Dual PI3K/mTOR Inhibitors: Does p53 Modulate Response?
Oleksandr Ekshyyan, Arunkumar Anandharaj, and Cherie-Ann O. Nathan
See article, p. 3808

Use of Multiple Endpoints and Approval Paths Depicts a Decade of FDA Oncology Drug Approvals
Michael B. Shea, Samantha A. Roberts, Jessica C. Walrath, Jeff D. Allen, and Ellen V. Sigal

Molecular Pathways
Environmental Estrogens Activate Nongenomic Signaling to Developmentally Reprogram the Epigenome
Rebecca Lee Yean Wong and Cheryl Lyn Walker

Molecular Pathways: PI3K Pathway Targets in Triple-Negative Breast Cancers
Valerie Gordon and Shantanu Banerji

Optical Image-Guided Cancer Surgery: Challenges and Limitations

T_{H2} Cytokines from Malignant Cells Suppress T_{H1} Responses and Enforce a Global T_{H2} Bias in Leukemic Cutaneous T-cell Lymphoma
Emmanuella Guenova, Rei Watanabe, Jessica E. Teague, Jennifer A. Desimone, Ying Jiang, Mitra Dowlatshahi, Christoph Schlapbach, Knut Schuekel, Alain H. Rook, Marianne Tawa, David C. Fisher, Thomas S. Kupper, and Rachael A. Clark

S100B Promotes Glioma Growth through Chemotraction of Myeloid-Derived Macrophages
Huaqing Wang, Leying Zhang, Ian Y. Zhang, Xuebo Chen, Anna Da Fonseca, Shihua Wu, Hui Ren, Sam Badie, Sam Sadeghi, Mao Ouyang, Charles D. Warden, and Behnam Badie

Glioma Grade Is Associated with the Accumulation and Activity of Cells Bearing M2 Monocyte Markers

Genotype-Specific Abnormalities in Mitochondrial Function Associate with Distinct Profiles of Energy Metabolism and Catecholamine Content in Pheochromocytoma and Paraganglioma

Functional Profiling of Receptor Tyrosine Kinases and Downstream Signaling in Human Chondrosarcomas Identifies Pathways for Rational Targeted Therapy
Yi-Xiang Zhang, Jolieke G. van Oosterwijk, Ewa Sicinska, Samuel Moss, Stephen P. Remillard, Tom van Wezel, Claudia Bühnemann, Andrew B. Hassan, George D. Demetri, Judith V.M.G. Bovée, and Andrew J. Wagner
| 3808 | PI3K/mTOR Inhibitor PF-04691502 Antitumor Activity Is Enhanced with Induction of Wild-Type TP53 in Human Xenograft and Murine Knockout Models of Head and Neck Cancer
See commentary, p. 3719 |
| 3820 | Inhibition of GSK3B Bypass Drug Resistance of p53-Null Colon Carcinomas by Enabling Necroptosis in Response to Chemotherapy
Emanuela Grassilli, Robert Narloch, Elena Federzoni, Leonarda Ianzano, Fabio Pisano, Roberto Giovannoni, Gabriele Romano, Laura Masiero, Biagio Eugenio Leone, Serena Bonin, Marisa Donada, Giorgio Stanta, Kristian Helin, and Marialuisa Lavitrano |
| 3832 | Leukemia Cell-Rhabdovirus Vaccine: Personalized Immunotherapy for Acute Lymphoblastic Leukemia
David P. Conrad, Jovian Tsang, Meaghan Maclean, Jean-Simon Diallo, Fabrice Le Bouef, Chantal G. Lemay, Theresa J. Falls, Kelley A. Parato, John C. Bell, and Harold L. Atkins |
| 3844 | Targeting Natural Killer Cells to Acute Myeloid Leukemia In Vitro with a CD16×33 Bispecific Killer Cell Engager and ADAM17 Inhibition
Andres Wiernik, Bree Foley, Bin Zhang, Michael R. Verneris, Erica Varlick, Michelle K. Gleason, Julie A. Ross, Xianghua Luo, Daniel J. Weisdorf, Bruce Walcheck, Daniel A. Vallera, and Jeffrey S. Miller |
| 3856 | Therapeutic Potential of HSP90 Inhibition for Neurofibromatosis Type 2
| 3871 | Nanoparticles Engineered with Rituximab and Loaded with Nutilin-3 Show Promising Therapeutic Activity in B-Leukemic Xenografts
Rebecca Voltan, Paola Secchiero, Barbara Ruotolo, Flavio Forni, Chiara Agostinis, Lorenzo Caruso, Maria Angela Vandelli, and Giorgio Zauli |
| 3881 | Targeting Treatment-Resistant Breast Cancer Stem Cells with FKBP12 and Its Peptide Derivative, AD-01, via the CD44 Pathway
Lana McClements, Anita Yakkundi, Angelos Papaspyropoulos, Hannah Harrison, Matthew P. Ablett, Puthen V. Jithesh, Hayley D. McKeen, Rachel Bennett, Christopher Donley, Adrien Kissendpfennig, Stuart McIntosh, Helen O. McCarthy, Eric O'Neill, Robert B. Clarke, and Tracy Robson |
| 3894 | USP8 Is a Novel Target for Overcoming Gefitinib Resistance in Lung Cancer
Sanguine Byun, Sung-Young Lee, Jihoon Lee, Chul-Ho Jeong, Lee Farrand, Semi Lim, Kanamata Reddy, Ji Young Kim, Mee-Hyun Lee, Hyoung Joo Lee, Ann M. Bode, Ki Won Lee, and Zigang Dong |

IMAGING, DIAGNOSIS, PROGNOSIS

| 3914 | Temporal and Spatial Evolution of Therapy-Induced Tumor Apoptosis Detected by Caspase-3–Selective Molecular Imaging
Quang-Dé Nguyen, Ioannis Lavdas, James Gubbins, Graham Smith, Robin Fortt, Laurence S. Carroll, Martin A. Graham, and Eric O. Aboagye |
| 3925 | Spinophilin Loss Correlates with Poor Patient Prognosis in Advanced Stages of Colon Carcinoma
| 3936 | Developing a Common Language for Tumor Response to Immunotherapy: Immune-Related Response Criteria Using Unidimensional Measurements
Mizuki Nishino, Anita Giobbie-Hurder, Maria Gargano, Margaret Suda, Nikhil H. Ramaiya, and F. Stephen Hodi |
Evaluation of Midkine as a Diagnostic Serum Biomarker in Hepatocellular Carcinoma

The Prognostic Value of MicroRNAs Varies with Patient Race/Ethnicity and Stage of Colorectal Cancer

Antibiotic Treatment Decreases Microbial Burden Associated with Pseudomyxoma Peritonei and Affects β-Catenin Distribution

Exposure–Response Relationships of the Efficacy and Safety of Ipilimumab in Patients with Advanced Melanoma

Phase I Dose-Escalation Study of VB-111, an Antiangiogenic Virotherapy, in Patients with Advanced Solid Tumors

Biomarker Modulation following Short-Term Vorinostat in Women with Newly Diagnosed Primary Breast Cancer

Exposure–Response Relationships of the Efficacy and Safety of Ipilimumab in Patients with Advanced Melanoma

Phase II Study of Everolimus in Patients with Metastatic Colorectal Adenocarcinoma Previously Treated with Bevacizumab-, Fluoropyrimidine-, Oxaliplatin-, and Irinotecan-Based Regimens

PD-L1 Expression in B-cell Lymphomas and Virus-Associated Malignancies—Letter

Correction: Concomitant BRAF and PI3K/mTOR Blockade Is Required for Effective Treatment of BRAFV600E Colorectal Cancer

AC icon indicates Author Choice

CME icon indicates that this article is available for continuing medical education credit at http://cme.aacrjournals.org

For more information please visit www.aacrjournals.org
ABOUT THE COVER

β-catenin is a transmembrane protein that associates with junctional proteins and assists with the maintenance of cell attachment. As revealed through immunofluorescent staining, β-catenin (shown in green) localizes to the cell membranes and within the lateral junctional complex in normal appendix tissue. In contrast, tissue samples from patients with pseudomyxoma peritonei display primarily cytoplasmic staining of β-catenin and virtually no staining at the intercellular boundaries. However, antibiotic treatment of patients with pseudomyxoma peritonei results in a significant increase in β-catenin within the cell membranes, appearing to aid in the renormalization of β-catenin distribution. For details, see the article by Semino-Mora and colleagues on page 3966 of this issue.