












primary and 23 of 52 (44%) recurrent tumors displayed
positive staining (Fig. 3 and Supplementary Table S3). No
correlation was found between P-AKT and P-S6 staining,
suggesting that the two pathways were not linked in epen-
dymoma. No association between P-S6 and OS or PFS was
identified.

PI3K pathway activation was not caused by PTEN loss
or PIK3CA mutations

PTEN DNA copy-number loss has previously been rep-
orted in ependymoma, which correlated with gene expres-
sion data (7), suggesting that this could be the mechanism
of PI3K pathway activation. We investigated PTEN protein
levels using IHC. Ten of 142 (7%) primary tumors and 2 of
49 (4%) recurrences were negative (Fig. 5 and Supplemen-
tary Table S3). PTEN protein expression was not associated
with P-AKT status, suggesting that PTEN loss was not caus-
ing PI3K pathway activation.

The presence of activating mutations in PI3KCA was also
investigated. Exons 9 and 20 (mutation hotspots) were
sequenced in DNA extracted from 23 ependymomas. No
mutations were found.

Discussion
We have identified PI3K pathway activation in 72%

primary pediatric ependymomas, suggesting that the path-
way is a strong candidate for targeted therapy, likely to be
effective in a high proportion of patients. Our results have
also shown pathway status to be an independent marker of

poor prognosis and suggested that pathway activation was
playing a role in the control of cell proliferation, whichmay
be acting through cyclin D1.

The results from this study suggest that inhibiting the
PI3K pathway therapeutically in pediatric ependymoma is
an attractive option and is applicable to a high percentage
of patients. In a recent drug screen of a model of a supra-
tentorial subtype of ependymoma, inhibitors of IGF1R,
which signals through the PI3K pathway, and GSK3b were
found to disrupt cell proliferation, supporting our conclu-
sions (35). A number of drugs have been developed against
the PI3K pathway, many of which are undergoing clinical
trials, including in adult glioma (22, 36). The IC50 con-
centrations for BKM120 that we found for ependymoma
were similar to those seen in other types of cancers, includ-
ing adult glioma (37). Phase I studies in adult tumors have
demonstrated that effective plasma concentrations of
BKM120 can be achieved in patients (38). However, phase
I studies of BKM120 have not been conducted in pediatric
patients.

We found PI3K pathway status, defined using P-AKT, to
be an independent prognostic marker of a poorer PFS in
ependymoma, in comparison with clinical factors and
previously reported markers. The PI3K pathway has also
been linked to a poorer prognosis in other cancers including
glioma and breast cancer (19, 39).

Our analysis was undertaken in a retrospective cohort,
which included infants and older children and a variety of
treatments. Age at diagnosis and treatment, including extent
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Figure 3. A, cyclin D1 gene expression was significantly higher in supratentorial ependymomas compared with posterior fossa and spinal tumors (ANOVA
P¼ 0.01). B, the percentage of nuclei displaying cyclin D1 protein expression was significantly higher in tumors displaying PI3K pathway activation, defined
by P-AKT (t test P ¼ 0.003). C, an example of cyclin D1 protein expression in an ependymoma. No correlation was seen between ki67 protein
expression (D) and PI3K pathway activation. mTOR pathway activation, measured by P-S6 protein expression (E), was seen in 45% primary ependymomas
but did not correlate with PI3K pathway activation. PF, posterior fossa; ST, supratentorial; SP, spinal.
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of resection and radiotherapy, have previously been linked
to prognosis (11, 12, 40–43). The multivariate survival
analysis that we undertook demonstrated that the associa-
tion of P-AKTwith PFSwas independent of these confound-
ing factors. However, to confirm our result, pathway status
must be investigated in clinical trial cohorts. Our cohort
contained a subset from patients enrolled on two clinical
trials, the CNS9204 and CNS9904 trials. When these were
analyzed independently, a significant association with PFS
was only found for P-AKT-N in the CNS9204 trial (Supple-
mentary Fig. 1).However,P valueswere close to significance
in all analyses and suggested the same trend for a worse PFS
inpatients with tumors displaying PI3Kpathway activation.
It is likely that significancewas lost due to the lower number
of tumors analyzed in each cohort.
The association with PFS was more significant when

tumors displaying nuclear positivity only were compared
with the rest of the cohort. The cellular localization of AKT
can determine the downstream effects of activation (44).
Nuclear specific functions for AKT in tumor development
and invasion have been demonstrated in cancer models
(45, 46).
If PI3K pathway status is confirmed as a prognostic

marker in independent ependymoma cohorts, it could be
considered as an attractive marker as it would not only
identify patients with a poorer prognosis but also those
that could be treated with therapies targeted against the
pathway.

Our analysis suggested that PI3K pathway activation in
ependymomawas influencing cell proliferation. PI3K path-
way activation has been linked to cell proliferation in other
cancers including medulloblastoma and glioma (20, 47).
Our results suggest that the PI3K pathway may be influenc-
ing cell proliferation through cyclin D1. The PI3K pathway
has been shown to control cell proliferation through a
number of mechanisms, including regulation of cyclin
D1 levels through GSK3b (48, 49). Two previous studies
analyzing cyclin D1 in ependymoma found a lower per-
centage of positive tumors than we identified (50, 51).
However, both studies analyzed a relatively low number
of patients and included a high percentage of adult tumors.
A third study analyzed pediatric cases only with results
closer to our findings (52).

P-AKT expression did not correlate with the proliferation
marker Ki67, which might suggest that the change in cyclin
D1 levels was not affecting cell proliferation. However, Ki67
is a universal marker of proliferating cells that can be influ-
enced by many mechanisms that control cell division and is
not directly related to cyclinD1expression. Itmaybe that cell
proliferation is being controlled by different mechanisms in
ependymomas lacking PI3K pathway activation, hence
masking any effect the PI3K pathway may be having. In
breast cancer, a positive correlation was seen between P-AKT
and cyclin D1 without correlation with Ki67, similar to our
results (39). The reduction in cell proliferation that we saw
uponPI3Kpathway inhibition in the ependymoma cell lines
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Figure 4. Ependymoma cell lines were treated with indicated concentrations of Ly294002 and BKM120 for 1 hour, with EGF (50 ng/mL) stimulation for the last
10 minutes. Loss of P-AKT was seen with increasing concentrations of each inhibitor (A). Treatment with the inhibitors resulted in a decrease in cell growth.
Cellswere incubatedwith indicated concentrations of the two inhibitors for 72 hours. Cell growthwasmeasured using anMTT assay. A significant decrease in
proliferation was seen in drug-treated cells compared with vehicle control (B). �, P < 0.05; ��, P < 0.01.
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supports our hypothesis that PI3K pathway activation is
increasing cell proliferation in ependymoma.

A significant association between PI3K pathway activa-
tion and tumor location was identified at the gene and
protein expression levels. This supports previous research
that has identified genomic, epigenetic, and transcriptomic
differences between ependymomas arising in different loca-
tions (7–9). However, a relatively high percentage of pos-
terior fossa and spinal ependymomas displayed PI3K path-
way activation, suggesting that it also plays an important
role in a subset of these tumors. Supratentorial ependymo-
mas have been associated with a better prognosis than
infratentorial tumors, including in the cohort analyzed in
this study. This may seem to contradict the association of
PI3K pathway activation with both supratentorial ependy-
momas and a poorer PFS. However, our multivariate
survival analysis suggested that the association of PI3K
pathway activation with PFS was independent of location.

PTENDNAcopy-number loss has been shown to occur in
ependymoma, which significantly correlated with PTEN
gene expression (7), suggesting that it could be the mech-
anism of PI3K pathway activation in ependymoma. How-
ever, we found no correlation between PTEN protein loss

and P-AKT protein expression, suggesting that this is not the
case. Furthermore, we did not find anymutations in exons 9
and 20 of PIK3CA, a commonmechanism of PI3K pathway
activation in cancer (24). It will be important to determine
how the pathway is activated to fully understand what the
effects of inhibiting the pathway therapeutically would be.

Alternative mechanisms of PI3K pathway activation have
been identified in other cancers, including mutations or
amplifications of PIK3R1, PDPK1, and AKT1 and 2 (23, 53–
56). Analysis of published ependymoma single-nucleotide
polymorphism (SNP) array data (GSE21687; ref. 7)
revealed low copy-number gains at AKT1-3 and PDPK1 loci
in 10% to 20% ependymomas but no amplifications. How-
ever, no correlation was found between copy number and
gene expression array data.

PI3Kpathway activation in cancer has also been shown to
be induced through overexpression of growth factor recep-
tors including EGF receptor (EGFR) and platelet-derived
growth factor receptor (PDGFR) in glioma (57). Previous
genomic analysis has suggested that no copy-number–driv-
en expression of growth factors or their receptors occurs in
ependymoma (7). However, in our analysis, we did see
differential expression of a number of growth factor recep-
tor genes, which may be involved in PI3K pathway induc-
tion in ependymoma. These included EGFR, ERBB2,
ERBB4, and PDGFRA, which have previously been linked
to prognosis in ependymoma in some studies (58–60) but
not others (14, 58, 61).

The PI3K pathway can induce activation of the mTOR
pathway, which is also deregulated in cancer, with drugs
targeting the pathway in clinical trials for several malignan-
cies (62, 63). We did not find a correlation between PI3K
andmTORpathway status in ependymoma, suggesting that
the two pathways were not linked. However, we sawmTOR
pathway activation in approximately 50% of ependymo-
mas, suggesting that itmay be playing an important role in a
proportion of tumors. Activation of one or both of the PI3K
and mTOR pathways was seen in 88% of primary ependy-
moma cases that we analyzed, suggesting that the majority
of pediatric ependymoma patients could be treated with
therapies targeting one of the pathways.

In conclusion, we have demonstrated the PI3K pathway to
be active in a high percentage of ependymomas and to be an
independent prognostic marker of a worse PFS. Our data
suggest that pathway activation in ependymoma increases
cell proliferation. The high percentage of patients with path-
way activation and the link to a poor prognosis suggests that
the potential of targeting the pathway therapeutically should
be investigated. If this proves to be a successful approach, it
would be applicable in a high proportion of patients.
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