Antitumor Activity of Cell-Permeable RUNX3 Protein in Gastric Cancer Cells

Junghee Lim1,4, Tam Duong2, Nga Do2, Phuong Do2, Jaetaek Kim3, Hyuncheol Kim4, Wael El-Rifai5, H. Earl Ruley6, and Daewoong Jo1,2,5

Abstract

Purpose: Gastric cancer is a leading cause of cancer death worldwide. Limited therapeutic options highlight the need to understand the molecular changes responsible for the disease and to develop therapies based on this understanding. The goal of this study was to develop cell-permeable (CP-) forms of the RUNT-related transcription factor 3, RUNX3—a candidate tumor suppressor implicated in gastric and other epithelial cancers—to study the therapeutic potential of RUNX3 in the treatment of gastric cancer.

Experimental Design: We developed novel macromolecule transduction domains (MTD) which were tested for the ability to promote protein uptake by mammalian cells and tissues and used to deliver biologically active RUNX3 into human gastric cancer cells. The therapeutic potential CP-RUNX3 was tested in the NCI-N87 human tumor xenograft animal model.

Results: RUNX3 fusion proteins, HM17R and HM45R, containing hydrophobic MTDs enter gastric cancer cells and suppress cell phenotypes (e.g., cell-cycle progression, wounded monolayer healing, and survival) and induce changes in biomarker expression (e.g., p21WAF1 and VEGF) consistent with previously described effects of RUNX3 on TGF-β signaling. CP-RUNX3 also suppressed the growth of subcutaneous human gastric tumor xenografts. The therapeutic response was comparable with studies augmenting RUNX3 gene expression in tumor cell lines; however, the protein was most active when administered locally, rather than systemically (i.e., intravenously).

Conclusions: These results provide further evidence that RUNX3 can function as a tumor suppressor and suggest that practical methods to augment RUNX3 function could be useful in treating some types of gastric cancer. Clin Cancer Res; 19(3); 680–90. ©2012 AACR.

Introduction

Gastric cancer is the most common cancer in Asian countries (e.g., Korea and Japan) and a leading cause of cancer death worldwide, provoking considerable effort to understand the pathogenesis of the disease and to develop improved methods for diagnosis and treatment (1, 2). Gastric tumors arise by multiple etiologies, including an intestinal type that emerges through a metaplasia–dysplasia–carcinoma sequence in which inflammatory responses to Helicobacter pylori infection play an initiating role and a diffuse type that arise without clearly defined precursor lesions or etiology. Therapeutic options are limited for gastric cancers not cured by surgical resection, and overall 5-year survival rates are in the range of 30% (1). As a consequence, there is considerable interest in characterizing the molecular changes responsible for tumor type and grade to better predict disease outcome and possibly to inform individualized therapies (2).

RUNT-related transcription factor 3 (RUNX3) has been implicated as a tumor suppressor gene in gastric cancers (3) as well as a variety of malignancies (4). Runx3 knockout mice develop gastric hyperplasia and tumors, associated with reduced levels of apoptosis, altered cellular responses to TGF-β (5) and changes in the cyclin-dependent kinase inhibitor p21WAF1 and VEGF expression consistent with enhanced proliferation and angiogenesis, respectively (6, 7). Reductions in RUNX3 expression have been attributed to promoter hypermethylation (8), LOH, and protein mislocalization (9) and correlate with poor prognosis (10–13). Conversely, enforced RUNX3 expression suppresses the proliferation and tumorigenicity of gastric cancer cell lines (3, 7, 10).

However, other studies have challenged the concept that RUNX3 functions directly as a tumor suppressor in gastric
cancer (14–17). The murine gene does not appear to be expressed in epithelial cells of the developing or adult gastrointestinal tract (16) and therefore cannot exert cell-intrinsic tumor-suppressing effects under normal, steady-state conditions. The gastric hyperplasia observed in Runx3 knockout mice may be a secondary consequence of autoimmune colitis (14), a common consequence of impaired TGF-β signaling in T lymphocytes (18–20). It remains to be determined whether RUNX3 is expressed in normal human gut epithelium, although the absence of such expression does not preclude a tumor-suppressive role, assuming RUNX3 is induced in response to malignant change. This could also account for low levels of RUNX3 expression observed in some gastric cancer cell lines.

In the present report, we investigated the use of macromolecule intracellular transduction technology (MITT) to deliver biologically active RUNX3 protein into gastric cancer cells, grown both in culture and as tumor xenografts. MITT was used previously to deliver peptides and proteins across the plasma membrane (27–29). In contrast, cationic protein transduction domains (PTD; e.g., those derived from HIV Tat and Antennapedia) enhance protein uptake predominately through absorptive endocytosis and macropinocytosis, which sequester significant amounts of protein into membrane-bound and endosomal compartments and limit cell-to-cell spread within tissues (30, 31). However, cellular uptake and systemic delivery are both heavily influenced by the cargo, such that the use of any protein transduction approach must be investigated on a case-by-case basis (30–32). In the present study, we developed a cell-permeable RUNX3 protein to examine the direct effects of RUNX3 in living cells under non–steady-state conditions and to investigate the feasibility of using RUNX3 as a protein-based therapy for gastric cancer.

Materials and Methods

Expression and purification of MTD fusion proteins

MTD13, MTD57, and MTD108 were derived from signal sequences from NP_639877, CAD0547.1, NP_629842.1, and NP_003842, respectively, as previously described (26, 27). Histidine-tagged fusion proteins containing EGFP or the full-length 46-kDa RUNX3 protein (33) and MTD13, MTD57, MTD85, MTD108, the FGFR MTS (M108, AAVLPVL-LAAP), or a random sequence (S, SANVEPLERL) were cloned into pET-28a(+) (Novagen) and expressed in Escherichia coli BL21-CodonPlus (DE3) cells.

Histidine-tagged recombinant proteins were purified on a Qiagen Ni²⁺ affinity resin under denaturing conditions and refolded by dialysis against 0.55 mol/L guanidine HCl, 0.44 mol/L L-arginine, 50 mmol/L Tris-HCl, 150 mmol/L NaCl, 1 mmol/L EDTA, 100 mmol/L NDSB, 2 mmol/L reduced glutathione, and 0.2 mmol/L oxidized glutathione for 48 hours at 4°C and then changed to RPMI-1640 medium. Proteins were quantified by the Bradford method (Bio-Rad), were aliquoted, and stored at −20°C. The purified proteins were judged to have minimum levels of endotoxin as assessed by the limulus amebocyte lysate (LAL) assay (Associates of Cape Cod, Inc.). Recombinant proteins were named using the following convention: H, R, and M stand for the His tag, RUNX3, and MTD, respectively. Histidine-tagged recombinant proteins were HR (His-RUNX3), HM₄R (His-MTS-RUNX3), HMR₈ (His-MTS-RUNX3-MTS), HM₁₃R (His-MTS-RUNX3-MTS), HM₁₀₈R (His-MTS-RUNX3-MTS), and HM₁₀₈R (His-MTS-RUNX3-MTS).

Protein uptake and tissue distribution

Recombinant proteins were conjugated to 5/6-FITC and uptake by cultured RAW 264.7 and NIH3T3 cells were assessed as described previously (26, 27). Briefly, the cells were treated with 10 μmol/L fluorescein isothiocyanate (FITC)-labeled proteins for 1 hour at 37°C, washed with cold PBS three times, and treated with proteinase K (10 μg/mL) for 20 minutes at 37°C to remove cell surface–bound proteins. Protein uptake was quantified by flow cytometry (FACSCalibur; BD Biosciences). Balb/c mice (6-week-old, female) were injected intraperitoneally (300 μg/head) with FITC only or FITC-conjugated proteins. After 2 hours, the liver, kidney, spleen, lung, heart, and brain were isolated, washed with an O.C.T. compound (Sakura), and frozen on dry ice. Cryosections (15 μm) were analyzed by fluorescence microscopy.

Western blot analysis

Human gastric cancer cell lines MKN28 and NCI-N87 (Korean Cell Line Bank, Seoul, Korea) were cultured in
m cells were then treated with 10 ng/mL for 24 hours and washed extensively with PBS. The antibodies for p21Waf1 and cleaved caspase-3 were from Cell Signaling Technology, and the antibodies for p27 Kip1, PCNA, cyclin A, cyclin E, phospho-Rb (Ser807/811), and VEGF expression in 200 μL ice-cold lysis buffer (20 mmol/L HEPES, pH 7.2, 1% Triton-X, 10% glycerol) and centrifuged at 12,000 rpm for 20 minutes at 4°C. Supernatants were assayed for protein content (Bio-Rad Bradford Protein Assay) and stored at −80°C until use. The antibodies for p21Waf1 and cleaved caspase-3 were from Cell Signaling Technology, and the antibodies for p27Kip1, PCNA, cyclin A, cyclin E, phospho-Rb (Ser807/811), and VEGF were from Santa Cruz Biotechnology. The secondary antibody was goat anti-mouse IgG-HRP (Santa Cruz Biotechnology).

Wound-healing assay
MKN28 and NCI-N87 cells were incubated with TGF-β (2 ng/mL) for 24 hours and washed extensively with PBS. The cells were then treated with 10 μmol/L HR, HM57R, HM85R, HM57R, or HM85R for 1 hour in serum-free medium. The cells were washed twice with PBS, and the monolayer at the center of the well was “wounded” by scraping with a pipette tip. Cell proliferation and/or migration were observed by phase contrast microscopy.

Effects of CP-RUNX3 on cell proliferation and survival
NCI-N87 cells were treated with 5 μmol/L HR, HM57R, HM85R, HM57R, or HM85R for 1 hour at 37°C and analyzed for changes in DNA content and cell survival. To monitor changes in DNA content, the cells were washed twice with cold PBS, resuspended in 200 μL cold PBS, and fixed by gradual addition of 4 mL cold 70% ethanol, washed twice with cold PBS, and re-suspended in PI master mix [40 μg/mL propidium iodide (PI), 100 μg/mL DNase-free RNase in PBS] at a final cell density of 0.5 × 106 cell/mL. The cell mixtures were incubated at 37°C for 30 minutes before analysis by flow cytometry. Changes in cell viability were determined by using the sulforhodamine B (SRB) assay (34) after treating cells with recombinant proteins for 72 hours. The cells were fixed and stained by the addition of 0.4% (w/v) SRB in 1% acetic acid solution. Loss of cell viability was assessed by increased SRB staining as determined by increased absorbance at 540 nm.

Apoptotic and necrotic cells were analyzed using an Annexin-V assay kit (BD Biosciences). Briefly, treated cells were washed twice with cold PBS and resuspended in binding buffer (10 mmol/L HEPEPS, 140 mmol/L NaCl, 25 mmol/L CaCl2, pH 7.4) at a concentration of 1 × 106 cells/mL. The cells were then treated with a solution containing FITC-labeled Annexin-V and PI solution, followed by analysis on a FACSort (BD Biosciences).

Xenograft tumor model
Five-week-old, immunodeficient Balb/c nu/nu mice (Central Lab. Animal Inc.) were subdivided into 4 groups of 5 mice each. NCI-N87 cells were administered to the left upper back of the mouse via subcutaneous injection at a concentration of 1 × 107 cells/mL. Once the tumor size was measured as 60 to 80 mm3 (width2 × length × 0.5), the protein (HR, HM57R, or HM85R) or diluent (PBS) was administered daily for 21 days (100 μg/mouse, 5 mg/kg, 100 μL) via subcutaneous injection at the left upper back of the mouse, at sites adjacent to the tumor. Tumor size was monitored by measuring the longest (length) and shortest dimensions (width) once a day with a dial caliper, and tumor volume was calculated as width2 × length × 0.5. Alternatively, mice (n = 10/group) were treated with proteins via daily intravenous injection in the lateral tail vein for 21 days (300 μg/mouse, 15 mg/kg, 300 μL).

Histological analysis of protein expression and apoptosis
p21Waf1 and VEGF expression in tumors was assessed by immunohistochemical staining of paraffin-embedded sections 21 and 35 days after starting protein therapy as described previously (26, 27). Tissue sections were stained with anti-p21Waf1 (Cell Signaling Technology) or VEGF (Santa Cruz Biotechnology) primary antibodies and with goat anti-mouse IgG-HRP (Biogenex) secondary antibody and counterstained with hematoxylin. Apoptosis in tumor sections was analyzed 21 days after starting protein therapy with the In situ Cell Death Detection Kit, TMR red (Roche), and ApopTag Red In Situ Apoptosis Detection Kit (Chemicon, Billerica) as specified by the suppliers. Reverse-transcription PCR (RT-PCR) analysis was conducted using total RNAs isolated from tumor tissues at day 21.

Statistical analysis
All experimental data obtained from cultured cells are expressed as the means ± SD. Statistical significance was evaluated using a one-tailed Student t test. For animal testing, paired t tests for comparisons between and within groups were used to determine the significance of the differences in tumor volume in vivo. Statistical significance was established at P < 0.05.

Results
Development of cell-permeable RUNX3 proteins
MTD57 and MTD85 were identified from a screen of 1,500 potential hydrophobic signal peptides for sequences with protein transduction activity as assessed using an EGFP reporter protein. Sequences spanning amino acids 1–23 of CAD0547.1 and 20–42 of NP_629842.1 were subsequently modified to LIALLAAPLA and LLAAAAALLLA, respectively (Supplementary Table S1). Both peptides promoted greater cellular uptake of an EGFP cargo protein by cultured NIH3T3 cells than the reference membrane translocating sequence, MTS (Mm), derived from the hydrophobic signal peptide of fibroblast growth factor 4 (FGF4, Supplementary...
Fig. S1A). Their relative cell permeability to the FGF4-MTS was 1.8- and 4.8-fold (Supplementary Fig. S1B). Finally, MTD57, MTD85, and the FGF4 MTS all enhanced the systemic delivery of EGFP proteins to a variety of tissues, including liver, kidney, spleen, lung, heart, and brain after intraperitoneal injection, although the HM57E and HMR5E showed greater tissue distribution 48 hours postinjection than HM57E (Supplementary Fig. S1C). In contrast, HSE, an EGFP protein containing a random sequence (Supplementary Fig. S1C) instead of an MTD, did not accumulate in distal tissues.

RUNX3 fusion proteins containing MTD57, MTD85, and the FGF4 MTS along with a 6× histidine tag and nuclear localization signal (NLS) from SV40 large T antigen (Fig. 1A) were expressed in E. coli DE3 cells, purified under denaturing conditions (Fig. 1B) and refolded, with yields of soluble protein ranging from 2 to 36 mg/L (Fig. 1A). The NLS sequence was included first to enhance nuclear localization (based on our experience with other CP proteins) given reports that RUNX3, which is a nuclear transcription factor, may be inactivated by processes in tumor cells that cause the protein to localize to the cytoplasm (9) and second to enhance the solubility of MTD-containing recombinant proteins.

To examine protein uptake, the recombinant proteins were conjugated to 5/6-FITC and incubated with NIH3T3 cells at (10 mmol/L for 1 hour at 37°C). The cells were washed 3 times with ice-cold PBS, treated with proteinase K (10 mg/ml for 20 minutes at 37°C) to remove surface-bound proteins, nuclei were counterstained with 1 mg/ml propidium iodide, and internalized proteins were visualized by confocal laser scanning microscopy (Fig. 2A). RUNX3 proteins containing MTD57 (HM57R) or MTD85 (HM85R) or the FGF4 MTS (HMm, HRMm and HMmRMm) efficiently entered cells and were localized to various extents in both the nucleus and cytoplasm. In contrast, a RUNX3 protein (HR) containing only the 6×His and NLS sequences did not appear to enter cells (Fig. 2A). While HM57R and HM85R both entered cells, HM85R displayed more uniform cellular distribution, and the protein was more soluble. As with the EGFP cargo, protein uptake of HM85R by RAW264.7 cells was also very efficient (Fig. 2B). In addition, MTD85 enhanced the systemic delivery of RUNX3 protein to a variety of tissues (liver, kidney, spleen, lung, heart, and,
RUNX3 proteins with MTD13 (LAAAALAVLPL) and MTD108 (ALLAALLAP) in place of MTDs 57 and 85 were also evaluated, but the proteins were less soluble, produced lower yields when expressed in E. coli, and entered cells less efficiently (data not shown); therefore, these proteins were not evaluated further.

Biological activities of cell-permeable RUNX3

RUNX3 participates in TGF-β signaling by interacting with SMADs to influence the TGF-β regulated gene expression and inhibit cell-cycle progression. We therefore examined the effects of CP-RUNX3 on cell proliferation and associated biomarker expression in human gastric cancer cell lines, NCI-N87 and MKN28. NCI-N87 cells were incubated in normal culture media either lacking or containing TGF-β and treated with the recombinant RUNX3 proteins fused to a reference MTS (HMₘₘₘₘ), an MTD (HM₅₇ₚₜ₉ and HM₈₅ₚₜ₉), or a RUNX3 protein lacking an MTD (HR; Fig. 3A). While TGF-β alone produced only modest changes in biomarker expression (cell only in Fig. 3A), the cell-permeable forms of RUNX3 suppressed the cyclin A, cyclin E, and VEGF expression and Rb phosphorylation, as assessed by Western blotting. Changes in biomarker expression were greater in the presence than absence of TGF-β, and the greatest suppression was observed with HM₈₅ₚₜ₉ followed by HM₅₇ₚₜ₉, whereas HMₘₘₘₘ produced the smallest effect. Similar results were obtained in the presence of TGF-β using another gastric cancer cell line (MKN28), and the cell-permeable

Figure 2. Efficient MTD-mediated RUNX3 protein delivery into cells and tissues. CP-RUNX3 proteins efficiently entered cells and were localized in both the nucleus and cytoplasm. HM₈₅ₚₜ₉ was systemically delivered to a variety of tissues. A, RUNX3 protein uptake by NIH3T3 cells. NIH3T3 cells were incubated with 10 μmol/L FITC-conjugated recombinant MTD-RUNX3 proteins, an equimolar concentration of unconjugated FITC (FITC only) or vehicle (culture medium RPMI-1640) for 1 hour, washed and treated with proteinase K to remove noninternalized protein, and visualized by fluorescence confocal laser scanning microscopy. B, uptake of MTD-RUNX3 protein (HMₘₘₘₘ) by RAW264.7 cells. Cells were exposed to 10 μmol/L of the FITC conjugated RUNX3 proteins containing MTD85 (HM₈₅ₚₜ₉, red) or lacking MTD (HR, blue) or 10 μmol/L of FITC alone (black thin line) for 1 hour, treated to remove cell-associated but noninternalized protein, and analyzed by flow cytometry. C, systemic RUNX3 protein delivery to murine tissues. Cryosections (15 μm) of saline-perfused organs were prepared from mice 2 hours after intraperitoneal injection of 20 μg FITC or 300 μg FITC-labeled RUNX3 proteins with (HM₈₅ₚₜ₉) and without (HR) the MTD85 sequence. Uptake (A) and tissue distribution (B) of the recombinant proteins (green staining) was assessed by fluorescence microscopy.
RUNX3 proteins also enhanced the expression of the cyclin-dependent kinase inhibitors, p21 and p27, and suppressed the expression of PCNA (Fig. 3B). Finally, HM85R stimulated caspase-3 cleavage, a pro-apoptotic marker (Fig. 3B).

We next examined the ability of cell-permeable RUNX3 to influence cell-cycle re-entry, migration, or proliferation as assessed by a monolayer-wounding assay. Gastric cancer cells MKN28 and NCI-N87 pretreated with 2 ng/mL TGF-β were treated with recombinant proteins for 1 hour, the monolayers were wounded, and cell migration/proliferation in the wound was monitored (Fig. 3C, left) and analyzed statistically (Fig. 3C, right) after 48 hours. All CP-RUNX3 proteins tested (HM85R, HM57R, and HM45R) suppressed repopulation of the wounded monolayer; however, HM45R produced the greatest inhibitory effect in both cell lines by 88% in MKN28 and 82% in NCI-N87 cells, respectively. In light of these results, HM85R was selected as the most active CP-RUNX3 protein for further evaluation as a potential antitumor agent.

Activation of caspase-3 in HM85R-treated cancer cells led us to examine the effects of CP-RUNX3 on apoptosis and necrosis. The effects of treating of NCI-N87 cells with HM85R after 72 hours included substantial loss of cell viability as assessed by the SRB assay (Fig. 4A), enhanced Annexin-V staining (Fig. 4B), and accumulation of cells

Figure 3. CP-RUNX3 protein induces changes in biomarker expression and suppresses cell phenotypes—cell-cycle re-entry and wound healing—in the presence of TGF-β. CP-RUNX3 suppressed the cyclin A, cyclin E, and VEGF expression and Rb phosphorylation, enhanced the expression of the p21 and p27, suppressed the expression of PCNA, and stimulated caspase-3 cleavage in gastric cancer cells in the presence of TGF-β. CP-RUNX3 proteins also suppressed proliferation of cancer cells. A and B, Western blot analyses. NCI-N87 (A) or MKN28 cells (B) incubated without (-) or with (+) TGF-β (2 ng/mL) for 24 hours and treated for 1 hour with 10 μmol/L recombinant RUNX3 proteins fused to FGF4-derived MTS (HM57R, HM85R, or no MTD (HR). Cells were treated with proteins in serum-free media and lysed immediately to analyze Rb phosphorylation or incubated an additional 12 hours in serum-containing media to detect cleaved caspase-3, p21, p27, PCNA, cyclin A, cyclin E, and VEGF. C, Wound-healing assay. Cell monolayers were incubated with TGF-β (2 ng/mL) for 24 hours, treated with HR or HM85R proteins for 1 hour in serum-free media, visualized and (left), and analyzed statistically (right) after an additional 48 hours in normal growth media. Photographed data shown here are representative of 3 independent assays. The data are presented as means ± SD (n = 3). *P < 0.01 as determined by a Student unpaired t test.
with less than G1 DNA content, which occurred primarily at the expense of cells with a G1 DNA content (Fig. 4C). However, most of the cells with enhanced Annexin-V staining also stained with PI (Fig. 4D), indicative of either late apoptosis or necrotic cell death. The lack of Annexin-V single-positive cells, even at early time points, suggests that the loss of cell viability induced by HM85R results from necrotic cell death. The effect was more pronounced in NCI-N87 cells that had higher basal levels of necrosis than MKN28 cells (data not shown). Unlike the gastric cancer cell lines, CP-RUNX3 did not appear to be toxic to NIH3T3 cells (data not shown).

Antitumor activity of cell-permeable RUNX3

We next assessed the antitumor activity of CP-RUNX3 against human cancer xenografts. NCI-N87 cells were injected subcutaneously into nude mice, tumors were allowed to grow in size to 60 to 80 mm³, and then the mice were injected subcutaneously near the tumors with 5 mg/kg recombinant RUNX3 proteins (HR, HM85R) or diluent (PBS) every day for 3 weeks. Mice were observed for an additional 2 weeks after treatments ended (Fig. 5A). HM57R and HM85R significantly suppressed the tumor growth (P < 0.05) during the treatment phase. However, once treatment stopped, sustained antitumor activity was observed only in HM85R-treated mice (87% inhibition at day 21; 74% at day 35, respectively), whereas the growth of HM57R-treated tumors increased, matching the rates observed in control mice. Differences among the tumors from different treatment groups were apparent by external examination (Fig. 5B) and tumors weight (Fig. 5C). While tumor growth was also reduced in mice treated with the HR control protein, which lacks a MTD sequence, the effect was not significant.

CP-RUNX3 was also tested for antitumor activity following systemic rather than local delivery (Fig. 5D). Tumor-bearing mice were prepared as before and were injected intravenously daily for 3 weeks with (i) 15 mg/kg HM85R; (ii) 2 control proteins: HR, RUNX3 lacking an MTD sequence, and HM85E, which contains EGFP instead of the RUNX3 sequence; or (iii) buffer alone. Although HM85E displayed antitumor activity as compared with the control proteins, the effects were relatively modest (70% inhibition at day 21).
Antitumor activity of HM85R was accompanied by apoptosis/necrosis as visualized by terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling (TUNEL) and ApopTag staining of tumor sections analyzed 3 weeks after treatment (Fig. 6A) and by changes in biomarker expression linked to RUNX3 signaling, including enhanced levels of p21Waf1 (Fig. 6B, top) and lower levels of VEGF (Fig. 6B, bottom), CCNE (cyclin E2), FOS, and JUN (Fig. 6C) at day 21. Loss of p21 Waf1 expression persisted in HM 85R-treated tumors at day 35 (Fig. 6D), whereas VEGF levels returned to normal by day 35 (data not shown). In contrast, tumor biomarker expression was not affected in mice treated with the HR control protein, which lacks an MTD sequence. Finally, all of the proteins tested appeared to be well tolerated as assessed by external appearance, activity level, and body weight (Supplementary Fig. S2).

Discussion

The present study investigated the use of MITT to deliver biologically active RUNX3 protein into gastric cancer cells both in vitro and in vivo. Proteins engineered to enter cells suppressed cell proliferation, wound healing, and survival, consistent with its role as a tumor suppressor. Moreover, the cell-permeable RUNX3 induced changes in biomarker expression, notably p21Waf1 and VEGF, consistent with its
known role in TGF-β signaling. The protein also enhanced apoptotic/necrotic cell death of NCI-N87 cells, in vitro and apoptosis/necrosis in NCI-N87 tumor xenografts, with changes in p21 Waf1 and VEGF expression consistent with a direct effect on tumor cells.

The present study used 2 new MTDs, MTD57 and MTD85, to deliver RUNX3 proteins into cultured cells and tumors. These MTD sequences were developed by a process in which predicted leader peptides were first tested for their ability to promote uptake of an EGFP reporter protein by cultured cells, and the sequences were subsequently modified to eliminate charged amino acids, increase the predicted α-helical content, and limit the number of consecutive hydrophobic residues. MTD85 was observed to be a more efficient delivery vehicle than MTD57 as assessed with EGFP and RUNX3 protein cargoes. Consistent with greater protein uptake, MTD85-modified RUNX3 proteins had greater biologic activity both in vitro and in vivo. Computer models also suggest that MTD85 has a greater α-helical structure than MTD57 (Supplementary Table S1), a feature associated with enhanced protein uptake (29). However, further study will be required to determine protein sequences and/or structures required for optimal protein delivery.

In principle, protein-based therapeutics offers a way to control biochemical processes in living cells under non-steady-state conditions and with fewer off-target effects than conventional small-molecule therapeutics. In practice, systemic protein delivery in animals has proven difficult due to poor tissue penetration and rapid clearance (30, 31). Some success has been achieved using sequences derived from hydrophobic signal peptides to deliver biologically active peptides and proteins to a variety of tissues (including liver, lung, pancreas, and lymphoid tissues). Striking therapeutic benefits have been reported using a small peptide to protect against otherwise lethal inflammatory responses (21, 23–25). Therapeutic benefits have also been achieved using larger cell-permeable proteins including: (i) suppressor of cytokine signaling 3 (SOCS3) to protect animals against lethal inflammation (22), (ii) the NM23 metastasis suppressor to inhibit the seeding and growth of pulmonary metastases (26), and (iii) the cyclin-dependent kinase inhibitor, p18INK4c, to inhibit the growth of tumor xenografts (27). As the practical development of cell-permeable proteins has a large empirical component, the present study is part of a larger effort to understand the variables that might predict whether a given protein can be delivered in biologically active form into mammalian cells and tissues. In addition, we wanted to determine whether CP-RUNX3 had activities consistent with tumor suppression and test the feasibility of using RUNX3 as a protein-based therapy to treat gastric cancer, a cancer for which no effective therapies currently exist (35).

The antitumor activity of CP-RUNX3 was comparable with that associated with augmenting RUNX3 gene expression in tumor cell lines. This is despite the fact that subcutaneous tumors, due to limited vascularization, provide a challenging test of in vivo protein delivery and uptake. Thus, the activity of CP-RUNX3 approached the expected theoretical limit as determined by cell-intrinsic RUNX3 biology—consistent with the idea that RUNX3 can function as a
tumor suppressor in gastric cancer. However, this interpretation carries several caveats. First, although mice tolerated high levels of RUNX3 protein without weight loss or obvious adverse effects, the tumor-specific effects of exogenous CP-RUNX3 are potentially nonphysiologic, as protein levels delivered by transduction are higher [compare levels of CP-RUNX3 in cells and tissues, Fig. 2, with levels of endogenous RUNX3 reported elsewhere (refs. 9, 10)]. Moreover the influx of CP-RUNX3 is relatively rapid (within 60 minutes)—a greater rate of change than would be expected in normal cells undergoing cell differentiation or oncogenic transformation. Second, although RUNX3 directly targeted xenografted tumor cells as assessed by changes in p21Waf1 and VEGF expression, we cannot exclude the possibility CP-RUNX3 also targets other cells such as vascular endothelium that influence tumor growth and/or survival in the subcutaneous niche.

The antitumor activity of CP-RUNX3 fell short of that achieved by either CP-p16INK4c or CP-MN23, which target cell cycle and metastasis, respectively (26, 27). Moreover, CP-p16INK4c and CP-MN23 produced prolonged therapeutic effects when administered systemically (i.e., by intravenous injection), whereas CP-RUNX3 was most active when administered subcutaneously in regions surrounding the tumors. Therefore, further therapeutic development of CP-RUNX3 will require formulations with improved bioavailability that influence tumor growth and/or survival in the subcutaneous niche.

Disclosure of Potential Conflicts of Interest

J. Lim is an employee of ProCell Therapeutics, Inc. D. Jo was the founding scientist of ProCell Therapeutics, Inc. and is affiliated to Vanderbilt University at present. Hereby, these two authors disclose a financial interest in the company. No potential conflicts of interest were disclosed by the other authors.

Authors' Contributions

Conception and design: D. Jo

Development of methodology: J. Lim, T. Duong, N. Do, P. Do, D. Jo

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J. Lim, T. Duong, N. Do, P. Do, D. Jo

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J. Lim, T. Duong, N. Do, P. Do, J. Kim, H. Kim, W. El-Rifai, H. E. Ruley, D. Jo

Writing, review, and/or revision of the manuscript(s): H. E. Ruley, D. Jo

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): D. Jo

Study supervision: D. Jo

Acknowledgments

The authors thank Dr. Chris Ko for his critical comment and many young scientists who were involved in the early stage of this study for their technical assistance.

Grant Support

This work was supported by grant of the Industrial Strategic Technology Development Program [10032101 to D. Jo] of Ministry of Knowledge Economy, Republic of Korea. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 14, 2012; revised November 6, 2012; accepted November 21, 2012; published OnlineFirst December 10, 2012.

References

Antitumor Activity of Cell-Permeable RUNX3 Protein in Gastric Cancer Cells

Junghee Lim, Tam Duong, Nga Do, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-2692

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2012/12/10/1078-0432.CCR-12-2692.DC1

Cited articles
This article cites 35 articles, 11 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/19/3/680.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.