Genomic Profiling Defines Subtypes of Prostate Cancer with the Potential for Therapeutic Stratification

Jamie R. Schoenborn, Pete Nelson, and Min Fang

Abstract

The remarkable variation in prostate cancer clinical behavior represents an opportunity to identify and understand molecular features that can be used to stratify patients into clinical subgroups for more precise outcome prediction and treatment selection. Significant progress has been made in recent years in establishing the composition of genomic and epigenetic alterations in localized and advanced prostate cancers using array-based technologies and next-generation sequencing approaches. The results of these efforts shed new light on our understanding of this disease and point to subclasses of prostate cancer that exhibit distinct vulnerabilities to therapeutics. The goal of this review is to categorize the genomic data and, where available, corresponding expression, functional, or related therapeutic information, from recent large-scale and in-depth studies that show a new appreciation for the molecular complexity of this disease. We focus on how these results inform our growing understanding of the mechanisms that promote genetic instability, as well as routes by which specific genes and biologic pathways may serve as biomarkers or potential targets for new therapies. We summarize data that indicate the presence of genetic subgroups of prostate cancers and show the high level of intra- and intertumoral heterogeneity, as well as updated information on disseminated and circulating tumor cells. The integrated analysis of all types of genetic alterations that culminate in altering critical biologic pathways may serve as the impetus for developing new therapeutics, repurposing agents used currently for treating other malignancies, and stratifying early and advanced prostate cancers for appropriate interventions.

Introduction

Prostate cancer is the second most commonly diagnosed cancer among men in the United States, with more than 240,000 cases reported annually. These carcinomas exhibit a remarkable diversity in behavior ranging from decades of indolence to rapid growth, dissemination, and lethality. Although pathologic grading provides a powerful indicator of disease behavior, clinical outcomes of tumors with the same histologic patterns can vary substantially. While significant morbidity results from the overtreatment of indolent tumors, delayed diagnosis and undertreatment of aggressive malignancies contribute to an excess of 30,000 deaths per year from metastatic prostate cancers. A better understanding of the genetic and molecular characteristics defining indolent and lethal prostate cancers is key for improved patient stratification and selection of optimal therapies.

This review focuses on the field of prostate cancer genomics, highlighting chromosomal alterations that may drive cancer behavior and serve as biomarkers to guide future therapeutic directions. Genomic studies have recently strengthened our understanding of prostate cancer by clarifying (i) the frequency, types, and mutation characteristics in prostate cancer relative to other cancers; (ii) the progression of genomic alterations during disease evolution; and (iii) tumor heterogeneity and clonality. Collectively, these studies indicate that integrated analyses of genetic aberrations, changes in gene expression, and resulting contributions to biologic functions are necessary to understand the key features underlying prostate cancer behavior.

The Mutational Landscape of Prostate Cancer

Prostate cancer is characterized by extraordinary genomic complexity (1, 2), including somatic copy number alterations, point mutations, and structural rearrangements. Advanced prostate cancer may be aneuploid or have large regions of copy-neutral LOH (cnLOH; ref. 3). Recent advances that collectively involve detailed analyses of hundreds of primary and metastatic prostate cancers now provide a clearer picture of genomic aberrations that accompany indolent and aggressive disease.

Somatic copy number alterations

Somatic copy number alterations (SCNA) are genetic gains or losses that arise during cancer development. They
are evident in nearly 90% of primary prostate tumors, with deletions typically outnumbering amplifications. These SCNAs tend to be focal (≤1–5 Mb), affecting only a small portion of the genome (4, 5). Metastatic prostate tumors, however, display dozens to hundreds of aberrations, which can affect a large portion of the genome. This difference suggests increased genomic instability as the disease progresses. A recent detailed comparison of SCNAs among cancer types determined that prostate cancer displayed more SCNAs (averaging 46 per sample) than most of the other 26 cancer types (4). Frequent deletions are seen on chromosomes 6q, 8p, 10q, and 13q and include genes such as NKK3-1, PTEN, BRCA2, and RB1. Castration-resistant metastatic tumors show frequent amplification of chromosomes X, 7, 8q, and 9q, which include the androgen receptor (AR) and MYC oncogenes. Table 1 summarizes the most frequent SCNAs in different stages of prostate cancer development.

Clinically, detection of prostate SCNA from alternative tissue sources is of great current interest, as the success rate for prostate biopsy is only 60% to 70% even with computed tomographic (CT) guidance. Circulating and disseminated tumor cells (CTC and DTC) in the blood and bone marrow present an opportunity for repeated testing. The difficulties lie in their rare numbers and complicated techniques for isolation. Nevertheless, new methods promise new results. Genomic profiling of DTCs from patients with advanced disease showed a large number of SCNAs, mostly concordant with corresponding metastases and previous tumors (Table 1; refs. 6, 7), although DTCs from men with localized disease generally have fewer SCNAs, which may not correspond well with the primary tumor SCNAs.

Structural rearrangements

Double-stranded breaks can occur when DNA unwinds during replication or transcription. Improper repair of these breaks can result in intra- and interchromosome rearrangement. Almost 50% of all primary prostate tumors have TMPRSS2:ERG rearrangement, which places the growth-promoting activity of the ERG oncogene under the control of the regulatory elements of androgen-responsive TMPRSS2 (8). Rearrangements can also result in new fusion proteins that are constitutively active or have altered function or cellular localization, as in the example of ESRP1:CRAF rearrangement (3). Several other rearrangements have been described for prostate cancer, including other ETS family rearrangements (9, 10) and RAF kinase gene fusions (11) as reviewed previously (12).

Although ERG rearrangement does not affect the overall frequency of SCNAs, it is associated with deletions of 10q, 17p, and 3p14 (5). These tumors have a distinct expression signature (8, 13). Tumors without ERG rearrangement are significantly enriched for 6q deletion, 7q gain, and 16q deletion (5).

Paired-end whole-genome sequencing suggests that rearrangements are much more common and complex than previously appreciated and implies the importance of surrounding chromatin structure (12, 14). Sequencing of primary tumors from patients with “high-risk” prostate cancer showed a median of 90 rearrangements, often complex, per tumor genome. Moreover, breakpoints in TMPRSS2:ERG rearranged tumors were precise and located in accessible chromatin that was enriched in transcription factors associated with androgen-regulated transcription (14). In contrast, in tumors without TMPRSS2:ERG rearrangement, breakpoints were located in transcriptionally repressed chromatin.

Point mutations

Primary prostate cancer has a somatic mutation rate of 1 × 10⁻⁶ to 2 × 10⁻⁶, similar to breast, renal, and ovarian cancers (15–17). Although several thousand mutations may exist in each prostate tumor genome, only ~20 per genome are likely to affect protein stability or function. However, mutation of the DNA mismatch repair enzyme MSH6 is associated with a hypermutator phenotype (5, 17–19), resulting in 25-fold more mutations than normally seen in prostate cancer. Mutations of common tumor suppressor genes, including TP53, PTEN, RB1, and PIK3CA, have also been defined in prostate cancer (15, 18, 20, 21), as have activating mutations in the oncogenes KRAS and BRAF. Additional recurrent mutations are detected in factors that mediate AR function, chromatin modification, and transcription. These are detailed below.

A new molecular subtype of prostate cancer has been suggested as defined by SPOP mutations (refs. 15, 18; Fig. 1). Point mutations at evolutionarily conserved residues of the substrate-binding cleft of this E3-ubiquitin ligase subunit were identified in up to 13% of primary tumors. SPOP mutations were enriched in tumors with somatic deletions of 5q21 and 6q21, which encode genes including the chromatin-modifying enzyme CHD1, the tumor suppressor PRDM1, and the transcription factor FOXO3. However, these tumors did not display ETS rearrangement or mutations in TP53, PTEN, and PIK3CA. SPOP mutations have recently been shown to influence the stability of the SRC3/NCOA3 protein and alter AR signaling in prostate cancer cells (22).

Integrating Genetic Information to Identify Novel Therapeutic Targets

As the spectrum of genetic aberrations becomes increasingly more complex in prostate cancer, integrated analysis of genetic aberrations, epigenetics, transcriptional regulation, and expression profiles is necessary to understand the molecular pathways that contribute to tumorigenesis. Results from such integrated approaches are now poised to define key targets for future prostate cancer therapeutics.

Androgen signaling pathway

Because the growth of prostate cancer is largely dependent on androgens, therapies blocking the AR signaling pathway are effective for most patients. However, several mechanisms can restore AR signaling and promote the development of castration-resistant metastatic disease (CRPC). These mechanisms include AR amplification,
Table 1. Most common SCNAs in human prostate cancer

<table>
<thead>
<tr>
<th>Cytoband</th>
<th>Event</th>
<th>Size, Mb</th>
<th>Genes of interest</th>
<th>Primary cancer</th>
<th>Advanced cancer</th>
<th>DTCs or CTCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xp11.22-q13.1</td>
<td>Gain</td>
<td>18–67.8</td>
<td>AR</td>
<td>50% CRPC (15, 24, 25, 68)</td>
<td>45% AdvDTC (6, 7, 69)</td>
<td></td>
</tr>
<tr>
<td>1p21.1-q32.3</td>
<td>Gain</td>
<td>1.20</td>
<td>ELK4, PTPRC, ELF3, PTPN7, MDM4, RAB7L1, RASSF5, IL24, IL10, CAMK1G</td>
<td>(5)</td>
<td>(24, 70)</td>
<td>45% AdvDTC</td>
</tr>
<tr>
<td>3q26.1</td>
<td>Gain</td>
<td>43.80</td>
<td>GMPS, PIK3CA, MUF1, SKIL, CCNL1, EC2</td>
<td>13%–39% (5, 71)</td>
<td>(24, 70)</td>
<td>20% (7)</td>
</tr>
<tr>
<td>6q14.3-15</td>
<td>Loss</td>
<td>13.67</td>
<td>CYBR5, NT5E, SNX14, SYNCRIP, HTR1E, CTG, GJB7</td>
<td>40% (5, 18, 64, 72, 73)</td>
<td>55% (64, 70, 72, 25)</td>
<td>25% (6, 7)</td>
</tr>
<tr>
<td>7p22.3-q36.3</td>
<td>Gain</td>
<td>158.40</td>
<td>MYC, MAF, EYA1, TRPA1, KCB2</td>
<td>12%–25% (5, 18, 64, 64, 71–73, 72)</td>
<td>36%–80% (15, 62, 68, 70, 25)</td>
<td>36%–55% of AdvDTC; 20–23% LocDTCs (6, 7, 69)</td>
</tr>
<tr>
<td>8p12-q24.3</td>
<td>Gain</td>
<td>97.64</td>
<td>GMPS, PIK3CA, MLF1, SKIL, CCNL1, ECT2</td>
<td>20%–30% (5, 18, 64, 64, 71–73, 72)</td>
<td>64%–82% CRPC (15, 62, 68, 70, 72)</td>
<td>50%–65% of AdvDTCs; 36%–90% of AdvDTCs; 20–23% LocDTCs (6, 7, 69)</td>
</tr>
<tr>
<td>9q31.3</td>
<td>Gain</td>
<td>22.79</td>
<td>PTPN3, AKAP2, DAPK1, SYK</td>
<td>18% (64, 72, 73)</td>
<td>(25)</td>
<td>(6)</td>
</tr>
<tr>
<td>10p13</td>
<td>Loss</td>
<td>1.12</td>
<td>RET, RasGEF1A, NTN2K2, ZNF28, ZNF485, ZNF32</td>
<td>(5)</td>
<td>(24, 70)</td>
<td>55% AdvDTC (6)</td>
</tr>
<tr>
<td>10q11.21</td>
<td>Loss</td>
<td>0.29</td>
<td>ITGA8, PTER, C1QL3, RSU1</td>
<td>18% (64, 70, 73)</td>
<td>(25)</td>
<td>(6)</td>
</tr>
<tr>
<td>10q13</td>
<td>Gain</td>
<td>1.12</td>
<td>RET, RasGEF1A, NTN2K2, ZNF28, ZNF485, ZNF32</td>
<td>(5)</td>
<td>(24, 70)</td>
<td>55% AdvDTC (6)</td>
</tr>
<tr>
<td>11p13</td>
<td>Loss</td>
<td>4.72</td>
<td>BCL2L14, LRP6, MANSC1, LOH12CR1, DUSP16, CREBL2, OPR1, CDK4X1B, ETV6</td>
<td>12%–25% (5, 18, 64, 64, 71–73, 74)</td>
<td>36%–80% (15, 62, 68, 70, 25)</td>
<td>36% (69)</td>
</tr>
<tr>
<td>12p13</td>
<td>Loss</td>
<td>1.46</td>
<td>BCL2L14, LRP6, MANSC1, LOH12CR1, DUSP16, CREBL2, OPR1, CDK4X1B, ETV6</td>
<td>12%–25% (5, 18, 64, 64, 71–73, 74)</td>
<td>36%–80% (15, 62, 68, 70, 25)</td>
<td>36% (69)</td>
</tr>
<tr>
<td>13q12.3-q14.2</td>
<td>Loss</td>
<td>2.63</td>
<td>HSPH1, B3GALT1, RXFP2, EF1DP3, FRY, ZAR1, BRCA2, NAP3L1, CUG30, PDSS2, KL, STARD13, EXOSQ, GAM8A, CSW1A1L, POSTN, TRPC4, UFM1, FRED2, KITBDS, KITBDD, MT3F1, NAA16, ORF37TP, C13ORF15, SPERT, SHC4, RXF1, RB1, FOXD1</td>
<td>11%–40% (5, 18, 64, 64, 71–73, 74)</td>
<td>35%–95% mets (15, 62, 64, 64, 70, 72, 75)</td>
<td>21%–44% of LocDTC; 36–55% AdvDTC (6, 69)</td>
</tr>
<tr>
<td>14q21.3-q22.3</td>
<td>Loss</td>
<td>21.30</td>
<td>WWOX</td>
<td>(64)</td>
<td>40% CRPC</td>
<td>20–25% (7)</td>
</tr>
<tr>
<td>16q11.2-q24.3</td>
<td>Loss</td>
<td>33.56</td>
<td>RPAIN, API2, XAF, DLG4, PER1, TOTP3</td>
<td>33%–38% (5, 18, 64, 64, 71, 73, 74)</td>
<td>51%–61% CRPC</td>
<td>33% (7)</td>
</tr>
<tr>
<td>17p13.1</td>
<td>Loss</td>
<td>4.28</td>
<td>RAP1A, API2, XAF, DLG4, PER1, TOTP3</td>
<td>20%–30% (5, 18, 64)</td>
<td>51%–61% CRPC</td>
<td>33% (7)</td>
</tr>
<tr>
<td>17p13.3-p11.2</td>
<td>Loss</td>
<td>19.90</td>
<td>DHX8, ETV4</td>
<td>30% (64, 73)</td>
<td>(24)</td>
<td>(6)</td>
</tr>
<tr>
<td>17q21.11</td>
<td>Loss</td>
<td>0.15</td>
<td>RASSF5, ETV4</td>
<td>20% (18)</td>
<td>12%–41% CRPC (24, 70)</td>
<td>50% (7)</td>
</tr>
<tr>
<td>17q24.2-q25.3</td>
<td>Loss</td>
<td>8.90</td>
<td>BCLN2, NETO1</td>
<td>20%–25% (5, 18, 64, 71, 73)</td>
<td>40% (24, 72)</td>
<td>50% (7)</td>
</tr>
<tr>
<td>18q22.3</td>
<td>Loss</td>
<td>0.29</td>
<td>ERF, NCOR1A0114, ETS2, SMG1, BRWD1, HMG1, WPB, LCA5L, SH3560, C21orf88, B3GALT1, IGS5, PCP4, DSCAM, C21orf130, BACE2, PLAC4, FAM3B, MX1, MX2, TX1, T3PR5, E2</td>
<td>33%–50% (5, 18, 64, 71, 73, 74)</td>
<td>33% (25)</td>
<td>33% (25)</td>
</tr>
</tbody>
</table>

NOTE: SCNA regions are listed in chromosomal order. Well-characterized cancer genes are in bold. References are indicated for reported frequencies of SCNAs. In general, only SCNAs with a frequency $>40\%$ in at least one cancer category are listed. Size is based on reported results and indicates the broader region of overlap across studies. Actual size reported in individual samples may vary, especially for studies using recently developed technologies such as high-density single-nucleotide polymorphism comparative genomic hybridization (CGH) arrays and next-generation sequencing that permit a greater limit of resolution. In general, SCNAs are smaller in primary tumors than those observed in metastases and may only cover a portion of the region listed.

Numbers in parentheses correspond with studies cited as references in this article.
gain-of-function AR mutations, splice variants, and overexpression of AR or its coactivators. AR amplification is observed in metastases from approximately 50% of patients and can occur through focal amplification (23) or through gain of the entire X-chromosome, on which AR resides (5, 24). AR is also frequently mutated in advanced disease (5, 15, 25). The oncogenic H874Y AR mutation increases the binding affinity of AR for testosterone (26). Additional mutations in the ligand-binding domain (K580R, T877A, L701H, and V715M) permit inappropriate AR activation by other steroid hormones such as estrogens, progestin, and glucocorticoids (27). A new AR mutation, F876L, confers resistance to the potent AR antagonist, MDV3100 (28), attesting to the plasticity of the prostate cancer genome in selecting therapeutic pressures.

Beyond AR itself, other components of the AR signaling pathway are altered in up to half of primaries and nearly all metastases, indicating the critical nature of this pathway to prostate cancer at all developmental stages (5). The oncogenic transcriptional coactivator NCOA2, on 8q13.3, is amplified in 24% of metastases and 1.9% of primary tumors and correlates with elevated NCOA2 transcripts. Overexpression of NCOA2 primes AR to respond to reduced androgen levels and boosts the total magnitude of AR transcriptional response. Mutations in the Ser/Thr-rich regulatory domain and the transcriptional activation domain of NCOA2 are also frequent. Clinically, NCOA2 may be an important AR pathway biomarker in primary prostate cancer as noncastrate patients who had NCOA2 alterations showed significantly more recurrences (29).

Androgen signaling can also promote corecruitment of AR with topoisomerase IIβ (TOP2B) to DNA, resulting in TOP2B-mediated double-stranded breaks and rearrangements, including TMPRSS2:ERG (30). Furthermore, in response to genotoxic stress—as may be experienced by cells during radiation or other anticancer therapeutics—AR recruits the enzymes AID (activation-induced cytidine deaminase) and the LINE-1–encoded ORF2 endonuclease (31), which may also contribute to formation of rearrangements. Given that chromosomes form three-dimensional "transcriptional hubs" that simultaneously coordinate the chromatin structure and transcriptional activity of multiple genes (32), transcriptional hubs may facilitate rearrangements of genes that spatially colocalize when errors in DNA processing cause DNA breaks in response to androgen signaling (33). These new factors warrant further investigation.

Transcription factors and chromatin modifiers

Transcription factors and chromatin modifiers work cohesively to mediate sequence-specific chromatin modifications that regulate gene expression. They play important roles in embryonic stem cells and cellular differentiation and are altered in many cancer types, including prostate cancer. Given the potentially broad effects of alterations in chromatin structure and transcriptional regulation,
disruptions in these genes may have extensive effects. These
global changes may contribute to the high degree of genetic
instability that is characteristic of metastatic prostate cancer,
perhaps through increasing accessibility of DNA to factors
that induce DNA breaks or by altering three-dimensional
chromatin structures and interactions. Most notable are
recurrent aberrations in the chromodomain helicase DNA-binding (CHD) proteins and FOXA and FOXO tran-
scription factor families. Nevertheless, their contribution to
prostate cancer oncogenesis is not fully understood to date.

Alterations in CHD genes have been commonly detected
in primary and metastatic prostate cancer and may distin-
guish a new subgroup of prostate cancers with increased
aggressiveness. CHD proteins function in ATP-dependent
chromatin remodeling. CHD1 on 5q21 is disrupted by focal
deletions or mutations in up to 17% of all prostate tumors
(14, 15, 34). Intragenic breakpoints in CHD1 yield truncat-
ted proteins (14). Knockdown of CHD1 in prostate cancer
cell lines has been associated with morphologic changes
and increased cell invasiveness (34). CHD1 deficiency is
strongly correlated with lack of ETS family gene rearrange-
ments and may represent a novel subclass of aggressive
prostate cancer (15, 18). Another CHD protein, CHD5, is a
tumor suppressor whose expression is altered in several
solid tumor types by focal deletions, mutations, or DNA
methylation. CHD5 mutations have been detected in multi-
ple prostate tumors (25). Loss of CHD5 correlates with
increased proliferation and decreased apoptosis via the p53
pathway (35–37). Finally, the H3/K4-specific methyltrans-
ferase gene MLL2 is also frequently mutated in prostate
cancer, as has previously been seen in other cancer types
(15, 38, 39).

The forkhead box protein A (FOXA) and O (FOXO)
families belong to the large group of highly conserved
forkhead proteins, which are deregulated in several tumor
types (40). FOXO and FOXA members are transcription
factors that bind to AR and regulate its association with
androgen response elements (15, 41). However, their
roles in prostate cancer appear to be diverse based on
frequent amplification or activation of FOXA1 but loss of
FOXA1 in tumors. FOXA1 is required for prostate epithe-
ell cell differentiation and promotes proliferation (42).
Focal amplifications of FOXA1 and mutations in the transac-
tivation and DNA-binding forkhead domains have been
reported in approximately 10% of prostate cancer
cases (5, 15, 18, 25). Increased expression of FOXA1 corre-
lates with prostate-specific antigen (PSA) and Glea-
son score and is associated with biochemical recurrence
and poor prognosis (43). FOXA1 likely functions by
repressing AR signaling, thereby leading to de differen-
tiated tumors that are more aggressive and have a higher
risk for metastatic relapse. In prostate cancer cell lines,
increased FOXA1 activity promotes proliferation, tumor-
genesis, and xenograft growth (15).

FOXO proteins have tumor suppressor activity and con-
trol the transcription of genes involved in metabolism,
stress response, cell-cycle arrest, cell death, and DNA
damage repair. In prostate cancer, FOXO1 and FOXO3A are
inhibited by AKT-mediated phosphorylation, resulting in
their nuclear exclusion and ubiquitin-mediated degra-
dation (44). Deletion of FOXO1 on 13q14 has been observed
in approximately one third of prostate cancer cell lines,
primary tumors, and xenografts (45). Loss of FOXO1
increases the basal activity of AR and sensitizes it to lower
androgen levels or other nonandrogenic ligands (46).
FOXO1 also inhibits the transcriptional activity of Runx2,
a transcription factor that contributes to prostate cancer
cell migration, invasion, and metastasis (47). Restoration
of FOXO3A activity in cancer cell lines sensitizes them to
radiation (48), suggesting that combination of radiation
with therapies that increase FOXO3A activity might be
beneficial.

Phosphoinositide 3-kinase and AKT signaling
pathways

Phosphoinositide 3-kinase (PI3K) pathway is a critical
regulator of cell survival and proliferation. In prostate cancer,
aberrant activation of the PI3K pathway is associated with
higher Gleason grades, earlier recurrence, and a higher risk
of cancer-specific mortality (49). Up to 50% of primary pros-
tate tumors and 100% of metastases have aberrant expres-
sion, SCNA s, or mutations in PI3K pathway members.

The major route for PI3K pathway activation is via the loss
of PTEN’s tumor suppressor function as a result of PTEN copy
number loss, inversions, or mutation (5, 14, 25). Focal
deletion of PTEN or aneuploidy of chromosome 10 is present
in nearly half of primary prostate cancers and all metastatic
tumors (5, 50), whereas inactivating mutations of PTEN
account for 5% to 10% of primary cancers (18). In addition,
loss-of-function mutations and rearrangements in a PTEN-
associating protein, MAGI (membrane-associated guanylate
kinase inverted) have been detected in prostate cancer (14).
MAGI enhances PTEN’s ability to suppress AKT activation.
Besides PTEN, several other phosphatases can regulate AKT
activity, including PHLPP and INPP4B. Deletion or loss of
their expression is correlated with higher Gleason score and
shorter time to biologic recurrence (51, 52).

Activation of the PI3K pathway can also occur following
oncogenic activation or amplification of PIK3CA, AKT1,
and MTOR (25). PIK3CA on 3q26.32 encodes the catalytic
subunit of PI3K. Amplification of PIK3CA has been detected
in 13% to 39% of primary tumors and up to 50% of CRPCs
(53, 54). Activating mutations in PIK3CA and MTOR have
also been detected in about 4% of primary prostate tumors
(18, 25, 54).

Clonal Heterogeneity

The high level of genetic heterogeneity within and across
prostate tumor foci likely contributes to a tumor’s ability
to develop therapeutic resistance. Pathologically distinct
tumor foci have few commonly shared mutations, support-
ing the largely independent clonal origin of each neoplastic
region (55). Even among different sites within a tumor
focus, unique mutation profiles are observed. These results
are concordant with the high degree of intratumoral het-
erogeneity that has been characterized in breast, kidney, and
myeloproliferative cancers (56–59). Meanwhile, the shared pattern of aberrations in patients’ metastatic tumors supports a monoclonal origin of metastasis and may indicate aberrations that are important to the progression of prostate cancer (23, 25). However, metastases also accumulate SCNAs that are unique, particularly in lymph node, brain, and bone metastases (23). These may either be passenger events that do not influence disease progression or may result from tissue-specific selection pressures.

Given the high levels of heterogeneity, integrated analysis of biologic pathways that are altered in prostate cancer will be critical. Integrated analysis of genetic and transcription data has revealed new pathways in glioblastoma (60) and is promising to do so in prostate cancer. Recently, Taylor and colleagues found that three well-known pathways, PI3K, RAS/RAF, and RB1, are altered in 34% to 43% of primary tumors and 74% to 100% of metastases (5). Although RNA expression could not predict recurrence, they found that DNA copy-number profiling was significantly associated with outcomes. They also identified a separate group of patients whose tumors did not carry any major SCNA or aneuploidy and who remained largely free of recurrence at 5 years. Thus, genomic analyses may also identify patients who are good candidates for active surveillance.

Conclusions and Future Studies

The use of genomic profiling to identify robust subtypes of prostate cancer lags far behind efforts in other cancer types, where the molecular subclassification has improved our clinical ability to predict patients’ overall risk and response to treatments. Examples include HER2 in breast cancer, BRAF in melanoma, and KRAS and EGFR in lung cancer. Thus, it is imperative that future studies correlate clinical data with molecular and genetic classification of cancer samples. With the high prevalence of aberrations in the AR and PI3K/AKT signaling pathways, additional treatments targeting these signaling programs are in order. Factors that regulate chromatin, epigenetics, and transcription have also emerged as highly significant and deserve further investigation (61). Ideally, targeted therapy based on key perturbed pathways, as illustrated in Fig. 2, can be tested in prospective clinical trials.
An underlying question is how SCNAs, particularly heterozygous deletions and low copy number amplifications, affect expression of the genes located within the affected region and cause indirect effects on other genes. Kim and colleagues show a modest correlation of copy number with gene expression; approximately 38% of amplified genes had concordant increases in expression (62). The area of cnLOH also warrants further attention, which can only be detected through next-generation sequencing approaches or by genomic arrays incorporating single-nucleotide polymorphism markers (63). Large cnLOH is typically associated with homozygous mutations of gene(s) residing in the respective sequence.

Additional meta-analyses of existing genetic information may help identify aberrations that work synergistically to promote tumorigenesis. In a limited example involving five metastatic tumors, all 1q13.32 losses occurred in the presence of 1p22.1 loss, whereas 17q12.31 loss occurred with 18q23.3 loss, and 21q22.3 loss with 16q23.1 loss (64). Results such as these point to common regulation such as through colocalization in three-dimensional space.

An important question that must be addressed centers on the molecular heterogeneity within and between primary prostate cancer foci and discrete metastasis. Developing approaches to assess distinct clones will have important implications for anticipating response and resistance to targeted therapeutics. Furthermore, sampling of multiple metastatic sites for genomic analyses poses technical and safety challenges. Enumeration of CTCs and DTCs has been shown to predict risk of relapse and quantifies patients’ treatment responses (65, 66). Building on these assessments of CTC numbers, technology advances now allow for the direct molecular profiling of these populations on a single-cell basis. Results such as these could provide a view of the heterogeneity of a patient’s tumor burden and has the advantage of resampling over the course of disease. Direct sequencing of circulating cell-free DNA offers another avenue for identifying and monitoring genomic alterations that could influence therapy selection (67).

In closing, rapidly expanding technologies and declining costs for genomic analysis are providing insights into the genetic underpinnings of prostate cancer at a rate faster than ever before. As additional studies are undertaken and new gene candidates emerge, putative driver events will be evaluated as therapeutic targets. With more novel therapies tested and approved, determining the best approach to handle genetic heterogeneity among patients will be a top research priority.

Disclosure of Potential Conflicts of Interest

P. Nelson is a consultant/advisory board member for Johnson & Johnson and Astellas. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: J.R. Schoenborn, M. Fang
Development of methodology: M. Fang
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J.R. Schoenborn, P. Nelson, M. Fang
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J.R. Schoenborn, M. Fang
Writing, review, and/or revision of the manuscript: J.R. Schoenborn, P. Nelson, M. Fang

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J.R. Schoenborn, M. Fang
Study supervision: M. Fang

Grant Support

The work is supported by P01 CA 097186 (PI. R. Vesella, SU8, to M. Fang) and PNW Prostate Cancer SPORE CA097186 (to P. Nelson) from the National Cancer Institute.

Received November 21, 2012; revised May 2, 2013; accepted May 6, 2013; published OnlineFirst May 23, 2013.

References

Genomic Profiling Defines Subtypes of Prostate Cancer with the Potential for Therapeutic Stratification

Jamie R. Schoenborn, Pete Nelson and Min Fang

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-12-3606

Cited articles This article cites 71 articles, 27 of which you can access for free at: http://clincancerres.aacrjournals.org/content/19/15/4058.full.html#ref-list-1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.