Epigenetic Inactivation of microRNA-34b/c Predicts Poor Disease-Free Survival in Early-Stage Lung Adenocarcinoma

Ernest Nadal1, Guoan Chen1, Marc Gallegos2, Lin Lin1, Daysha Ferrer-Torres1, Anna Truini1, Zhuwen Wang1, Jules Lin1, Rishindra M. Reddy1, Roger Llatjos3, Ignacio Escobar4, Juan Moya4, Andrew C. Chang1, Felipe Cardenal5, Gabriel Capella6, and 5Medical Oncology, Thoracic Oncology Multidisciplinary Unit, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain. E-mail: capella.gabriel@gmail.com

Abstract

Purpose: The microRNA-34b/c (miR-34b/c) is considered a tumor suppressor in different tumor types and a transcriptional target of TP53. The main objectives of this study were to investigate the clinical implications of miR-34b/c methylation in patients with early-stage lung adenocarcinoma and to determine the functional role of miR-34b/c re-expression in lung adenocarcinoma cell lines.

Experimental Design: Aberrant methylation and expression of miR-34b/c were assessed in 15 lung adenocarcinoma cell lines and a cohort of 140 early-stage lung adenocarcinoma. Lung adenocarcinoma cell lines were transfected with miR-34b/c and the effects upon cell proliferation, migration, invasion, and apoptosis were investigated.

Results: Aberrant methylation of miR-34b/c was detected in 6 (40%) of 15 lung adenocarcinoma cell lines and 64 of 140 (46%) primary lung adenocarcinoma. Expression of miR-34b/c was significantly reduced in all methylated cell lines and primary tumors, especially with TP53 mutations. Patients with increased miR-34b/c methylation had significantly shorter disease-free and overall survival as compared to patients with unmethylated or low level of miR-34b/c methylation. Ectopic expression of miR-34b/c in lung adenocarcinoma cell lines decreased cell proliferation, migration, and invasion.

Conclusions: Epigenetic inactivation of miR-34b/c by DNA methylation has independent prognostic value in patients with early-stage lung adenocarcinoma. Reexpression of miR-34b/c leads to a less aggressive phenotype in lung adenocarcinoma cell lines. Clin Cancer Res; 19(24); 6842–52. ©2013 AACR.

Introduction

Lung cancer is the second most common cancer and the leading cause of cancer-related death in industrialized countries (1, 2). Non–small cell lung cancer (NSCLC) is a heterogeneous disease, with adenocarcinomas and squamous cell carcinomas the most common subtypes (3). These histologic subtypes have diverse clinical outcomes, different treatments, revealing heterogeneity in both disease aggressiveness and underlying molecular alterations (4). Complete resection gives the highest probability of long-term remission and cure. Even among patients with surgically treated early-stage, the 5-year survival rate is only 52% (2). Postoperative adjuvant chemotherapy is the standard of care for resected stage II and III and provides an absolute benefit of 4% to 5% in 5-year survival rates (5, 6). However, a subset of stage I patients also have poor prognosis and it is important to identify these high-risk patients who might benefit from an additional therapeutic intervention.

Molecular biomarkers incorporated with clinicopathologic factors might improve NSCLC patient management (7). KRAS and TP53 mutations (8, 9) and gene-expression signatures can classify surgically resected patients with different outcomes (10). MiRs are small non-coding regulatory RNAs that are upstream regulators of gene expression and contribute to cancer development and progression by acting as oncogenes or tumor suppressor genes (11–13). MiRs are promising biomarkers and involved in regulating diverse biologic processes such as cell proliferation, apoptosis, adhesion, migration, invasion, and angiogenesis.

MiR-34b and miR-34c, two members of the miR-34 family, are encoded by a bicistronic transcript from chromosome 11q23 (14). Their expression may be induced by TP53 in response to DNA damage or cell stress (15) as well as regulated by DNA methylation. The promoter regions of...
miR-34b/c are hypermethylated in several tumor types resulting in silencing of miR-34b/c expression (16–21). MiR-34b/c methylation was prognostic in patients with NSCLC stage I (22), but this result has not been validated in an independent cohort. In addition, miR-34 family acts as a tumor suppressor among different tumor types, inducing a less aggressive phenotype (16, 20, 23, 24); however, the functional role of miR-34b/c has not been examined in lung adenocarcinoma.

In the present study, we sought to determine the role of miR-34b/c methylation and expression in lung adenocarcinoma cell lines and primary tumors, the relationship to patient prognosis in two independent cohorts of early-stage resected lung adenocarcinoma and the functional impact of miR-34b/c ectopic expression on lung adenocarcinoma invasion and proliferation.

Materials and Methods

Tissue samples

Frozen primary tumors and associated nonmalignant lung tissue of 140 patients with stage I–II lung adenocarcinomas who underwent surgical resection were collected at the Bellvitge Hospital (Barcelona, Spain; 2001–2007) and the University of Michigan Health System (Ann Arbor, MI; 1991–2007). Informed consent, approved by the respective Institutional Review Board, was obtained and specimens collected, immediately frozen and stored at −80°C. Regions containing more than 70% tumor cellularity were used for nucleic acid isolation. Patients receiving preoperative radiation or chemotherapy were not included. Clinical data was retrospectively collected and all cases were staged according to the revised 7th TNM classification and provided in Supplementary Table S1. Patients from the University of Michigan were older and included more females and former-smokers than the Bellvitge Hospital set. These differences reflected specific patterns of lung adenocarcinoma according to patient’s site (25).

Lung cancer cell lines

Fifteen human lung adenocarcinoma cell lines (SK-LU-1, NCI-H2228, NCI-H1838, NCI-H11563, NCI-H2347, NCI-H1395, Calu-3, A549, NCI-H2087, NCI-H1299, NCI-H838, NCI-H23, NCI-H11792, HCC4006, and HCC827) were purchased from American Type Culture Collection and authenticated by genotyping using the Identifier Plus kit (Applied Biosystems). All cells were maintained in RPMI-1640 (except Calu-3 and A549, which used Eagle’s minimum essential medium and DMEM-F12 medium, respectively), and supplemented with 10% FBS, 1% Gibco Antibiotic-Antimycotic (Life Technologies) in an atmosphere containing 5% CO2 at 37°C. Cell line mutational status was obtained from the IARC TP53 database (26) and Sanger Institute Catalogue of Somatic Mutations In Cancer web site (27) with nine harboring TP53 mutations or TP53 deletion and listed in Supplementary Table S2.

Chemicals and demethylation treatment of lung adenocarcinoma cell lines

Stock solutions of 1 mmol/L cis-diammine-dichloroplatinum (Sigma-Aldrich), 1 mmol/L pemetrexed (Lilly), 10 mmol/L erlotinib hydrochloride (Selleckchem), and 25 mmol/L 5-aza-2′-desoxycytidine (5-aza-dC; Sigma-Aldrich) were stored at −20°C and freshly dissolved in culture medium before use. SK-LU-1, NCI-H2228, NCI-H1838, NCI-H23, and HCC4006 cells were seeded in 6-well plates, cultured for 24 hours, and treated with 0.5 μmol/L of 5-aza-dC for 5 days in triplicate, replacing drug-containing medium daily. The cells were subjected to DNA and RNA isolation for direct sequencing and miR-34b/c quantification, respectively.

Bisulfite genome sequencing

DNA was isolated using the protease K/phenol extraction method. Bisulfite conversion was carried out using 1 μg of DNA using an EZ-DNA Methylation Gold Kit (Zymo Research). The PCR was performed using Immolase DNA Polymerase (Bioline) and the following primers: 5′-GGTTGGGAATTGAAGTTTG-3′ (F) and 5′-TTATATATTATAAACACACAAATAA-3′ (R). The reactions were cycled at 95°C for 10 minutes, then 30 cycles of 30 seconds at 95°C, 30 seconds at 58°C, and 30 seconds at 72°C, including a final extension step for 15 minutes. PCR products were gel purified using QiAquick Gel Extraction Kit (Qiagen) and cloned into pCR4-TOPO Vector (Invitrogen) using the TOPO TA Cloning Kit (Invitrogen). Five individual clones were sequenced using M13 primers at the University of Michigan DNA Sequencing Core. The region assessed by BGS included 45 CpG sites from the miR-34b/c promoter and average methylation from individual clones was calculated as a percentage of the number of methylated CpG sites over the number of total CpG sites sequenced.

Real-time PCR temperature dissociation (melting curve analysis)

Genomic DNA treated with SalI methylase (New England Biolabs) was used as positive control to amplify fully
methylated DNA for the dissociation curve. Whole genome amplified DNA obtained by REPLI-G Kit (Qiagen) was used as a negative control to amplify fully unmethylated DNA for dissociation curve. Methylation standards (100%, 75%, 50%, 25%, 10%, 5%, 1%, and 0%) were prepared by mixing the positive and negative controls accordingly. All primers used for BGS and melting curve analysis (MCA) were designed using the Methyl Primer Express v.1.0 and did not target CpG dinucleotides to specifically amplify the bisulfite-modified sequences. Melting curve analysis was carried out as described before (28). Bisulfite converted DNA was first amplified in a 20 cycle external PCR reaction using the primers and conditions as described for BGS. One microliter of amplified DNA was used as a template for a nested PCR using a LightCycler 480 II (Roche Applied Science) in the presence of LightCycler 480 SYBR Green I Master (Roche) and the following oligonucleotides: 5’-GTATTTTTGGGGTTATGG-3’ (F) and 5’-TCACCTATTAA-CACTCCTACAAAAAC-3’ (R). The reactions were cycled for 30 cycles of 10 seconds at 95°C, annealing at 67°C for 20 seconds and extension at 72°C for 15 seconds. After the amplification, temperature was gradually increased from 65 to 95°C to obtain the melting curves. Lightcycler480 software (Roche) plotted the melting peaks by calculating the negative derivative of fluorescence over temperature and quantified the area under the curve (AUC) for the melting peak corresponding to the unmethylated and methylated alleles. AUC values for the melting peak corresponding to the methylated alleles were highly correlated with the percentage of methylated DNA of the methylation standards, shown in Supplementary Fig. S1. In addition, the percentage of DNA methylation was estimated on the basis of the linear regression between the AUC values and the methylation standards. The estimated value of DNA methylation was normalized within each cohort by subtracting the methylated alleles were highly correlated with the estimated methylation value was higher than 5%.

RNA isolation and miR and mRNA quantification in cell lines and tumors

Total RNA was isolated using miRNasy kit (Qiagen) following manufacturer’s instructions. Expression of mature miR-34b and miR-34c was assessed by quantitative real-time PCR (qRT-PCR) using TaqMan Micro-RNA assays (Applied Biosystems) and the 7900 HT-Fast Real-Time PCR System (Applied Biosystems). Expression of reported miR-34b/c targets (AXL, BCL2, HMG2, MET, NOTCH1, and NOTCH2) was assessed by qRT-PCR in miR-34b/c-transfected cells (14, 29). cDNA was prepared from total RNA using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) following manufacturer’s instructions and using Power SYBR Green and the 7900 HT-Fast Real-Time PCR System (Applied Biosystems). Primers, designed using Primer-BLAST (30), are shown in Supplementary Table S3. Data were analyzed using the SDS 2.2.2 software (Applied Biosystems) with threshold setting at 0.2 and manual baseline from 3 to 18 cycles. Relative quantification was performed using the 2^{−ΔΔCt} method, using endogenous RNU48 and β-actin expression as controls for miR and mRNA quantification, respectively.

Plasmid construction and stable transfection

The miR-34b/c was subcloned into pSilencer 4.1-CMV puro Expression Vector (Ambion) containing the flanking regions of the mature miR-34b/c (16). Ten micrograms of the constructed plasmid and the empty vector were introduced into H1838 and SK-LU-1 cells using FUGENE 6 Transfection Reagent (Promega). Forty-eight hours after transfection, cells were cultured in selection media with puromycin (Sigma-Aldrich). Resistant clones were selected for further cell culture and experiments.

Western blot analysis

Cells were grown to 60% confluence and harvested in radioimmunoprecipitation buffer supplemented with protease inhibitor to extract protein. Ten to 20 μg of protein were separated by SDS-PAGE, transferred to PVDF membranes, and incubated overnight at 4°C with the primary antibodies: anti-MET (25H2, Cell Signaling Technology), anti-PARP antibody (Cell Signaling Technology), anti-BCL2 (clone 10, Millipore), and β-actin (AC-15; Abcam) followed by goat anti-rabbit (Cell Signaling Technology) or anti-mouse (Southern Biotech) IgG-conjugated horseradish peroxidase and detected by chemiluminescence using Amersham ECL Prime Western Blotting Detection Reagents (GE Healthcare Life Sciences).

Cell proliferation assay

Empty vector and miR-34b/c stably transfected H1838 and SK-LU-1 cells were plated in 96-well plates for 24 hours. Chemosensitivity was tested by treating miR-34b/c stably transfected cells with cisplatin, pemetrexed, and erlotinib for 48 hours or with drug-free medium. The cell proliferation and viability was assessed using 10 μL/well of WST-1 reagent (Roche). Absorbance at 450 nm and reference at 630 nm were measured with an automated plate reader (ELx808 Bio-Tek) at different time-points. Relative proliferation rates were calculated as a percentage of the initial T0 reading within each sub-cell line.

Apoptosis assay

Both empty vector and miR-34b/c stably transfected SK-LU-1 cells were plated in 60 mm plates, treated for 48 hours with 5 μmol/L of cisplatin, harvested and processed for Western blot analysis.

Wound-healing assay

Empty vector and miR-34b/c stably transfected cells were grown to confluence. A wound was made through the monolayer using a p20 tip and measurements taken over time to calculate the migration rate according to the equation: percentage wound healing = [(wound length at 0 h) – (wound length at 4, 6, 20 or 27 h)]/(wound length at 0 h) × 100. Two independent experiments were performed.
Transwell invasion assay
Cancer cells were resuspended in media without growth factors then seeded at 25,000 cells per well into Matrigel-coated (BD Matrigel), growth factor–reduced, invasion chambers (8 μm pore size, BD Biosciences). The bottom chamber contained 20% FBS media as chemoattractant and incubated overnight in a humidified incubator at 37°C, 5% CO₂ atmosphere. The top noninvading cells were removed with a cotton swab moistened with medium and the bottom surface of the membrane was stained with Diff-Quick Stain Set (Siemens). The number of cells migrating to the basal side of the membrane was visualized with an Olympus microscope at 20× magnification. Pictures of five random fields from replicate wells were obtained and the number of cells stained quantified relative to the migration of cells through the uncoated membrane.

Statistical analysis
Differences between both cohorts used in the methylation analysis were calculated with Student t test and Fisher exact tests. Nonparametric tests were used for differences in miR-34b/c expression or methylation between different clinical variables. Survival curves were plotted using the Kaplan–Meier method and survival differences were assessed using the log-rank test. The univariate and multivariate Cox proportional hazards model were used to assess the univariate and multivariate Cox proportional hazards model were used to assess survival results. Disease-free survival (DFS) was measured from date of surgery to the time of recurrence, death, or censoring. Overall survival (OS) was measured from date of surgery to the time of death or censoring.

Results
MiR-34b/c methylation and underexpression are a frequent alteration in lung adenocarcinoma cell lines
MCA was used to assess miR-34b/c methylation in lung adenocarcinoma cell lines and BGS performed to confirm results in selected cell lines and primary tumors. Representative examples of MCA are shown in Fig. 1. An excellent concordance between the results obtained by both methods was observed. On the basis of BGS, NCI-H2087 and NCI-H1838 cells had 3% and 78% of 45 CpG sites methylated, respectively, whereas the estimated percentage of methylation by MCA was 0.5% and 77%. The concordance was also optimal for primary tumors with BGS demonstrating 59% methylation of CpG sites, whereas the estimated percentage of methylation by MCA was 53% (Fig. 1). MCA is a suitable alternative for reliable, efficient, and quantitative assessment of DNA from both cell lines and clinical samples.
Six of the lung adenocarcinoma cell lines (40%) had miR-34b/c promoter methylation: H2228, SK-LU-1, H1838, H1353, H2347, and H1395. Expression of miR-34b/c was lower in cell lines with miR-34b/c methylation relative to unmethylated cell lines (P = 0.001 for both miRs) and not different according to TP53 status. Interestingly, a significant difference in miR-34b/c expression was detected when the cells were classified on the basis of the promoter methylation status and their TP53 mutational status (P = 0.011 and 0.015, for miR-34b and miR-34c, respectively). As shown in Fig. 2A, the cells with lowest expression contained miR-34b/c promoter methylation and TP53 mutation.

The miR-34b/c expression was significantly increased from 29- to more than 500-fold when cells with hypermethylated miR-34b/c promoter (SK-LU-1, H2228, and H1838) were treated with 5-aza-2′-deoxycytidine (5-aza-dC) for 5 days (Supplementary Fig. S2A). A relative change in the methylation level was detected by direct bisulfite sequencing in cell lines treated with 5-aza-dC (Supplementary Fig. S2B).

MiR-34b/c methylation and underexpression are a frequent event in lung adenocarcinoma
MiR-34b/c methylation was assessed by MCA in 140 lung adenocarcinoma tumors and 10 nonmalignant lung tissues. Fifty-nine tumors (42%) showed more than 5% DNA methylation (Supplementary Fig. S3A) and only one nonmalignant lung tissue was methylated, which was confirmed by bisulfite sequencing. Expression of miR-34b and miR-34c were quantified in a subset of 49 early-stage lung adenocarcinoma tumors and 10 matched nonmalignant lung samples. Nonmalignant lung samples had a higher expression of both miRs in non-tumoral samples (median: 3.67 for miR-34b and 2.83 for miR-34c) as compared with lung adenocarcinoma tumors (median: 0.95 for miR-34b and 0.86 for miR-34c; P = 0.002 and 0.003, respectively). Thirty tumors (61%) were methylated and had lower expression levels of miR-34b and miR-34c (median: 0.73 and 0.62, respectively) as compared with unmethylated tumors (median: 4.46 and 2.57, P = 0.002 and 0.003, respectively, Supplementary Fig. S3B).

MiR-34b/c methylation and expression and clinicopathological correlations
The level of methylation according to AUC values was correlated with clinical characteristics and survival (Table 1). MiR-34b/c methylation was associated with higher tumor stage among the 140 stage I and II patients examined (P = 0.033), recurrence (P = 0.017), and death (P = 0.019). Tumors from patients with a smoking history had a trend of higher levels of miR-34b/c methylation. We determined the correlation between miR-34b/c expression with clinical and molecular variables for the 49 cases analyzed (Supplementary Table S4). Interestingly, lower expression of miR-34b detected among smokers compared with nonsmokers (P = 0.025). Tumors harboring TP53 mutation had a trend of lower miR-34b and 34c expression (P = 0.043 and 0.060, respectively). A significant difference in the expression of miR-34b/c was observed in primary tumors when classified on the basis of the promoter methylation status and the TP53 mutational status (P = 0.0007 and 0.001, respectively; Fig. 2B). MiR-34b/c methylation appears to be the predominant mechanism of regulation of miR-34b/c expression in cooperation with TP53 function. Indeed, tumors with methylated miR-34b/c consistently expressed low levels of miR-34b/c even when TP53 was not mutated. Of note, higher miR-34b/c...
expression was associated with EGFR mutation ($P = 0.007$ and 0.013, respectively; Supplementary Table S4). MiR-34b/c expression was not associated with outcome as previously reported by others (31).

MiR-34b/c methylation as independent prognostic marker in early-stage resected lung adenocarcinoma

We determined the prognostic value of miR-34b/c methylation in the training set and we found that patients with higher AUC for miR-34b/c methylation (top third) had a significantly shorter DFS (median: 28.5 months) compared with patients with low AUC levels (bottom two thirds) (median: not reached, log-rank test $P = 0.016$; Fig. 3A). We used two-thirds cutoff (AUC = 1.34, estimated methylation = 20%) instead of the median, because it provided a higher percentage of events within the group of high level of DNA methylation. In the multivariate Cox model, higher levels of miR-34b/c methylation (top third) were independently associated with shorter DFS ($HR = 3.04$, 95% CI 1.26–7.03, $P = 0.013$) as compared with low-medium levels, after adjusting for age, sex, and disease stage. In the test set, high (top third) also had a shorter DFS (median: 18.6 months) compared with patients with low AUC (bottom two thirds) (median: not reached, log-rank test $P = 0.025$]. In the multivariate analysis, high levels of miR-34b/c methylation (top third) were associated with shorter DFS [HR = 2.05; 95% confidence interval (CI), 1.09–3.84; $P = 0.025$].

When the survival analysis was carried out using the whole study population (n = 140), miR-34b/c methylation not only was associated with shorter DFS, but also with shorter OS (Kaplan–Meier plots are shown in Supplementary Fig. S4). In the multivariate Cox regression analysis, higher levels of miR-34b/c methylation (top third) was independently associated with a shorter DFS ($HR = 2.16$; 95% CI, 1.32–3.52; $P = 0.002$; Table 2) as compared with low to medium levels (bottom two-thirds). MiR-34b/c remained an independent prognostic marker when

Figure 1. Methylation status of miR-34b/c in lung adenocarcinoma cell lines and primary tumors. A and B, representative examples of MCA for miR-34b/c. Melting curves and derivative peaks from two cell lines (H2087 and H1838) are shown in the left (A) and from a lung adenocarcinoma and its corresponding nonmalignant lung tissue in the right (B). Differences in the GC content after bisulfite treatment results in variation of the melting temperature that make possible to discriminate the methylation status of samples assessed. While homogeneously unmethylated or methylated samples yielded a sharply defined melting curve, heterogeneously methylated samples resulted in a double-peak pattern. This bimodal pattern may correspond to the presence of nontumoral DNA from stromal cells within the tumoral samples or also may correspond to methylation that affects only one allele. C and D, representative chromatograms from bisulfite genomic sequencing of the miR-34b/c promoter. CpG sites are depicted as pink bars and the transcription start sites as blue bars. Five clones of each sample were sequenced and each row represents one sequenced allele. Black and white squares represent methylated and unmethylated cytosines at CpG sites, respectively.
considered as a continuous variable in the Cox regression (Supplementary Table S5). Higher levels of miR-34b/c (top third) were also independently associated with shorter OS (HR = 1.79; 95% CI, 1.07–3.02; \(P = 0.027 \); Supplementary Table S6) as compared with low-medium levels. Remarkably, methylation of miR-34b/c was also a prognostic marker for stage I patients and patients with high AUC for miR-34b/c had a shorter DFS (median: 43.1 months) as compared with those with low to medium levels (median: not reached, log-rank test, \(P = 0.009 \); Supplementary Fig. S5).

MiR-34b/c ectopic expression reduced cell proliferation, migration, and invasion

Two cell lines with low levels of miR-34b/c (H1838 and SK-LU-1) were transfected with miR-34b/c precursors that mimics endogenous miRs, or alternatively with empty vector. Expression of miR-34b/c determined by qRT-PCR in the stable transfectants was significantly higher compared with empty vector and parental cells (Supplementary Fig. S6A). Several genes reported as putative targets of miR-34b/c were examined and a significant reduction of the transcript levels were found for \(AXL \), \(BCL-2 \), \(HMGA2 \), \(MET \), \(NOTCH1 \), and \(NOTCH2 \) in both transfected cell lines (Supplementary Fig. S6B). At the protein level, significant reduction of \(MET \) expression was observed (Supplementary Fig. S6C).

Cells expressing miR-34b/c showed a significantly lower proliferation rate as compared with empty vector \((P < 0.001; \text{Fig. 4A}) \). Accordingly, stable transfection with miR-34b/c mimics resulted in significantly increased PARP cleavage (Supplementary Fig. S7A). We treated the stable cell lines with cisplatin (CDDP), pemetrexed, or erlotinib, all of which are currently used for treating lung adenocarcinoma. A modest sensitization effect to CDDP was
observed after restoring miR-34b/c expression in SK-LU-1 cells (Supplementary Fig. S7B). Migration and cell invasion was significantly suppressed in miR-34b/c stable transfec-
tants of SK-LU-1 (Fig. 4B and C and Supplementary Fig. S8) as compared with empty vector or parental cells.

In summary, the restoration of miR-34b/c expression in lung adenocarcinoma lines can reduce cell proliferation, cell migration, and invasion, conferring a less aggressive pheno-
type. Reexpression thus might be a novel potential therapeu-
tic strategy in patients expressing low levels of miR-34b/c.

Discussion

MiRs play an important role in tumorigenesis and cancer progression. The discovery of their regulatory function has added a new level of complexity in our understanding of cancer genetics (32). Interestingly, miR expression is often widely downregulated in cancer cells relative to normal tissues (33), and forced reduction of global miR expression promotes transformation (34). MiR expression is deregulated in human cancer, including NSCLC and several regu-
larly mechanisms have been identified: DNA copy abnor-
malities (35), mutation (36), failure of posttranscriptional regulation (37), regulation by transcription factors (38), and a defective miR biogenesis pathway (34). Additional epigenetic mechanisms such as methylation of the 5’ reg-
ulator regions associated with specific miR downregula-
tion in tumors were observed (16, 39, 40).

The miR-34 family consists of miR-34a, located at the chromosome 1, and miR-34b and miR-34c, located at the chromosome 11 as a bicistronic cluster and primarily expressed in nontumoral lung (23). The putative promoter of miR-34b/c resides 4.5 kb upstream of the miR-coding sequence and includes a dense CpG island and the starting transcription site of \textit{BTG4} gene (21). We found that hyper-
methylation of miR-34b/c is frequent in lung adenocarci-
noma tumors and cell lines (40%–46%), which is similar to the frequency reported previously by other groups in NSCLCs (22). Interestingly, we observe patients with higher levels of miR-34b/c methylation show a worse outcome. A recent study reported that miR-34b/c methylation might be prognostic for patients with stage I NSCLC (22). In this study, DNA methylation was assessed by methylation-spe-
cific PCR from formalin-fixed paraffin-embedded tissue samples. We used frozen samples and DNA methylation was assessed using MCA, which achieved an excellent ana-
lytic sensitivity. We feel that MCA is a useful technique for detecting and estimating DNA methylation by simulta-
neous assessment of multiple CpG residues, rendering the technique less vulnerable to the behaviour of specific resi-
dues. When analyzing other markers using MCA, it is

<table>
<thead>
<tr>
<th>Clinical covariates</th>
<th>Total</th>
<th>miR-34b/c Methylation status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AUC, mean (±SD)</td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td><65</td>
<td>60</td>
<td>1.82 (±2.72)</td>
</tr>
<tr>
<td>≥65</td>
<td>80</td>
<td>1.48 (±2.09)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>53</td>
<td>1.76 (±2.05)</td>
</tr>
<tr>
<td>Male</td>
<td>87</td>
<td>1.54 (±2.56)</td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>15</td>
<td>1.07 (±1.39)</td>
</tr>
<tr>
<td>Ever</td>
<td>123</td>
<td>1.65 (±2.41)</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage I</td>
<td>96</td>
<td>1.35 (±2.21)</td>
</tr>
<tr>
<td>Stage II</td>
<td>44</td>
<td>2.22 (±2.65)</td>
</tr>
<tr>
<td>Recurrence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>73</td>
<td>1.12 (±1.85)</td>
</tr>
<tr>
<td>Yes</td>
<td>67</td>
<td>2.18 (±2.75)</td>
</tr>
<tr>
<td>Recurrence location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loco-regional</td>
<td>21</td>
<td>1.87 (±2.33)</td>
</tr>
<tr>
<td>Distance</td>
<td>46</td>
<td>2.32 (±2.93)</td>
</tr>
<tr>
<td>Life status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alive</td>
<td>63</td>
<td>1.25 (±2.16)</td>
</tr>
<tr>
<td>Dead</td>
<td>77</td>
<td>2.06 (±2.55)</td>
</tr>
<tr>
<td>Event (death or recurrence)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>68</td>
<td>0.93 (±1.64)</td>
</tr>
<tr>
<td>Yes</td>
<td>72</td>
<td>2.28 (±2.76)</td>
</tr>
</tbody>
</table>
important to determine the analytical sensitivity for any specific gene to define a cutoff for classifying the samples as either methylated or unmethylated. While focusing on lung adenocarcinoma, we validated the prognostic value of miR-34b/c methylation in an independent cohort of these patients. According to previous data (23), global association between TP53 mutational status and miR-34b/c expression was not found in lung adenocarcinoma lines. Indeed, although miR-34b/c are bona fide transcriptional targets of TP53 and their promoters contain TP53 canonical binding sites, miR-34 family appeared to be not necessary for TP53 function using a miR-34–deficient mouse (41). A potential interaction between DNA methylation status and TP53 status was found in lung adenocarcinoma cell lines and primary tumors. In addition, the restoration of miR-34b/c expression with 5-aza-dC suggests that DNA methylation plays a role in the transcriptional regulation of these miRs in lung adenocarcinoma cells. Interestingly, miR-34b expression was higher in non-smoking patients and both miRs were significantly overexpressed in EGFR–mutant cell lines and primary tumors. Although nonsmoking patients had lower levels of miR-34b/c expression as compared with smokers, we did not find a significant correlation between tobacco use history and DNA methylation. Similarly, during bronchial carcinogenesis of squamous cell carcinomas, expression of miR-34c progressively was reported to decrease from normal epithelium of nonsmokers to invasive bronchial lesions of smokers (42). The role of miR-34b/c expression as a prognostic marker is controversial. Landi and colleagues (43) found that miR-34b/c methylation measured by microarray technology was associated with outcome in patients with surgically resected lung NSCLC. However, miR-34b/c measured by qRT-PCR was not prognostic in a large cohort of early-stage NSCLC (31). In our study, we could not find an association between

![Figure 3. Kaplan–Meier plots of DFS according to miR-34b/c methylation level. Lung adenocarcinoma tumors were divided according to their source into training (Bellvitge Hospital, A) and test set (University of Michigan, B).](image)

![Table 2. DFS analysis (multivariate Cox model) of miR-34b/c methylation in 140 patients with early-stage lung adenocarcinoma](image)
miR-34b/c expression and outcome potentially due to the limited number of cases analyzed.

We used stable transfectants expressing miR-34b and 34c to study the pathogenic role of these miRs in lung adenocarcinoma lines. Using this in vitro model, we found that the restoration of miR-34b/c expression suppressed cell proliferation, migration, and invasiveness. These findings suggest that these miRs might act as a tumor suppressor in lung adenocarcinoma, which is consistent with its role in other human cancers (20, 24, 44, 45).

MiR-34b/c restoration did not considerably modify the sensitivity to CDDP, pemetrexed, or erlotinib in lung adenocarcinoma lines. Correspondingly, miR-34b/c expression was previously not found to have a predictive effect on survival in patients with lung cancer treated with adjuvant chemotherapy after tumor resection (31). However, miR-34c appears to be significantly overexpressed in erlotinib-sensitive NSCLC cell lines (46) and was associated with a signature predictive for response to erlotinib. In our study, miR-34b/c transfectants did not show higher sensitivity to erlotinib (data not shown).

Several strategies have been proposed to restore the function of miRs with tumor suppressor properties that are downregulated in cancer (47). For example, DNA demethylating agents and histone deacetylase inhibitors, which have demonstrated antitumor activity in chemorefractory NSCLC (48). However, a limitation of this strategy is that these agents lack specificity. A more promising strategy may be miR replacement therapy using delivery vehicles (49, 50), which are able to restore loss-of-function activity and to reactivate cellular pathways in cancer that drive a therapeutic response.

In conclusion, our findings show that miR-34b/c is frequently inactivated by promoter DNA methylation in lung adenocarcinoma and restoration of miR-34b/c expression induces a less aggressive and invasive phenotype. In addition, miR-34b/c methylation might be an independent prognostic marker in early-stage lung adenocarcinoma and is potentially useful for selecting a subset of stage I tumors with higher risk of recurrence or death after lung resection that would benefit from an additional therapeutic intervention. MiR replacement therapy might be a potential strategy for treating those tumors with hypermethylated miR-34b/c, although further investigation in this area is needed.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.
microRNA-34b/c in Lung Adenocarcinoma

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): E. Nadal, G. Chen, R. Llajtos, D.G. Beer
Writing, review, and/or revision of the manuscript: E. Nadal, L. Lin, J. Lin, R.M. Reddy, R. Llajtos, A.C. Chang, F. Cardenal, G. Capella, D.G. Beer
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): E. Nadal, L. Lin, Z. Wang, J. Moya, A.C. Chang, D.G. Beer
Study supervision: G. Chen, G. Capella, D.G. Beer

Acknowledgments
The authors thank Dr. M. Esteller for generously sending us his miR-34b/c expression vector.

References

Grant Support
This work was supported in part by the Xarxa de Bancs de Tumors de Catalunya-ICO (XBITC), The Bonnie J. Addario Lung Cancer Foundation, and the University of Michigan Comprehensive Cancer Center. E. Nadal was supported by a Re Hormtega Fellowship from the Instituto de Salud Carlos III and by a Spanish Society of Medical Oncology Fellowship. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received March 21, 2013; revised August 16, 2013; accepted October 6, 2013; published OnlineFirst October 15, 2013.

Epigenetic Inactivation of microRNA-34b/c Predicts Poor Disease-Free Survival in Early-Stage Lung Adenocarcinoma

Ernest Nadal, Guoan Chen, Marc Gallegos, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-0736

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2013/10/15/1078-0432.CCR-13-0736.DC1

Cited articles
This article cites 49 articles, 17 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/19/24/6842.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/19/24/6842.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/19/24/6842.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.