The Cancer Diaspora: Metastasis beyond the Seed and Soil Hypothesis

Kenneth J. Pienta, Bruce A. Robertson, Donald S. Coffey, and Russell S. Taichman

Abstract

Do cancer cells escape the confinement of their original habitat in the primary tumor or are they forced out by ecologic changes in their home niche? Describing metastasis in terms of a simple one-way migration of cells from the primary to the target organs is an insufficient concept to cover the nuances of cancer spread. A diaspora is the scattering of people away from an established homeland. To date, “diaspora” has been a uniquely human term used by social scientists; however, the application of the diaspora concept to metastasis may yield new biologic insights as well as therapeutic paradigms. The diaspora paradigm takes into account, and models, several variables including: the quality of the primary tumor microenvironment, the fitness of individual cancer cell migrants as well as migrant populations, the rate of bidirectional migration of cancer and host cells between cancer sites, and the quality of the target microenvironments to establish metastatic sites.

Metastasis Viewed in Terms of Migration

Do cancer cells escape their original habitat in the primary tumor or are they forced out by ecologic changes in their home niche? The latter process can be considered a diaspora and has many analogies in population and social sciences that could yield new insights into metastasis. In 1829, Récamier recognized that cancer can spread from a primary tumor and coined the term “metastasis” from the Greek “methistemi”, meaning to change or displace (1). Paget’s “seed and soil” theory explained the nonrandom pattern of cancer metastasis in 1889 when he postulated that factors within the metastatic site promoted growth in the same way that fertile soil allows the successful growth of seeds (2). In a complementary hypothesis, James Ewing proposed in 1928 that cancer cells were directed to that site by the direction of lymphatic and circulatory systems (3).

From the perspective of species migration, both Paget’s and Ewing’s theories are correct. Migration is subdivided into emigration (the act of leaving), migration (the act of travelling), and immigration (the process of arriving; ref. 4). In the paradigm of migration, Ewing focused on the migration step, and Paget focused on immigration (2–4). Ewing’s theory accounts for the migration of prostate cancer cells to the lumbar vertebrae via Batson’s plexus of draining lymph nodes, and Paget’s theory helps explain the organ specificity of prostate cancer metastases to bone. Fidler further refined the seed/soil hypothesis in 2003 to take into account the emigration step (5). First, primary tumors contain heterogeneous subpopulations of cells with different angiogenic, invasive, and metastatic properties (properties that promote emigration). The metastatic process is then selective for cells that can successfully survive migration to the distal target organ. The successful proliferation of metastatic cells depends on the ability of these cells to interact and use the soil of the new microenvironment (5).

Diasporas

Describing metastasis in terms of migration alone is insufficient to cover the nuances of cancer spread (Fig. 1). A diaspora, from the Greek diaspora meaning “scattering” or “dispersion”, is the movement, migration, or scattering of people away from an established homeland. To date, “diaspora” has been applied exclusively to describe human behavior. In ancient Greece, a diaspora referred to citizens of a conquering city-state who colonized a conquered land...
Metastases remain the major reason for the morbidity and mortality associated with cancer death. Describing metastasis as a simple migration of cells from the primary to target organs is insufficient to understand the nuances of cancer spread. To date, "diaspora"—the scattering of people away from an established homeland—has been applied exclusively to describe human behavior. The application of the diaspora concept can also be applied to metastasis, which together with ecologic principles may help to develop new treatment strategies. For example, ecologic traps—habitats that lead to species extinction—can be developed to attract cancer cells to a place where they can be better exposed to treatments or to cells of the immune system for improved antigen presentation. Merging the social science concept of diaspora with ecologic and population sciences concepts can inform the cancer field to understand the biology of tumorigenesis and metastasis and inspire new ideas for therapy.

Metastasis Viewed as a Diaspora

Metastasis is not a simple one-way migration, but rather a dynamic dispersal of cells that are inherently linked to the primary tumor (Table 1). Although migrants are usually attracted to a new country and can come from single or multiple origins, a diaspora is dispersed, usually expelled, from a single origin. At least early in tumorigenesis, before the establishment of multiple distant deposits of cancer cells, metastases arise from a single site of origin, the primary tumor (13). Several types of diaspora have been described based on why the population scattered (14, 15). Which peoples moved and what segments of society left? Were they expelled, taken captive, or did they leave voluntarily? Did they leave as a group all at once or as individuals over a protracted period of time (15)? These emigrations have usually, but not always, been the result of harsh economic conditions or other similar hardships (4, 9). Migratory diasporas may arise when individuals transit in and out of a host country but, in doing so, institutions and networks become established in the host lands, for example, trading posts (15). It is becoming clearer that cancers use the "trading post" diaspora analogy by forming premetastatic niches (16–18). Primary tumors, driven perhaps by hypoxic conditions, orchestrate the formation of premetastatic niches, in part, by the secretion of a variety of cytokines, growth factors, and exosomes to promote mobilization and recruitment of bone marrow-derived cells to future metastatic sites (19–23).

The paradigm of the imperial diaspora also can be applied to metastasis. As in the ancient Greece city-state example, diasporas originated as conquests, often resulting in subjugation of an indigenous population. Similarly, metastasis is generally considered to be an active process of cells leaving the primary tumor site (as opposed to passive sloughing of cells into the circulation), to colonize a target organ (19–23). In an imperial diaspora, the homeland is responsible for helping to maintain an interdependent network of the diaspora. In turn, established colonies not only send resources back to the home country, but often send future generations back to the homeland for education, training, and cultural indoctrination. The exchange of resources between dispersed communities and the home country is a key aspect defining a diaspora (24–26). This exchange of resources is often defined by the diaspora communities sending economic support to the home country as well as supporting the interests of the home country with the host countries on sociopolitical levels.

It appears that multiple host cells, including hematopoietic stem cells, mesenchymal stem cells, endothelial progenitors, cancer-associated fibroblasts, and inflammatory mononuclear cells (T and B cells and monocytes) traffic freely between tumor sites (27–32). Furthermore, it has been demonstrated in experimental systems that cancer cells traffic between tumor sites within a host. Masagué and colleagues demonstrated that metastasis is a multidirectional process whereby cancer cells seed distant sites and return to the primary tumor itself (33–35). This self-seeding, at least in preclinical models, functions to facilitate and accelerate tumor growth, angiogenesis, and recruitment of stromal cells to the tumor microenvironments. Whether bidirectional tumor movement does occur remains hotly debated. Indirect evidence for the concept occurring in patients can be inferred from work on disseminated tumor cells (DTC) in patients with breast cancer. Pantel and colleagues have demonstrated that the presence of DTCs in bone marrow at initial diagnosis predicts local and
metastatic relapse (36–39). These investigators have detected circulating tumor cells (CTC) in patients with early-stage breast cancer months after primary tumor resection, suggesting that CTCs are derived from occult micrometastases (39).

Another critical aspect to understand the dynamics of diaspora development is the area that becomes the new home for the displaced population. For a displaced people, the ability and willingness for the host country to allow immigration is a key step in the formation of the diaspora. This is dependent on physical characteristics (i.e., is there room, ability for the population to thrive economically) as well as sociopolitical characteristics (i.e., willingness of the host community to accept the displaced peoples; refs. 24–26). This is analogous to the favorable soil described by Paget (2, 5).

Boundary maintenance is another important criterion of a diaspora (24). Both migrant and diaspora communities maintain a collective memory of their homelands as reflected by continuing to celebrate their ethnic roots. The diaspora community, however, must maintain an identity within the host country over time. In contrast to many migrant populations, a diaspora group does not assimilate into the host population but maintains a distinct identity as much as is possible. Cancer metastases are easily recognized in the target organ, most often observed as masses with distinct boundaries (40). This boundary maintenance blurs in migrant populations. The relationship of migrant populations with the host country tends to improve over time as the migrants assimilate into the host communities. The diaspora relationship with the host community tends to remain complicated and often uneasy, and better reflects the relationships of a metastatic deposit with the target organ. The metastatic deposits maintains its identity and is in tension with the host immune and other defense mechanisms which strive to limit growth (41, 42).

Figure 1. The cancer diaspora. Describing metastasis in terms of migration alone is insufficient to cover the nuances of cancer spread. The diaspora paradigm takes into account and models several variables: the quality of the primary tumor microenvironment, the fitness of individual cancer cell migrants, as well as migrant populations, the bidirectional movement of cancer, and host cells between cancer sites (including between primary and metastases as well as between metastases), and the quality of the target microenvironments to establish metastatic sites.
poor soil as delineated by Paget (2). Moreover, source-sink habitat quality is quite analogous to the concept of fertile or be able to support a population (referred to as a sink). increase or a low-quality habitat that, on its own, would not quality habitat that on average allows the population to among different patches of habitat, for examples, a high- increase in metapopulations (47). Source-sink dynamics can which species migrates) affect population growth or "source" of species) and host land (the "sink" or habitat to describe how variation in habitats [both homeland (the "source" of species) and host land (the "sink" or habitat to which species migrates)] affect population growth or decline in metapopulations (47). Source-sink dynamics can help model how individual populations flourish or decline among different patches of habitat, for examples, a high-quality habitat that on average allows the population to increase or a low-quality habitat that, on its own, would not be able to support a population (referred to as a sink). Habitat quality is quite analogous to the concept of fertile or poor soil as delineated by Paget (2). Moreover, source-sink models take into account how population numbers vary— an excess of individuals often move from a source (primary tumor) and can continue to supply other sites (new seeds; refs. 33–35).

The rate of by which a cancer establishes its diaspora is, therefore, dependent on several variables (Table 2). (i) The quality of the primary (homeland or origin) microenvironment – the more likely the microenvironment is oxygenated and with a sufficient source of nutrients, the less likely cancer cells will be driven to engage cellular programs that promote extravasation/emigration. (ii) The rate of passive and active emigration is another variable. Emigrant cancer cell populations can be divided into cells that passively slough into the circulation and cells that actively extravasate into nerves, lymphatics, or blood. It is likely that passive emigrants may not have all of the machinery necessary to survive to successfully migrate. Cells that have been forced to undergo an epithelial to mesenchymal transition (EMT) in response to a hypoxic environment are much more likely to survive a migration. (iii) The quality and number of the target organ (host-land) microenvironments is another important variable. The quality of the soil is well documented as a critical component of successful metastasis.

Previously, it was thought that cancer cells could not differentiate between different target organs and the process of seeding was thought to be agnostic, that is, just as many cells would land in the lung as the bone depending on blood flow, etc (48). New data suggests that this is most likely untrue on both the seed and the soil sides of the metastasis argument. First, cancer cells can carry receptors for antigens on particular cell types, that is, prostate cancer cells have a high level of Annexin II which allows binding to osteoblasts in the endosteal niche of the bone narrow

Table 1. A comparison of migrants, diapora, and cancer metastases

<table>
<thead>
<tr>
<th>Migrant communities</th>
<th>Diaspora communities</th>
<th>Cancer demography</th>
<th>Cancer metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moved from a single or multiple primary homelands</td>
<td>Dispersed from a single homeland</td>
<td></td>
<td>Dispersed from a primary cancer</td>
</tr>
<tr>
<td>Attracted to new country</td>
<td>Pushed from homeland</td>
<td>Hypoxia and lack of nutrients causes</td>
<td>Target organ receptive</td>
</tr>
<tr>
<td>Host country may or may not be receptive</td>
<td>Host country may or may not be receptive</td>
<td>Pathologists can identify where a</td>
<td>Metastases as distinct masses</td>
</tr>
<tr>
<td>Group maintains collective memory of their homeland and culture</td>
<td>Group maintains collective memory of their homeland and culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Often assimilate into the new homeland</td>
<td>They wish to survive as a distinct community</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relationship with host country is complicated and uneasy but improves over time</td>
<td>Relationship with host country is complicated and uneasy</td>
<td>Immune system tries to destroy the cancer cells</td>
<td></td>
</tr>
<tr>
<td>May or may not be tied to the homeland by exchange of resources</td>
<td>They are tied to their homeland at many levels – exchange of resources (economic, sociopolitical)</td>
<td></td>
<td>Multiple cell-type trafficking, trafficking of resources/info</td>
</tr>
</tbody>
</table>

Diasporas, Metastases, and Ecosystems

Broadening the concept of diaspora and simultaneously applying ecologic scientific principles facilitates a broader understanding of the dispersal of cancer cells (43–45). For example, a metapopulation consists of a group of separated populations of the same species that interact at some level. Metapopulation dynamics can be applied to any species in fragmented habitats; much like a diaspora from a single point of origin to multiple host countries. Although cancer metastases may be thought of as metapopulations, they are actually metacommunities. Metastases are made up of multiple species of tumor and host cells interacting dynamically. Metacommunities are a network of local communities that are linked through multiple potentially interacting species or populations. Metapopulation and metacommunity dynamics allow us to study not only the growth and interactions of individual populations within different sites, but also the interactions and connectivity between sites (46).

Understanding the dispersion of metastatic cancer cells to sites throughout the body from a site of origin may use the theoretical ecology model of source-sink dynamics to describe how variation in habitats [both homeland (the "source" of species) and host land (the "sink" or habitat to which species migrates)] affect population growth or decline in metapopulations (47). Source-sink dynamics can help model how individual populations flourish or decline among different patches of habitat, for examples, a high-quality habitat that on average allows the population to increase or a low-quality habitat that, on its own, would not be able to support a population (referred to as a sink). Habitat quality is quite analogous to the concept of fertile or poor soil as delineated by Paget (2).
Migration factors:

\(E_{\text{pass}} = \) the number \((n)\) and fitness \((F)\) of passively shed cancer cells \((E)\) over time \((\Delta t)\). This represents the likelihood that a cancer cell passively shed into the circulation will survive transport to a target organ. It is likely that the fitness of a passively shed cell is less than a cell that actively exits the primary tumor through the lymphatics, nerves, or circulation.

\(M_{\text{pass}} = \) the number \((n)\) and fitness \((F)\) of actively emigrant cancer cells \((M)\) over time \((\Delta t)\). This represents the likelihood that a cancer cell that actively extravasates into the circulation will survive transport to a target organ. Fitness depends on many variables, including EMT state, ability to secrete MMPs, ability to avoid anoikis, etc.

\(TR = \) transit resistance factors. This represents factors in the circulation that inhibit migration, including shear forces and the host immune response that destroy cancer cells.

Target organ (host-land) factors:

\(H_{\text{pass}} = \) the quality \((Q)\) of the target organ or host-land sites \((H1, H2, \ldots)\). Migrating cancer cells will land in multiple sites \((n)\) within different target organs in order to immigrate. Success depends on the quality of the soil of each of these microenvironments. Prostate cancer cells, for example, are more likely to flourish in a high-quality bone microenvironment than a low-quality habitat such as the lung microenvironment.

Using Cancer Diaspora – Ecosystem Concepts to Target Metastasis

Viewing cancer within the context of ecology can lead to therapeutic paradigms based on network disruption across the scale of ecosystems from the cell through to the host patient (46). The diaspora concept adds to this analogy by specifically expanding this therapeutic paradigm as cancer metastasize and establish ecocommunities. One potential therapeutic strategy would be to create ecologic traps (50–52). Ecologic traps are poor-quality habitats that are highly attractive to wildlife species based on environmental cues that typically signify a high-quality habitat (50). This type of cue is analogous to signals which cancer cells receive to settle in a specific target organ. Van der Sanden and colleagues have suggested that neurotransmitters could be used to attract glioma cells to settle in a location where treatments (e.g., drugs, radiation, surgery) can be effectively or safely concentrated (near the surface, away from sensitive tissues, within surgically implanted tissue or material). Instead of preventing metastasis, such ‘attracticides’ serve as ‘guides’ to facilitate cancer migration toward poor-quality habitats where cancer cells can be eliminated (50).

Using traps to treat cancer is analogous to altering the ecologic landscape of interactions in the body in ways in which the cells are unable to anticipate or react to and that are ultimately invisible to them. Corollaries of this strategy include placing familiar ‘cues’ in places that lead to the extinction of cancer cells, or masking attractive cues in favorable microenvironments. For glioma cells, a reservoir of neurotropic chemokines could be used to attract cancer cells to an area where they could be irradiated (51). For prostate cancer cells, a reservoir of SDF-1 could be temporarily inserted intravenously to attract the cells into a one-way trap (53).

Furthermore, an ecologic trap could be constructed to expose cancer cells to cells of the immune system, leading to increased antigen presentations (52), or disrupt the ability of metastasizing cells to recruit appropriate host cells.

Our ability to manipulate the primary tumor or disseminated tumor cells in a diaspora remains limited. It would be ideal to develop strategies to halt the emigration of tumor cells from the primary tumor (homeland) or to mask the attractiveness of the target organs (host lands). Perhaps, we could even use this strategy to ‘recall’ disseminated tumor cells to the primary ‘homeland’ to facilitate a more focused and strategic therapy. The technology to create artificial
tissue traps or synthetic microenvironments already does exist (32). Another approach to killing cancer cells may be to force a diaspora from their metastatic sites where they may be protected from therapeutic intervention. For example, Shiozawa and colleagues have demonstrated that prostate cancer cells can be mobilized out of the bone marrow microenvironment and into the unprotected circulation where they may be easier to target (49). Recognizing that genetic diversity among tumor cells to respond to different attractants is most likely, the creation of multiple evolutionary traps within a device providing multiple chemokines and/or metastatic niches should be considered (20–23, 50). The recent discovery that cancer cells continue to circulate after they metastasize suggests that this approach may offer therapeutic benefit even in patients with advanced disease (33–39). Together, these concepts demonstrate that merging the social science concept of diaspora with ecologic and population sciences concepts can inform the cancer field to understand the biology of tumorigenesis and metastasis and inspire new ideas for therapy.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: K.J. Pienta, R.S. Taichman
Development of methodology: K.J. Pienta
Writing, review, and/or revision of the manuscript: K.J. Pienta, B. Robertson, D. Coffey, R.S. Taichman
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): K.J. Pienta

Grant Support
This work is financially supported by the NCI (grant no. U54CA143803 to K.J. Pienta, D. Coffey; grant nos. CA163124 and CA093900 to K.J. Pienta, R.S. Taichman; and grant no. CA143055 to K.J. Pienta).

Received August 6, 2013; revised September 6, 2013; accepted September 13, 2013; published OnlineFirst October 7, 2013.

References

27. Langley RR, Fidler LJ. The seed and soil hypothesis revisited—the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 2011;129:2527–35.
Clinical Cancer Research

The Cancer Diaspora: Metastasis beyond the Seed and Soil Hypothesis
Kenneth J. Pienta, Bruce A. Robertson, Donald S. Coffey, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-2158

Cited articles
This article cites 44 articles, 4 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/19/21/5849.full.html#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
/content/19/21/5849.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.