitabine is approved as a single agent for MBC. Once safety data for sorafenib with capecitabine became available, the protocol was amended to allow this second chemotherapy agent as an alternative at the treating physician’s discretion (25).

Patients and Methods

Patients

Eligible patients were 18 years or older with histologically or cytologically confirmed HER2-negative adenocarcinoma of the breast with locally advanced (inoperable) or metastatic disease. Patients experienced disease progression during or after a bevacizumab regimen in the adjuvant or metastatic setting. Prior chemotherapy for advanced disease was limited to 1 regimen; prior hormone therapy and radiation therapy were allowed. Additional selection criteria included Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 and adequate bone marrow, liver, and renal function. Patients were not eligible if they had active brain metastases or were at significant risk of major cardiovascular, cerebrovascular, or bleeding events.

Study design

AC01B07 was a double-blind, randomized, placebo-controlled phase IIb screening trial conducted at 40 centers in the United States. Patients were stratified by site of metastatic disease (visceral vs. nonvisceral) and randomized in a double-blind fashion using a 1:1 allocation to receive sorafenib or placebo in combination with gemcitabine/capecitabine. Randomization was conducted with a web-based Randomization and Product Inventory Control (RPIC) system. Patients initiated treatment within 3 working days of randomization. All efforts were made to maintain blinding throughout the duration of the study. Details of unblinding procedures are provided in the definitions portion of the Supplementary Appendix.

The primary endpoint was PFS and the secondary endpoints were time to progression (TTP), overall response rate (ORR), duration of response (DOR), OS, and safety. (See Supplementary Appendix for detailed descriptions of endpoints.) All patients provided written informed consent. The study protocol was approved by the internal review boards of participating institutions. The study is registered at ClinicalTrials.gov (NCT00493636).

Treatment

Sorafenib 400 mg or matching placebo was administered orally, twice daily. Gemcitabine was administered at a dose of 1,000 mg/m^2 i.v. on days 1 and 8 of a 21-day cycle. Capecitabine was administered orally at a dose of 1,000 mg/m^2 twice daily for the first 14 days of a 21-day cycle. The study protocol detailed dose modifications to resolve toxicity or to increase potency. A description of the dosing algorithm is available in the Supplementary Appendix.

Assessments

Clinical and radiologic assessments were conducted at baseline, every 6 weeks for the first 24 weeks, and every 9 weeks thereafter. Tumor response was assessed by the investigator, based on the modified Response Evaluation Criteria in Solid Tumors (RECIST, version 1.0; ref. 26). Adverse events (AE) were graded according to the National Cancer Institute’s Common Terminology Criteria for Adverse Events (version 3.0). Correlative studies were not conducted.

Statistical analysis

Initially, the planned sample size was 220 patients, with a prespecified analysis of PFS after 120 events having 90% power to detect a HR of 0.65 at a 1-sided α = 0.14. A priori, it was estimated that an observed HR of 0.82 or more would provide evidence that sorafenib treatment was more effective than placebo and an observed HR of 0.70 would be statistically significant at 1-sided α = 0.025. A 1-sided rather than a 2-sided α was used on the basis of previous findings with bevacizumab, which indicated that the difference from the control would be unidirectional (6), and to limit the sample size as this was not a pivotal study but rather a screening trial designed to determine if a phase III study should be initiated (27). After a lower than expected accrual rate, it was determined that the sample size should be reduced to 160 while the number of events remained at 120 thus preserving the original power and alpha level. Because of the inconsistencies in bevacizumab studies noted earlier (5–8), the usage of bevacizumab and the regulatory environment changed during AC01B07, which likely impacted patient accrual.

Primary analyses of efficacy data were conducted using the intent-to-treat population (all patients randomized to study treatment). Secondary efficacy analyses were also conducted using the per-protocol population (all patients who received study treatment without major protocol violations). Analyses of safety data were based on patients who received any study treatment (safety population).

A stratified Cox regression was used for the primary analysis of time-to-event endpoints with treatment group and the stratification factor as covariates in the model. Median event-free times were estimated with the Kaplan–Meier method. Primary analysis of categorical endpoints used the Cochran–Mantel–Haenszel test adjusted for the stratification factor. Two-sided P values are reported unless noted otherwise. SAS version 9.1 (SAS Institute Inc.) was used for all statistical analyses.

Results

A total of 160 patients were randomized to treatment between June 2007 and August 2010 (Fig. 1); 156 received study treatment (safety population), and 150 received study treatment and were without major protocol violations (per-protocol population). Data cut-off was September 2010 for analysis of PFS, response, safety, and tolerability, and was February 2012 for OS.

www.aacrjournals.org

Clin Cancer Res; 19(10) May 15, 2013 2747

Sorafenib + Gemcitabine or Capecitabine in Advanced Breast Cancer

Published OnlineFirst February 26, 2013; DOI: 10.1158/1078-0432.CCR-12-3177

Published OnlineFirst February 26, 2013; DOI: 10.1158/1078-0432.CCR-12-3177
Treatment arms were balanced for patient and disease characteristics, except for ECOG performance status (Table 1). All patients had received bevacizumab before enrolling in the study, most (97.5%) for metastatic (stage IIIb/c or stage IV per American Joint Committee on Cancer staging) disease. The majority of patients (95.0%) had stage IV disease, and 84.4% had visceral metastases. As expected, more patients in the sorafenib and placebo treatment arms received gemcitabine (83% and 82%, respectively) than capecitabine (17% and 18%, respectively).

Efficacy

There were 122 PFS events. The combination of sorafenib plus gemcitabine/capecitabine provided a clinically small but statistically significant improvement in PFS compared with placebo plus gemcitabine/capecitabine [3.4 vs. 2.7 months; \(P = 0.02 \) (1-sided \(P = 0.01 \)], with a 35% reduction in the risk of disease progression or death (\(HR = 0.65; 95\% \) CI: 0.45–0.95; Fig. 2). Analysis of the per-protocol population showed similar values (median PFS, 3.2 vs. 2.7 months; \(HR = 0.67; 95\% \) CI: 0.46–0.98; \(P = 0.04 \)), as did other sensitivity analyses (see Supplementary Appendix, Table SA1). Prespecified subgroup analyses of PFS were consistent with the overall results, with the exception of chemotherapy type (Fig. 3). The addition of sorafenib improved outcome over placebo (\(HR = 0.54; 95\% \) CI: 0.36–0.80) in the gemcitabine subgroup (\(n = 132 \)), but this was not observed in the much smaller (\(n = 28 \)) capecitabine subgroup (\(HR = 2.39; 95\% \) CI: 0.79–7.23; \(P = 0.11 \)).

At the time of the OS analysis cutoff, there were 64 deaths (59 due to disease progression) in the sorafenib arm and 60 deaths (54 due to disease progression) in the placebo arm. Median OS was 13.4 versus 11.4 months (\(HR = 1.01; 95\% \) CI: 0.71–1.44; \(P = 0.95 \)). Analysis of subgroups showed no notable differences between the treatment arms, with the exception of the chemotherapy type (Supplementary Appendix, Table SA2). As with the PFS subgroup data, sorafenib was favored compared with placebo in the gemcitabine subgroup (median 13.7 vs. 10.9 months; \(HR = 0.89; 95\% \) CI: 0.60–1.30; \(P = 0.53 \)) but not in the capecitabine subgroup (median 10.9 vs. 29.1 months; \(HR = 2.18; 95\% \) CI: 0.85–5.56; \(P = 0.10 \)).

Generally, the addition of sorafenib to gemcitabine/capecitabine was favorable for secondary efficacy endpoints (Table 2). TTP was significantly longer for sorafenib plus gemcitabine/capecitabine than for placebo plus gemcitabine/capecitabine (median, 3.6 vs. 2.7 months; \(HR = 0.64; 95\% \) CI: 0.44–0.93; \(P = 0.02 \)). There was no statistical difference in ORR (19.8% vs. 12.7%, respectively; \(P = 0.235 \)). Median DOR (3.1 vs. 4.8 months, respectively) was longer for placebo.

Safety and tolerability

Treatment was associated with manageable toxicity (Table 3), but patients receiving combination therapy required more sorafenib dose reductions compared with the matching placebo (see Supplementary Appendix, Table A3). In the sorafenib arm of the gemcitabine subgroup, 52.5% of patients required dose reductions of sorafenib and 36.9% required reductions of gemcitabine, whereas in the placebo arm, 4.7% required reductions of placebo and 32.8% required reductions of gemcitabine.

There were no new or unexpected AEs. Grade 3 events occurred in 70% of patients in the sorafenib arm versus 47% in the placebo arm. Grade 4 events were infrequent, occurring in 14% versus 12% of patients, respectively. Grade 3 AEs that occurred more frequently in the sorafenib arm than in the placebo arm included stomatitis (10% vs. 0%), fatigue (18% vs. 9%), anemia (5% vs. 0%), and hand–foot skin reaction/syndrome (HFSR/HFS, 39% vs. 5%). The incidence of grade 3 HFSR was 37% (24/65 patients) versus 2% (1/64 patients), respectively, in the gemcitabine subgroup and 50% (7/14 patients) versus 23% (3/13 patients), respectively, in the capecitabine subgroup. Grade 3/4 thrombocytopenia occurred in 10% versus 1% of patients, respectively.

Overall, for patients receiving sorafenib plus gemcitabine/capecitabine, the average daily dose of sorafenib was 570 mg, corresponding to dose reductions in 51.9% of patients. For patients receiving placebo plus chemotherapy, the average daily dose of placebo was 751 mg.
Table 1. Baseline characteristics (intent-to-treat population)

<table>
<thead>
<tr>
<th></th>
<th>Sorafenib + GEM/CAP (n = 81)</th>
<th>Placebo + GEM/CAP (n = 79)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), y</td>
<td>53.5 (10.6)</td>
<td>54.2 (11.0)</td>
</tr>
<tr>
<td>Race/ethnicity, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>59 (72.8)</td>
<td>61 (77.2)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>2 (2.5)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Black</td>
<td>16 (19.8)</td>
<td>13 (16.5)</td>
</tr>
<tr>
<td>Asian</td>
<td>2 (2.5)</td>
<td>5 (6.3)</td>
</tr>
<tr>
<td>ECOG status, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>32 (39.5)</td>
<td>42 (53.2)</td>
</tr>
<tr>
<td>1</td>
<td>47 (58.0)</td>
<td>37 (46.8)</td>
</tr>
<tr>
<td>AJCC stage, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/II/III</td>
<td>3 (3.7)</td>
<td>4 (5.1)</td>
</tr>
<tr>
<td>IV</td>
<td>77 (95.1)</td>
<td>75 (94.9)</td>
</tr>
<tr>
<td>Location of metastatic sites, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonvisceral</td>
<td>12 (14.8)</td>
<td>13 (16.5)</td>
</tr>
<tr>
<td>Visceral</td>
<td>69 (85.2)</td>
<td>66 (83.5)</td>
</tr>
<tr>
<td>Measurable disease, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>72 (88.9)</td>
<td>72 (91.1)</td>
</tr>
<tr>
<td>No</td>
<td>8 (9.9)</td>
<td>7 (8.9)</td>
</tr>
<tr>
<td>Hormone receptor status, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER positive and/or PR positivea</td>
<td>54 (66.7)</td>
<td>52 (65.8)</td>
</tr>
<tr>
<td>ER negative and PR negative</td>
<td>23 (28.4)</td>
<td>27 (34.2)</td>
</tr>
<tr>
<td>Unknown</td>
<td>4 (4.9)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Prior chemotherapy for metastatic disease, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>76 (93.8)</td>
<td>76 (96.2)</td>
</tr>
<tr>
<td>No</td>
<td>4 (4.9)</td>
<td>3 (3.8)</td>
</tr>
<tr>
<td>Prior nonmetastatic treatment, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>2 (2.5)</td>
<td>2 (2.5)</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>66 (81.5)</td>
<td>53 (67.1)</td>
</tr>
<tr>
<td>Taxane</td>
<td>35 (43.2)</td>
<td>37 (46.8)</td>
</tr>
<tr>
<td>Anthracycline</td>
<td>41 (50.6)</td>
<td>39 (49.4)</td>
</tr>
<tr>
<td>Endocrine therapy</td>
<td>38 (46.9)</td>
<td>28 (35.4)</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>43 (53.1)</td>
<td>35 (44.3)</td>
</tr>
<tr>
<td>Prior metastatic treatment, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>78 (96.3)</td>
<td>78 (98.7)</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>76 (93.8)</td>
<td>76 (96.2)</td>
</tr>
<tr>
<td>Taxane</td>
<td>52 (64.2)</td>
<td>48 (60.8)</td>
</tr>
<tr>
<td>Anthracycline</td>
<td>0 (0)</td>
<td>2 (2.5)</td>
</tr>
<tr>
<td>Endocrine therapy</td>
<td>39 (48.1)</td>
<td>35 (44.3)</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>22 (27.2)</td>
<td>14 (17.7)</td>
</tr>
<tr>
<td>Bevacizumab treatment (metastatic), n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration ≤6 months</td>
<td>40 (49.4)</td>
<td>43 (64.4)</td>
</tr>
<tr>
<td>Duration >6 months</td>
<td>38 (46.9)</td>
<td>35 (44.3)</td>
</tr>
<tr>
<td>Time since last treatment, median (range), months</td>
<td>1 (1–23)</td>
<td>1 (0–33)</td>
</tr>
<tr>
<td>Time since progression, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1 month</td>
<td>66 (81.5)</td>
<td>63 (79.7)</td>
</tr>
<tr>
<td>>1 month</td>
<td>12 (14.8)</td>
<td>15 (19.0)</td>
</tr>
</tbody>
</table>

Abbreviations: AJCC, American Joint Committee on Cancer; CAP, capecitabine; ECOG, Eastern Cooperative Oncology Group; ER, estrogen receptor; GEM, gemcitabine; PR, progesterone receptor.

*Includes patients with AJCC stage I/II/III breast cancer who received the treatments for advanced disease.

Sorafenib + Gemcitabine or Capecitabine in Advanced Breast Cancer

corresponding to dose reductions in 7.8% of patients. Discontinuation of study treatment due to AEs occurred in 21.0% of patients in the sorafenib arm and 6.3% in the placebo arm. The most common AEs leading to discontinuation were fatigue (6 patients in the sorafenib arm and 3 patients in the placebo arm) and HFSR/HFS (5 patients in the sorafenib arm).

There were 7 on-study deaths (during or up to 30 days post treatment). In the sorafenib arm, 3 on-study deaths were attributed to progressive disease (1), cardiac arrest related to treatment (1), and intracranial brain hemorrhage that was considered unrelated to combination therapy (1). In the placebo arm, 4 on-study deaths were attributed to progressive disease (3) and liver failure (1).

Discussion

This study met its primary endpoint, demonstrating a clinically small but statistically significant benefit for PFS with the addition of sorafenib to chemotherapy compared with chemotherapy alone in patients with HER2-negative advanced breast cancer who had previously received treatment with bevacizumab. In this poor prognosis cohort, the combination was associated with a 35% reduction in the risk of disease progression or death (median PFS, 3.4 vs. 2.7 months; HR = 0.65; 95% CI: 0.45–0.95; \(P = 0.02 \)) and a 36% reduction in risk of disease progression (median TTP, 3.6 vs. 2.7 months; HR = 0.64; 95% CI: 0.44–0.93; \(P = 0.02 \)), but this did not correspond to an improvement in OS (median 13.4 vs. 11.4 months; \(P = 0.95 \)).

The toxicity associated with the combination of sorafenib to gemcitabine/capecitabine was manageable after dose interruptions and reductions, with the majority of patients maintaining treatment until disease progression. Most AEs associated with the addition of sorafenib were mild to moderate in severity, and the types of AEs were consistent with the known safety profiles of the individual agents. The most frequent AE associated with the addition of sorafenib was HFSR/HFS, which is nonlife threatening and reversible but can decrease quality of life and necessitate treatment modifications or discontinuation. As noted, dose modifications were more frequent in the sorafenib arm. Taken together, these data indicate that when using sorafenib in combination with chemotherapy, a lower dose of sorafenib may be appropriate with the opportunity to dose escalate as tolerated. Gemcitabine dose modifications were comparable between treatment arms.

In the blinded, controlled trial setting, there is concern that HFSR/HFS may effectively unblind treatment because of the difference in incidence between arms. We acknowledge that some investigators and patients may have overcome blinding by using toxicity experiences to guess treatment assignment. We have no evidence that such events were more frequent here compared with other trials of similar design but cannot exclude this as a potential study bias.

The AC01B07 study provides 2 kinds of clinically relevant evidence supporting further development of sorafenib in
breast cancer. First, this study provides the only data to date that show a potential benefit for a second antiangiogenic agent in patients with MBC and progression after prior bevacizumab. Although bevacizumab is no longer indicated for MBC in the United States, it may remain part of the off-label treatment armamentarium and remains a treatment option in Europe. Second, the findings in this study are consistent with the SOLTI-0701 and NU07B1 TIES studies, which also showed activity when sorafenib was added to capecitabine and paclitaxel, respectively (19, 20). The other TIES study, FM-B01-07, did not demonstrate a clinical benefit when sorafenib was added to docetaxel/letrozole (21). Overall, the TIES program suggests activity for sorafenib when added to the selected chemotherapy agents in the various clinical scenarios. Of note, the lack of an association of benefit with any specific chemotherapy agent supports the hypothesis that, in the end, the activities of biologic agents are independent and not modulated by the companion chemotherapy regimen when used in combination (28).

We note that although PFS and TTP were significantly different between treatment arms in our study, the median durations of these endpoints were relatively brief. Most patients received gemcitabine during the current study, and the TTP results appeared comparable with small studies investigating single-agent gemcitabine in advanced breast cancer, with median TTP ranging from 1.9 to 6.3 months (29–32). However, it is difficult to compare results across studies in MBC because of differences in patient populations. In the current study, many patients had received previous treatment with anthracyclines and taxanes, and this is a unique population in that all patients had progressed during or after a bevacizumab regimen—97.5% in the metastatic setting. The lack of an OS benefit was not unexpected given the small improvement in PFS, and the size of the study population was too small to have adequate power to detect an OS benefit if present.

The disease course of MBC after discontinuation of bevacizumab has not been well characterized. Preclinical studies suggest that antiangiogenic therapy may induce more aggressive disease (12, 13), although a retrospective pooled analysis of randomized placebo-controlled trials in solid tumors (including breast) observed no significant

![Kaplan-Meier analysis of (A) PFS (data cut-off of September 2010) and (B) overall survival (data cut-off of February 2012).](image-url)
difference in TTP or death after patients discontinued bevacizumab due to toxicity compared with those who discontinued placebo (33). Regardless, patients enrolled in this trial had relatively high-risk disease for early progression.

Unlike AC01B07, the other TIES studies excluded patients with prior bevacizumab treatment. In the SOLTI-0701 study, sorafenib plus capecitabine (first- or second-line) significantly improved median PFS compared with placebo plus capecitabine (6.4 vs. 4.1 months; HR = 0.58; 95% CI: 0.41–0.81; P = 0.001; ref. 19). The addition of sorafenib to capecitabine was associated with an increased incidence of grade 3 HFSR/HFS (44% vs. 14%). The SOLTI-0701 results have prompted the initiation of a confirmatory phase III study with an adjusted dosing schema for sorafenib and more aggressive supportive care to improve tolerability (34). The starting dose of sorafenib has been lowered to 600 mg/day (200 mg in the morning and 400 mg in the evening), which can then be escalated to 800 mg/day as tolerated.

In view of the SOLTI-0701 data, and recognizing the very small number of patients (14 patients in each arm) in our trial randomized with capecitabine as the chemotherapy base, we do not believe that the point estimates for PFS and OS in this subset are interpretable. We also note that the choice of capecitabine may have been influenced by disease and patient factors that were not balanced.

![Figure 3. PFS in prespecified subgroups (data cutoff of September 2010).](image-url)

Table 2. Secondary efficacy endpoints for the intent-to-treat population

<table>
<thead>
<tr>
<th></th>
<th>Sorafenib + GEM/CAP (N = 81)</th>
<th>Placebo + GEM/CAP (N = 79)</th>
<th>HR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTP, median, months</td>
<td>3.6 (11.7–30.1)</td>
<td>2.7</td>
<td>0.64 (0.44–0.93)</td>
<td>0.02<sup>a</sup></td>
</tr>
<tr>
<td>Overall response, % (95% CI)</td>
<td>19.8</td>
<td>12.7 (6.2–22.0)</td>
<td></td>
<td>0.235<sup>b</sup></td>
</tr>
<tr>
<td>Best response, n (%)</td>
<td>0 (0)</td>
<td>1 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>0 (0)</td>
<td>1 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial response</td>
<td>16 (19.8)</td>
<td>9 (11.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable disease</td>
<td>35 (43.2)</td>
<td>34 (43.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progressive disease</td>
<td>19 (23.5)</td>
<td>30 (38.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOR, median, months</td>
<td>3.1</td>
<td>4.8</td>
<td>0.88 (0.64–1.12)<sup>c</sup></td>
<td>0.56<sup>a</sup></td>
</tr>
</tbody>
</table>

Abbreviations: CAP, capecitabine; CI, confidence interval; DOR, duration of response; GEM, gemcitabine; TTP, time to progression.

^aP-value from stratified log-rank test.

^bP-value calculated with Cochran–Mantel–Haenszel test.

^cSample size inadequate for statistical comparison.

^dIncluded nonresponse as an event with duration of 0.
between arms. The vast majority of patients received gemcitabine, and PFS data in this subgroup and for the study as a whole were consistent with those of the other TIES trials favoring the addition of sorafenib over placebo.

Validated biomarkers would help us better understand the variability in response to antiangiogenic therapies across patient populations. Unfortunately, biomarkers for antiangiogenics have not been validated, although studies have shown some correlations between treatment activity and VEGF plasma levels, VEGF-2578 and –5411 AA genotypes, and treatment-emergent hypertension (35). Although correlative studies were not conducted for the current study, future studies investigating sequential use of antiangiogenic agents may consider correlating treatment response to plasma levels of various angiogenic activators, including the inhibitory target(s) and compensatory pathway molecules (e.g., VEGF, epidermal growth factor, and platelet-derived growth factor B).

In conclusion, AC01B07 data have shown that the combination of sorafenib plus gemcitabine/capecitabine provided a statistically significant benefit for PFS in patients with HER2-negative advanced breast cancer who had previously experienced disease progression during or after a regimen containing bevacizumab. Sorafenib may be a viable option for patients with MBC even after treatment with bevacizumab. However, these phase IIb trial results are not practice changing. Although the AC01B07 study met the predefined endpoint, a phase III study has not been planned as the duration of PFS was relatively short, the benefit was clinically small, and there was no corresponding improvement in OS. More clinical data are needed in patients with prior bevacizumab treatment to determine if there are definable subsets and whether any specific chemotherapy agents offer clinically meaningful benefits in combination with small-molecule antiangiogenics.

Disclosure of Potential Conflicts of Interest
K.W. Tauer has honoraria from speakers’ bureau from Amgen and Lilly. R. C. Hermann has honoraria from speakers’ bureau and is a consultant/advisory board member of Roche-Genentech. H. Rugo has a commercial research grant from Genentech and GSK to UCSF. M.R. Keaton is a consultant/advisory board member of Celgene. S.K. Ro is employed (other than primary affiliation; e.g., consulting) as Director, Biostatistics and has ownership interest (including patents) in Onyx Pharmaceuticals. N.A. Lokker is employed (other than primary affiliation; e.g., consulting) as Senior Director, Clinical Development and has ownership interest (including

Table 3. Adverse events reported in at least 10% of patients (safety population)

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Sorafenib + GEM/CAP (n = 79)</th>
<th>Placebo + GEM/CAP (n = 77)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any grade, %</td>
<td>Any grade, %</td>
<td>Any grade, %</td>
</tr>
<tr>
<td>Hand-foot skin reaction/syndrome(a)</td>
<td>57 (39)</td>
<td>18 (5)</td>
</tr>
<tr>
<td>Rash</td>
<td>28 (4)</td>
<td>16 (0)</td>
</tr>
<tr>
<td>Nausea</td>
<td>44 (1)</td>
<td>49 (3)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>35 (6)</td>
<td>22 (1)</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>27 (10)</td>
<td>7 (0)</td>
</tr>
<tr>
<td>Constipation</td>
<td>23 (1)</td>
<td>27 (0)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>27 (1)</td>
<td>23 (0)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>14 (3)</td>
<td>13 (5)</td>
</tr>
<tr>
<td>Weight decreased</td>
<td>14 (0)</td>
<td>3 (1)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>61 (18)</td>
<td>47 (9)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>19 (3)</td>
<td>18 (1)</td>
</tr>
<tr>
<td>Mucosal inflammation</td>
<td>14 (1)</td>
<td>7 (0)</td>
</tr>
<tr>
<td>Pain</td>
<td>14 (1)</td>
<td>10 (0)</td>
</tr>
<tr>
<td>Headache</td>
<td>24 (1)</td>
<td>18 (0)</td>
</tr>
<tr>
<td>Pain in extremities</td>
<td>19 (1)</td>
<td>8 (0)</td>
</tr>
<tr>
<td>Back pain</td>
<td>11 (1)</td>
<td>16 (3)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>10 (1)</td>
<td>17 (3)</td>
</tr>
<tr>
<td>Cough</td>
<td>23 (1)</td>
<td>20 (0)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>22 (5)</td>
<td>22 (5)</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>17 (0)</td>
<td>12 (0)</td>
</tr>
<tr>
<td>Anorexia</td>
<td>19 (1)</td>
<td>7 (0)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>24 (16)</td>
<td>27 (20)</td>
</tr>
<tr>
<td>Anemia</td>
<td>14 (5)</td>
<td>8 (0)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>11 (4)</td>
<td>9 (1)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>20 (4)</td>
<td>9 (1)</td>
</tr>
</tbody>
</table>

Abbreviations: CAP, capecitabine; GEM, gemcitabine.

\(a\)Hand-foot skin reaction is associated with sorafenib, and hand-foot syndrome is associated with capecitabine.

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): L.S. Schwartzberg, J.T. Beck, V. Kaklamani, H. Rugo, W. Wang, M.R. Keaton, S.K. Ro, N.A. Lokker, C.A. Hudis

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): L.S. Schwartzberg, E.J. Stepanski, W. Wang, M.R. Keaton, S.K. Ro, N.A. Lokker, C.A. Hudis

Acknowledgments

The authors thank the patients, investigators, and participating institutions. The authors are also thankful for biostatistical support from Thomas R. Fleming (University of Washington), critical review by Ellen Zigmond (Onyx Pharmaceuticals), and writing and editorial assistance from Michael Raffin (Fishawack Communications) supported by Bayer and Onyx.

Grant Support

ACO1807 was sponsored by the Accelerated Community Oncology Research Network, Inc. (ACORN). ACORN was responsible for the trial design, conduct, and data collection. ACO1807 is part of the TIES program and was funded in part by Onyx Pharmaceuticals Inc. and Bayer HealthCare Pharmaceuticals. The trial design was developed collaboratively between ACORN, the TIES Steering Committee, Onyx, and Bayer. Onyx and Bayer also provided sorafenib free of charge and funded editorial support. Statistical analyses were conducted at Onyx. Authors had full access to all data and statistical analyses. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received October 9, 2012; revised February 7, 2013; accepted February 12, 2013; published OnlineFirst February 26, 2013.

References

Sorafenib or Placebo with Either Gemcitabine or Capecitabine in Patients with HER-2–Negative Advanced Breast Cancer That Progressed during or after Bevacizumab

Lee S. Schwartzberg, Kurt W. Tauer, Robert C. Hermann, et al.

Updated version
Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-12-3177

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2013/02/26/1078-0432.CCR-12-3177.DC1

Cited articles
This article cites 32 articles, 17 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/19/10/2745.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/19/10/2745.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.