Relationship of Mammographic Density and Gene Expression: Analysis of Normal Breast Tissue Surrounding Breast Cancer

Xuezheng Sun1, Gretchen L. Gierach3, Rupninder Sandhu2, Tyisha Williams3, Bentley R. Midkiff2, Jolanta Lissowska5, Ewa Wesolowska5, Norman F. Boyd6, Nicole B. Johnson7, Jonine D. Figueroa3, Mark E. Sherman3, and Melissa A. Troester1,2

Abstract

Purpose: Previous studies of breast tissue gene expression have shown that the extratumoral microenvironment has substantial variability across individuals, some of which can be attributed to epidemiologic factors. To evaluate how mammographic density and breast tissue composition relate to extratumoral microenvironment gene expression, we used data on 121 patients with breast cancer from the population-based Polish Women’s Breast Cancer Study.

Experimental Design: Breast cancer cases were classified on the basis of a previously reported, biologically defined extratumoral gene expression signature with two subtypes: an Active subtype, which is associated with high expression of genes related to fibrosis and wound response, and an Inactive subtype, which has high expression of cellular adhesion genes. Mammographic density of the contralateral breast was assessed using pretreatment mammograms and a quantitative, reliable computer-assisted thresholding method. Breast tissue composition was evaluated on the basis of digital image analysis of tissue sections.

Results: The Inactive extratumoral subtype was associated with significantly higher percentage mammographic density (PD) and dense area (DA) in univariate analysis (PD: \(P = 0.001 \); DA: \(P = 0.049 \)) and in multivariable analyses adjusted for age and body mass index (PD: \(P = 0.004 \); DA: \(P = 0.049 \)). Inactive/higher mammographic density tissue was characterized by a significantly higher percentage of stroma and a significantly lower percentage of adipose tissue, with no significant change in epithelial content. Analysis of published gene expression signatures suggested that Inactive/higher mammographic density tissue expressed increased estrogen response and decreased TGF-\(\beta \) signaling.

Conclusions: By linking novel molecular phenotypes with mammographic density, our results indicate that mammographic density reflects broad transcriptional changes, including changes in both epithelial- and stroma-derived signaling.

Introduction

Molecular profiling of gene expression of breast cancers has shown that tumors are remarkably heterogeneous, which has profound influences on etiologic and clinical research (1, 2). More recently, molecular analyses of the microenvironment have shown similar heterogeneity (3–7), but the epidemiologic, clinical, and pathologic correlates of this variation are not well studied. Specifically, tandem analyses of breast cancers and the surrounding microenvironment may reveal important stromal–epithelial interactions. In fact, previous work suggests that stromal changes may precede tumor invasiveness and may reflect tumor characteristics (8–13). Findings such as these have led to speculation that the microenvironment may be dominant over tumor biology early in progression, when invasive cancers are still forming (8–13). Although the importance of tumor microenvironment is increasingly...
established in the cancer biology literature (8, 14), the epidemiologic factors that affect the microenvironment remain poorly understood.

We recently reported an extratumoral signature, a so-called Active signature, classifying extratumoral stromal microenvironments into two primary gene expression phenotypes (Active and Inactive) based on unsupervised clustering on 72 normal tissue samples adjacent to invasive breast cancer or ductal carcinoma in situ (Active, \(n = 27\); Inactive, \(n = 45\); ref. 6). The Active subtype had high expression of genes involved in activation of fibrosis, cellular movement, increased TWIST expression, and positive expression of TGF-\(\beta\) signatures. The Inactive subtype expressed higher levels of cell adhesion and cell–cell contact genes. Compared with the Inactive subtype, estrogen receptor–positive (ER\(^+\)) and hormone-treated patients with the Active subtype had poorer overall survival, suggesting possible prognostic value. However, the Active subtype seemed to be independent of breast cancer subtype and standard clinicopathologic parameters, such as tumor size and grade (6). These findings raise the hypothesis that extratumoral subtypes may be host factors rather than tumor-dependent factors.

We hypothesized that host factors influence the microenvironment that exists before tumor development and that these changes may be etiologically relevant. Thus, to further evaluate whether the Active/Inactive signature is related to tumor factors, host factors, or both, we conducted gene expression profiling on extratumoral non-neoplastic breast tissues from 121 patients with breast cancer of the population-based Polish Women’s Breast Cancer Study (PWBCS; ref. 15). In particular, based on differential expression of fibrosis, wound response, and cell adhesion genes in the two subtypes, we hypothesized that the Inactive microenvironment would be associated with high mammographic density. We further hypothesized that because mammographic density is a radiologic reflection of variations in breast tissue composition, high mammographic density/inactive microenvironment would be associated with high nonfatty stroma and epithelial content. PWBCS participants are well characterized with respect to established breast cancer risk factors, including mammographic density, providing us with the opportunity to link the Active/Inactive molecular phenotype with mammographic density.

Materials and Methods

Study population

The study population included 121 women from the PWBCS with available snap-frozen extratumoral breast tissues and mammographic density. The PWBCS is a population-based case–control study conducted in two major cities in Poland (Warsaw and Łódź) during 2000 to 2003 (15). PWBCS cases were women of ages 20 to 74 years with newly diagnosed, pathologically confirmed in situ or invasive breast carcinoma identified through a rapid identification system organized at five participating hospitals and via cancer registries. Fresh tissues from invasive tumors, non-neoplastic adjacent breast tissue, and mammary fat tissue were collected at the time of breast surgery and snap-frozen in liquid nitrogen. Tumor-adjacent breast tissues used in this study were less than 2 cm from the tumor margin. On the basis of \textit{in vitro} evidence of their distinctive microenvironments (16), basal-like and luminal tumors were oversampled in this study. Information on clinicopathologic, demographic, and anthropometric factors was collected from medical records and in-person interviews as described previously (15). All the participants provided written informed consent under a protocol approved by the U.S. National Cancer Institute and local (Polish) Institutional Review Boards.

Mammographic density measurement

Pretreatment mammograms of the unaffected breast were sent to the Ontario Cancer Institute (Toronto, Canada) where they were digitized using a Lumisys 85 laser film scanner. Patient identifiers were permanently deleted from the electronic images. Craniocaudal views of digitized films were used to assess mammographic density with Cumulus, an interactive computer-assisted thresholding program developed at the University of Toronto (Toronto, Canada; ref. 17). One expert reader (N.F. Boyd) measured absolute dense area (cm\(^2\)) and total breast area (cm\(^2\)) using the methods as described previously (17); percentage mammographic density was calculated by dividing the dense breast area by the total breast area and multiplying by 100. A repeat set of 49 images was assessed for reliability. The intraclass correlation coefficients for percentage mammographic density, dense area, and total breast area were 0.95, 0.93, and 0.99, respectively, documenting excellent reproducibility.

Breast tissue composition measurement

Frozen non-neoplastic breast specimens of approximately 100 mg were cut over dry ice and then used to cut frozen sections. Sections were collected at both ends of the specimen.
and then constructed into 20 μm slides. The central portion was used for RNA extraction. After hematoxylin and eosin (H&E) staining, the slides were scanned into high-resolution digital images using the Aperio Scan-Scope XT Slide Scanner (Aperio Technologies) in the University of North Carolina (UNC) Translational Pathology Laboratory. After excluding slides with poor resolution or having folded tissues, slides from 118 women (97.5%) were subjected to breast tissue composition analysis. To train the composition estimator in Aperio’s Genie software, 15 representative digital slides were selected and manually annotated for epithelial area, stromal area, and total area (mm²) using Aperio ImageScope software. These digital area-based, quantitative estimates were used to train Aperio’s Genie Classifier to partition epithelium, adipose tissue, nonfatty stroma, and glass into percentages. Examples of annotated digital images are presented in Supplementary Fig. S1. The regular H&E counterparts of these 15 digital slides were also evaluated by eye by a pathologist who provided semiquantitative estimates of the percentage of adipose tissue (10% bin width), epithelium (1% bin width), and nonfatty stroma (10% bin width). To assess the performance of Genie classifiers, we compared the results of three methods (by Genie, by pathologist digital slide–based, and by pathologist regular H&E slide–based). The trained classifier was positively and strongly correlated with manually scored area based on the digital images, for all three-tissue compartments. The trained Genie classifier was strongly correlated with pathologist review based on regular H&E slides for stroma and adipose (Supplementary Table S1; Pearson correlation coefficient ranged 0.95–0.96), whereas relatively lower for epithelium (Pearson correlation coefficient \(= 0.68\)). Compared with digital assessment, visual assessment (by human eye on regular H&E slides) of small percentage differences is weaker, such as epithelial tissue, which is sparse (<10%) in benign breast. Thus the digital image analysis data were used in analyses, and the trained Genie Classifier was then applied to the remaining slides.

RNA isolation and microarrays

All microarrays on non-neoplastic breast tissue were conducted at the University of North Carolina at Chapel Hill (Chapel Hill, NC). The central section of fresh-frozen non-neoplastic tissue (as described earlier) was homogenized using a MagNA Lyser homogenizer (Roche), and RNA was isolated by QIAzol extraction followed by purification on an RNeasy column as described in Troester and colleagues (5). RNA quality and quantity were analyzed on an Agilent 2100 Bioanalyzer and a ND-1000 NanoDrop spectrophotometer, respectively, before running two-color 4 × 44 K Agilent whole-genome arrays. Cy3-labeled reference was produced from total RNA from Stratagene Universal Human Reference (spiked 1:1,000 with MCF-7 RNA and 1:1,000 with ME16C RNA to increase expression of breast cancer genes) following amplification with Agilent low RNA input amplification kit. The same protocol was applied to total RNA from breast tissues, with all patient samples labeled with Cy5. Data were lowess-normalized, and probes that had a signal of less than 10 dpi in either channel were excluded as missing. Probes that had more than 20% missing data across all samples were excluded from further analysis. In expression data preprocessing we (i) eliminated the probes without corresponding ENTREZ ID, (ii) collapsed the duplicate probes by averaging, (iii) imputed missing data using k-nearest neighbors (KNN) method with \(k = 10\), and (iv) median-centered each gene. Microarray data for 121 specimens used in this analysis are publicly available through the Gene Expression Omnibus (GSE49175).

Statistical analysis

Samples were classified as having Active or Inactive extratumoral subtype using unsupervised hierarchical clustering (average linkage) on the genes in the published Active/Inactive extratumoral signature (6). Of note, 324 of 3,518 genes in the original Active signature were excluded in the clustering analysis as they did not pass filtering criteria described earlier. Consensus clustering was used to evaluate whether two clusters resulted in optimal segregation of the sample classes (18). The Active or Inactive extratumoral subtype obtained by clustering was validated using the Creighton correlation method (19), described in Supplementary Fig. S2. Briefly, a standard vector corresponding to all genes in the Active/Inactive signature was constructed, with 1 assigned to upregulated genes and −1 assigned to downregulated genes. A Pearson correlation coefficient was calculated for this standard vector versus the vector of median-centered gene expression for each patient. The identities of the 3,194 genes and their corresponding standard vector for Creighton correlation in the present study were shown in Supplementary Table S2. Patients were classified as Active if the Pearson correlation coefficient was greater than zero, and Inactive if the coefficient was less than zero.

The distributions of breast cancer risk factors by the Active/Inactive subtype were assessed, including age at diagnosis (continuously and categorically as <50 and ≥50 years), body mass index (BMI; continuously and categorically as <30 and ≥30 kg/m²), age at menarche (<12 and ≥12 years), parity (nulliparous and parous), age at first full-term birth in parous women (<25 and ≥25 years), use of oral menopausal hormone therapy (MHT; never and ever), menopausal status (premenopausal and postmenopausal), family history of breast cancer in the first-degree relative (yes and no), previous benign breast disease history (defined as if a subject ever had any biopsy or partial removal procedure, but no cancer detected; yes and no), percentage mammographic density (continuously and categorically as <25% and ≥25%), and dense area (continuously and categorically as <median and ≥median; median = 36.52 cm²). Moreover, the distributions of clinicopathologic characteristics by the Active/Inactive subtype were evaluated, including tumor size (≤2 and >2 cm), histologic type (ductal and others), differentiation stage (well/moderate and poor), number of positive axillary lymph nodes (0 and ≥1), ER status, and intrinsic subtype. To identify potential confounding factors, the distributions of clinicopathologic characteristics and breast cancer risk factors by percentage mammographic density and dense area were...
also examined. The corresponding associations were evaluated using x^2 tests for categorical variables and Student t tests for continuous variables. Moreover, to assess the magnitude of association between risk factor exposure (e.g., obese vs. nonobese) and extratumoral microenvironment subtype, we computed ORs for the Inactive subtype (vs. Active, referent) and corresponding 95% confidence intervals (CI). Analysis of covariance (ANCOVA) was used to examine the relationship between Active/Inactive subtype and mammographic density, adjusting for potential confounders, age and BMI, continuously.

To explore the biologic meaning of microenvironment subtypes, the gene expression profile in each sample was compared with five previously reported gene expression signatures of related phenotypes, including young age (20), obesity (21), desmoid-type fibrosis (DTF; ref. 22), TGF–β (6), and estrogen [17β-estradiol (E2)] response (23). To ensure that each of these signatures was independent, overlap between gene sets was assessed and found to be small (Supplementary Table S3). The median-centered expression profile of each patient was evaluated by calculating Pearson correlation coefficients, using the method of Creighton and colleagues described earlier (19). More information about the gene ID and direction of each signature is listed in Supplementary Table S4. The associations of existing signatures with the extratumoral subtype (Active and Inactive), percentage mammographic density (<25% and ≥25%), and breast tissue composition (percentage adipose, epithelium, and stroma) were assessed by x^2 tests and Student t test, respectively. Nonparametric exact methods were used when expected cell count was less than 5. Logistic regression and generalized linear regression were used to further evaluate the associations after adjusting for potential confounders, age and BMI, continuously.

The biologic relevance of Active/Inactive subtype

To better understand the molecular characteristics of extratumoral microenvironment subtype and mammographic density–associated breast cancer risk, associations were evaluated between Active/Inactive subtype, mammographic density, and biologically relevant, published gene expression signatures. As shown in Table 3, both the Inactive subtype and higher percentage density (defined as ≥25%) were significantly positively associated with a young-like age signature and an increased estrogen response expression signature (E2), whereas they were significantly inversely associated with an obesity signature and a TGF–β signature. After adjusting for patient age and/or BMI, most of these associations remained statistically significant, but the association of high percentage density with the young-like age signature and low TGF–β signature was no longer significant (Supplementary Table S7). The previously reported signature derived from desmoid-type fibroid tumors and indicative of fibroblast response (DTF) was only associated with lower percentage density, but not after adjusting for BMI and age.

Associations between subtype/mammographic density and breast tissue composition

Given variation in stroma-derived signatures, we expected that stromal composition may vary by extratumoral microenvironment subtype. Indeed, as shown in Fig. 1, there were substantial differences in breast tissue composition by...
Active/Inactive subtype. These differences paralleled the differences in tissue composition by percentage mammographic density and dense area. The percentage of adipose tissue was significantly lower and the percentage of non-fatty stromal tissue was significantly higher among Inactive/mammographically dense patients (Supplementary Table S8). No differences were detected in the percentage of epithelial tissue by extratumoral microenvironment subtype or measures of mammographic density.

Finally, because Active/Inactive subtype and mammographic density seemed to be tracking cellular composition, the association between published gene expression signatures and cellular composition was also considered (Table 3). Again mirroring microenvironment subtype and mammographic density, the percentage of nonfatty stroma was associated with young-like gene expression, decreased expression of obesity-associated genes, decreased expression of a TGF-β signature, and increased expression of...
estrogen response signatures. Epithelial composition was modestly associated with gene expression signatures for age and obesity (higher proportion in young-like and nonobese groups) after adjusting for BMI and age, respectively (Supplementary Table S7).

Discussion

By linking gene expression patterns of non-neoplastic breast tissue from patients with breast cancer to mammographic density measures of their unaffected breast, we observed that distinct extratumoral microenvironments were independently associated with mammographic density. In particular, higher percentage density and dense area were related to the Inactive subtype. Histologically we confirmed these findings and found that the Inactive subtype and higher mammographic density were also strongly and positively associated with the proportion of stromal composition. Further analysis of published gene expression

Table 2. Multivariable analysis of the association between mammographic density measures and the Active/Inactive extratumoral microenvironment subtype

<table>
<thead>
<tr>
<th>Model</th>
<th>Mammographic density measures</th>
<th>Active (n = 59)</th>
<th>Inactive (n = 62)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dense area, cm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude mean</td>
<td>33.21 (3.16)</td>
<td>41.97 (3.09)</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>Age-adjusted mean</td>
<td>33.84 (3.01)</td>
<td>41.37 (2.94)</td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td>BMI-adjusted mean</td>
<td>33.17 (3.19)</td>
<td>42.01 (3.12)</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>Age and BMI-adjusted mean</td>
<td>33.41 (3.01)</td>
<td>41.78 (2.93)</td>
<td>0.049</td>
<td></td>
</tr>
</tbody>
</table>

*P values were calculated by t test for univariate analysis and ANCOVA for multivariable analysis. Age and BMI were used as continuous variables.

Table 3. Relationship of biologically relevant signatures with the Active/Inactive extratumoral microenvironment subtype, mammographic density, and breast composition

<table>
<thead>
<tr>
<th>Signature (# genes used/ # in signature)</th>
<th>Microenvironment subtype*</th>
<th>Percentage density*</th>
<th>Breast composition*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Active (n = 59)</td>
<td>Inactive (n = 62)</td>
<td>Adipose (%)</td>
</tr>
<tr>
<td></td>
<td><25% (n = 57)</td>
<td>>25% (n = 64)</td>
<td>Epithelium (%)</td>
</tr>
<tr>
<td>Age (779/802)</td>
<td>Old</td>
<td>56 (95)</td>
<td>36 (63)</td>
</tr>
<tr>
<td></td>
<td>29 (45)</td>
<td>25 (39)</td>
<td>25 (39)</td>
</tr>
<tr>
<td></td>
<td>Young</td>
<td>3 (5)</td>
<td>21 (37)</td>
</tr>
<tr>
<td></td>
<td>35 (55)</td>
<td>35 (55)</td>
<td>1.00 × 10-06</td>
</tr>
<tr>
<td>BMI (677/760)</td>
<td>Obese</td>
<td>56 (95)</td>
<td>35 (61)</td>
</tr>
<tr>
<td></td>
<td>25 (39)</td>
<td>25 (39)</td>
<td>6.2 × 10-21</td>
</tr>
<tr>
<td></td>
<td>Nonobese</td>
<td>3 (5)</td>
<td>22 (39)</td>
</tr>
<tr>
<td></td>
<td>39 (61)</td>
<td>39 (61)</td>
<td>6.2 × 10-21</td>
</tr>
<tr>
<td>DTF (581/758)</td>
<td>Positive</td>
<td>31 (53)</td>
<td>36 (63)</td>
</tr>
<tr>
<td></td>
<td>27 (44)</td>
<td>22 (34)</td>
<td>74.52 (2.64)</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>29 (47)</td>
<td>21 (37)</td>
</tr>
<tr>
<td></td>
<td>42 (66)</td>
<td>74.52 (2.64)</td>
<td>7.3 × 10-15</td>
</tr>
<tr>
<td>TGF-β (210/234)</td>
<td>Positive</td>
<td>53 (90)</td>
<td>37 (65)</td>
</tr>
<tr>
<td></td>
<td>28 (44)</td>
<td>28.0 (0.88)</td>
<td>7.8 × 10-15</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>6 (10)</td>
<td>20 (35)</td>
</tr>
<tr>
<td></td>
<td>36 (56)</td>
<td>47.72 (2.80)</td>
<td>8.5 × 10-12</td>
</tr>
<tr>
<td>E2 (711/754)</td>
<td>Positive</td>
<td>10 (17)</td>
<td>21 (37)</td>
</tr>
<tr>
<td></td>
<td>49 (79)</td>
<td>49.36 (2.80)</td>
<td>8.5 × 10-12</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>49 (83)</td>
<td>36 (63)</td>
</tr>
<tr>
<td></td>
<td>26 (41)</td>
<td>74.08 (2.75)</td>
<td>8.5 × 10-12</td>
</tr>
</tbody>
</table>

*aP values were calculated by t test for continuous variables and x² test for categorical variables except that when expected cell count was less than 5, they were calculated by Fisher exact test.

*bThe sample size was 118 due to missing breast composition information for 3 patients.
signatures implicated estrogen response and TGF-β signaling pathways, providing clues about the biology underlying mammographic density, a strong and consistent risk factor for breast cancer.

Mammographic density is believed to reflect the combined effects of cell proliferation and genetic damage to proliferating epithelial cells (24). This hypothesis is supported by strong associations between mammographic density and exogenous estrogen exposure (25, 26), and in the current study, our data provide further molecular support for the role of estrogen in density. We observed strong estrogen-response gene expression among those with dense tissue and among those with the Inactive extratumoral microenvironment subtype. The strength of the molecular relationships is striking in light of recent findings showing relatively weak molecular evidence of...
estrogen response in dense breast tissue. Haakensen and colleagues found a signature of 24 genes differentially expressed between high- and low-density breasts, including the gene coding for estrogen receptor (ESR1) and three uridine 5'-diphospho-glucuronosyltransferase (UGT) family genes (27) with postulated roles in protecting epithelial cells from genetic damage by local estrogen metabolites (27, 28). However, in a later study, Haakensen and colleagues observed that while serum estradiol was associated with mammographic density, none of the gene expression changes related to serum estradiol was significantly associated with mammographic density (29). It is possible that the lack of significant associations with estrogen response in previous studies is attributable to differences in the patient populations or due to the emphasis on fewer genes.

Interestingly, we also observed a strong association between estrogen response and stromal content (higher nonfatty stroma/lower breast adiposity) in non-neoplastic breast tissue, whereas the association between estrogen response and epithelial proportion was not significant. This null result for epithelium may be attributed to lower variation in epithelial percentage across patients (interquartile range for percentage composition was 4.4%–13.2%) and random measurement error in our estimation of epithelial percentage, but our molecular data and the published literature underscore the importance of stroma in mammographic density (30–32). Few gene expression studies have examined stromal biology in mammographic density, but one study by Yang and colleagues used canonical pathway analysis of mammographic density–associated gene expression to identify decreased TGF-β signaling in dense breast tissue (33). Our findings confirmed this association by showing the strong association between TGF-β signature and adipose and stromal composition. TGF-β is an important morphogen in normal mammary tissue, with inhibitory roles on proliferation of both ER+ and ER− cells (34). Thus, the decreased TGF-β pathway expression in dense tissue may be upstream of differences in epithelial proliferation or may reflect altered stromal–epithelial interaction during oncogenesis (35–37).

Previous models to interpret the association between mammographic density and breast cancer risk have focused on mitogens and mutagens, where luminal epithelial cells are central in interpreting the mammographic density–breast cancer association. Although a breast tumor originates from epithelial cells, the extended model suggests a more dominant role of stromal microenvironment and morphogenesis in tumorigenesis (38), which supports the important role of interactions between stroma and epithelial cells in malignancy transformation proposed in the previous studies (39). Consequently, studies focusing on the association between mammography and breast tissue composition have helped to improve our understanding of the mammographic density–breast cancer association (30, 40–42). Given that the molecular findings of this study support and extend previously proposed mechanisms, we suggest a revised conceptual model for the mammographic density–breast cancer association (Fig. 2; ref. 24). Indeed, other recent data also support the fundamental importance of microenvironment in density (43), and further suggest a critical interplay between mechanics, morphogenesis, and malignancy (44–46). Mammographic density may be a powerful biologic marker in its ability to comprehensively summarize the variation in mitogenesis, mutagenesis, and morphogenesis of breast.

![Figure 2](image_url)

Figure 2. Conceptual model for potential mechanisms of the association between mammographic density and breast cancer risk with a focus on the role of stroma. This figure is adapted from the biologic model proposed by Martin and Boyd (24), showing the underlying biologic processes linking risk factors to breast cancer and suggesting the surrogate role of mammographic density. The genetic and environmental factors not only influence epithelial cell proliferation and induce genetic damage, but also regulate the surrounding microenvironment and stromal composition. The collective abnormalities in mitogenesis, mutagenesis, and morphogenesis result in breast cancer development. By comprehensively summarizing the variation in these three processes, mammographic density works as a strong marker of breast cancer risk.
The observation that a strong component of genomic variation in breast tissue is associated with a strong risk factor for breast cancer, suggests that further investigation of normal tissue gene expression could yield novel insights about the biology of breast cancer risk and mammographic density-associated risk in particular. In fact, the normal tissue gene expression seems to reflect host factors and risk factor exposure more strongly than tumor characteristics; none of the tumor characteristics evaluated (ER status, grade, breast tumor subtype, size, etc.) showed significant associations with the Active/Inactive subtype. Although there may be genes whose extratumoral expression is affected by tumor subtype, the set of genes that determine the major variation (and Active/Inactive subtype) are not tumor associated. Previous epidemiologic studies evaluating whether mammographic density is related to breast cancer characteristics are conflicting, with some suggesting that high density is associated with more aggressive disease, and some speculating that observed associations between mammographic density and tumor biology may be explained by delayed diagnosis among high-density cases (i.e., masking bias; refs. 47–50). Our current and previous research on Active/Inactive subtypes suggests no link with tumor characteristics, supporting the latter hypothesis that mammographic density does not have distinct influences on etiology of subtypes.

The strong association between mammographic density and gene expression changes in the current study may be a result of looking at broad transcriptional changes rather than individual gene-level correlates of density. Although a limited number (27, 33) of studies previously addressed genomic signatures of mammographic density, these studies identified very few density-associated genes (<100 genes), limiting their value in defining the biology of mammographic density. Weak associations with individual gene expression changes in previous studies may reflect low statistical power to detect a small differentially expressed signature (51, 52), but it is striking that such a strong breast cancer risk factor should produce such weak genomic expression, when other factors such as age and BMI have broad effects on normal tissue gene expression (20, 21). Another explanation for the strength of our pattern-focused analysis may be that mammographic density may not represent a singular biologic state. If this is the case, then different methods for estimation error, mammographic density is highly correlated with Active/Inactive subtype (55, 56). Indeed, age and BMI, the two strongest identified endogenous factors for mammographic density, showed substantial associations with Active/Inactive microenvironment (estimated ORs > 1.5). These associations were stronger when genomic surrogates for age and BMI, developed on the basis of normal breast and therefore capturing underlying biological influence on local organs, were examined. We also note that we used mammograms of the unaffected breast to estimate density, avoiding the potential interference of tumor. Although this may have introduced some measurement error, mammographic density is highly correlated within a woman and density in the unaffected breast has been found to be comparable with that in the affected breast (49, 56), so this is not expected to bias our results.

Conclusion

In summary, we evaluated extratumoral microenvironment subtype for associations with mammographic density and breast tissue composition. On the basis of strong associations between the genomic subtypes and mammographic density, it is likely that Active/Inactive subtype is also associated with and reflective of breast cancer risk. Further research to better understand the molecular characteristics of mammographic density and microenvironment subtypes could identify pathways that are targetable in preventing mammographic-density-associated risk.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: X. Sun, G.L. Gierach, J.D. Figueroa, M.E. Sherman, M.A. Troester
Development of methodology: X. Sun, R. Sandhu, T. Williams, B.R. Middliff, M.E. Sherman, M.A. Troester
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): G.L. Gierach, R. Sandhu, T. Williams, B.R. Middliff, J. Lisowska, N.F. Boyd, N.B. Johnson, J.D. Figueroa, M.E. Sherman, M.A. Troester
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): X. Sun, G.L. Gierach, R. Sandhu, T. Williams, B.R. Midkiff, J. Lisowska, I.D. Figueras, M.E. Sherman Writing, review, and/or revision of the manuscript: X. Sun, G.L. Gierach, R. Sandhu, J. Lisowska, I.D. Figueras, M.E. Sherman, M.A. Troester Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): X. Sun, R. Sandhu, B.R. Midkiff, J. Lisowska, E. Wesolowska Study supervision: J. Lisowska, M.A. Troester

Acknowledgments

The authors thank ULINE Comprehensive Cancer Center's Translational Pathology Laboratory for support of the image analysis work.

References

Grant Support

This project was supported by grants from the National Cancer Institute (U10-ES019472 and R01-CA138255), a Breast SPORE (P50CA058233) Career Development Award (to M.A. Troester), and a grant from the Avon Foundation. This work was supported [in part] by the Intramural Research Program of the NIH, National Cancer Institute.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received January 4, 2013; revised May 30, 2013; accepted July 10, 2013; published OnlineFirst August 5, 2013.

Relationship of Mammographic Density and Gene Expression: Analysis of Normal Breast Tissue Surrounding Breast Cancer

Xuezheng Sun, Gretchen L. Gierach, Rupninder Sandhu, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-0029

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2013/08/02/1078-0432.CCR-13-0029.DC1

Cited articles
This article cites 56 articles, 20 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/19/18/4972.full.html#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
/content/19/18/4972.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.