A Phase I/II Trial of Pazopanib in Combination with Lapatinib in Adult Patients with Relapsed Malignant Glioma

David A. Reardon1, Morris D. Groves2, Patrick Y. Wen1, Louis Nabors3, Tom Mikkelisen4, Steve Rosenfeld5, Jeffrey Raizer6, Jorge Barrios6, Roger E. McLendon8, A. Benjamin Suttle9, Mohammed M. Dar9, and Johann de Bono7

Abstract

Purpose: Increased mitogenic signaling and angiogenesis, frequently facilitated by somatic activation of EGF receptor (EGFR; ErbB1) and/or loss of PTEN, and VEGF overexpression, respectively, drive malignant glioma growth. We hypothesized that patients with recurrent glioblastoma would exhibit differential antitumor benefit based on tumor PTEN/EGFRvIII status when treated with the antiangiogenic agent pazopanib and the ErbB inhibitor lapatinib.

Experimental Design: A phase II study evaluated the antitumor activity of pazopanib 400 mg/d plus lapatinib 1,000 mg/d in patients with grade 4 malignant glioma and known PTEN/EGFRvIII status not receiving enzyme-inducing anticonvulsants (EIAC). The phase II study used a two-stage Green–Dahlberg design for futility. An independent, parallel phase I component determined the maximum-tolerated regimen (MTR) of pazopanib and lapatinib in patients with grade 3/4 glioma receiving EIACs.

Results: The six-month progression-free survival (PFS) rates in phase II (n = 41) were 0% and 15% in the PTEN/EGFRvIII-positive and PTEN/EGFRvIII-negative cohorts, respectively, leading to early termination. Two patients (5%) had a partial response and 14 patients (34%) had stable disease lasting 8 or more weeks. In phase I (n = 34), the MTR was not reached. On the basis of pharmacokinetic and safety review, a regimen of pazopanib 600 mg plus lapatinib 1,000 mg, each twice daily, was considered safe. Concomitant EIACs reduced exposure to pazopanib and lapatinib.

Conclusions: The antitumor activity of this combination at the phase II dose tested was limited. Pharmacokinetic data indicated that exposure to lapatinib was subtherapeutic in the phase II evaluation. Evaluation of intratumoral drug delivery and activity may be essential for hypothesis-testing trials with targeted agents in malignant glioma. Clin Cancer Res; 19(4); 900–8. ©2012 AACR.
doses of lapatinib and pazopanib.
	rated a phase I dose-escalation study to evaluate the impact
inhibitor therapy (29, 30). In addition, our study incorpo-
with glioblastoma are more likely to respond to EGFR

studies showed that these markers predict which patients
tumor specimens, as prior

targeted pathway inhibitors include rationally designed
disappointing results (19–26).

Akt and RAS-MAPK pathway mediators have generated

(16–18), initial studies among patients with nonenriched
recurrent glioblastoma treated with inhibitors of key PI3/
Akt and RAS-MAPK pathway mediators have generated
disappointing results (19–26).

Proposed strategies to improve outcome associated with
targeted pathway inhibitors include rationally designed
combinatorial regimens and accrual enrichment of patients
predicted to have an increased likelihood of response based
on tumor genetic characterization. Supported by preclinical
studies showing that dual targeting of EGFR and VEGF
leads to enhanced antitumor activity (27, 28), we hypothe-
sized that inhibition of EGFR signaling using lapatinib
(Tykerb; GlaxoSmithKline) administered with pazopanib
(Votrient; GlaxoSmithKline), an oral multitargeted
tyrosine kinase inhibitor of VEGF receptors (VEGFR)-1,
(VEGFR)-2, VEGFR-3, platelet-derived growth factor receptors
(PDGFRA)-α/β, and c-kit, would be well tolerated and have
antitumor activity among patients with recurrent glioblas-
toma. Furthermore, we stratified enrollment based on PTEN
and EGFRVIII overexpression. Pharmacokinetic
analyses indicated that dosing with lapatinib was sub-
therapeutic and that use of EIACs may decrease exposure
to pazopanib. In addition, the assessment of PTEN and
EGFRVIII was based on archival specimens. Future stud-
ies with targeted agents should consider prospective
evaluation of target biomarkers, intratumoral drug deliv-
er, and discontinuous or intermittent high-dose sche-
dules to maximize the likelihood of target blockade.

dosages of lapatinib and pazopanib in the presence of an EIAC. The
secondary objective was to assess the pharmacokinetics of
combined with pazopanib in the presence of an EIAC. A
maximum-tolerated regimen (MTR) of pazopanib
was based on results from a previous phase I study
(VEG10006; NCT00158782; ref. 31). All patients received
pazopanib 400 mg q.d. plus lapatinib 1,000 mg q.d. without
food (1 hour before or 2 hours after a meal). On the basis of
prior retrospective analyses of patients with recurrent glio-
blasta treated with EGFR inhibitor therapy (29, 30), patients
with either intact PTEN or EGFRVIII expression were stratified as biomarker-negative; those without PTEN and
EGFRVIII expression were stratified as biomarker-positive.

The primary endpoints included 6-month PFS rate and
safety in each stratum. A 2-stage Green–Dahlberg design
was used wherein the second stage of the study was to
proceed only if no more than 50% or 60% of patients in the
bio marker-positive and biomarker-negative strata, respec-
tively, had died or progressed after 2 months on study. The
secondary endpoints were PFS and pharmacokinetics [area
under the concentration-time curve to 24 hours postdose
(AUC(0–24)), maximum observed concentration (Cmax),
time to maximum concentration (tmax), concentration 24
hours postdose (C24h)] of pazopanib and lapatinib in the
absence of an EIAC. A translational objective was to identify
predictive clinical markers.

Phase I study design and treatment

This was a multicenter, open-label, nonrandomized, phase
II study (Clinicaltrials.gov registration: NCT00350727)
among patients with recurrent malignant glioma not receiv-
ing EIAC (Supplementary Fig. S1). The study dose of pazo-
panib 400 mg once daily (q.d.) plus lapatinib 1,000 mg q.d.
was based on results from a previous phase I study
(VEG10006; NCT00158782; ref. 31). All patients received
pazopanib 400 mg q.d. plus lapatinib 1,000 mg q.d. without
food (1 hour before or 2 hours after a meal). On the basis of
prior retrospective analyses of patients with recurrent gli-
oblastoma treated with EGFR inhibitor therapy (29, 30),
patients with either intact PTEN or EGFRVIII expression were stratified as biomarker-positive; those without PTEN and
EGFRVIII expression were stratified as biomarker-negative.

The primary endpoints included 6-month PFS rate and
safety in each stratum. A 2-stage Green–Dahlberg design
was used wherein the second stage of the study was to
proceed only if no more than 50% or 60% of patients in the
bio marker-positive and biomarker-negative strata, respec-
tively, had died or progressed after 2 months on study. The
secondary endpoints were PFS and pharmacokinetics [area
under the concentration-time curve to 24 hours postdose
(AUC(0–24)), maximum observed concentration (Cmax),
time to maximum concentration (tmax), concentration 24
hours postdose (C24h)] of pazopanib and lapatinib in the
absence of an EIAC. A translational objective was to identify
predictive clinical markers.

Phase I study design and treatment

In the independent and parallel phase I study, the pri-
ym objective was to determine the safety, tolerability, and
the maximum-tolerated regimen (MTR) of pazopanib
combined with lapatinib in the presence of an EIAC. A
secondary objective was to assess the pharmacokinetics of
pazopanib and lapatinib in the presence of an EIAC. The
starting dose of pazopanib was 200 mg q.d., with escalation
up to 600 mg twice daily (b.i.d.). The starting dose of lapatinib was 1,500 mg q.d., with escalation up to 1,000 mg b.i.d. Three to 6 patients were recruited at each dose level, and once the MTR was determined, up to 9 additional patients were to be enrolled in an expanded cohort (Supplementary Fig. S1).

The MTR was defined as the highest combined dose of pazopanib and lapatinib at which no more than 1 of 6 patients experienced dose-limiting toxicity (DLT) within the first 28 days of treatment (see Supplementary Methods for details).

Study assessments

All patients who received at least 1 dose of study drugs were assessed for safety. A complete medical history, physical examination, vital signs, laboratory tests, ECOG performance status, electrocardiograms, and cardiac assessments (multigated acquisition scan or echocardiogram) were conducted throughout the study and within 28 days after the last pazopanib and/or lapatinib dose. Blood pressure was monitored at scheduled clinic visits. Adverse events were continuously monitored using the National Cancer Institute Common Toxicity Criteria for Adverse Events version 3.0. Disease assessments were conducted at baseline, at weeks 4 and 8, and every 8 weeks thereafter by gadolinium-enhanced MRI scans. Response was evaluated according to the Macdonald and colleagues’ criteria (32). PFS was estimated using Kaplan–Meier curves.

Pharmacokinetic assessments

In the phase I study, blood samples were collected for determination of pazopanib and lapatinib concentrations on day 15, within 1 hour before dosing and at 1, 2, 4, 6, 8, and 24 hours after dosing. In the phase II study, blood samples were collected for determination of pazopanib and lapatinib concentrations on day 1 of cycle 2, within 1 hour before dosing and at 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, and 24 hours after dosing.

Noncompartmental analysis of concentration–time data was conducted using noncompartmental Model 200 (for extravascular administration) of WinNonlin Professional Edition version 5.2 (Pharsight Corporation) to calculate the pharmacokinetic parameters, including AUC\(_{0-24h}\), C\(_{\text{max}}\) and \(t_{\text{max}}\).

Immunohistochemistry

These protocols were developed and standardized by the Image Cytometry Laboratory, Duke University Medical Center (Durham, North Carolina; see Supplementary Methods for details). The tests were validated under Good Laboratory Practices standards devised by the College of American Pathology (Northfield, IL), and the laboratory is certified under the Clinical Laboratory Improvements Amendments of 1988. Five micrometer tissue sections were derived from formalin-fixed, paraffin-embedded, archival tumor tissue obtained at original diagnosis or at recurrence.

The intensity of cytoplasmic/membranous staining detected by immunohistochemistry was scored on a scale of 0 to 4+ and the distribution was defined as the percentage of cells with any level of expression. Immunohistochemistry staining was defined as “positive” for tumors expressing 2 to 4+ intensity in at least 25% of tumor cells and as “negative” for tumors expressing either 0 to 1+ staining in any percentage of tumor cells or 2 to 4+ intensity in less than 25% of tumor cells (33).

Results

Patient characteristics

There were 41 patients in the phase II study, including 19 biomarker-positive and 22 biomarker-negative patients, and 34 patients in the phase I dose-escalation and expansion cohorts (Table 1). The majority of patients were male (72%) and had grade 4 malignant glioma (87%). Patients enrolled in phase I were younger (median age, 48 years) than those in phase II (median age, 55 years).

Phase II trial data

Exposure and safety. The median duration of exposure to pazopanib and lapatinib was 56 days (range, 18–1,037 days). Forty patients (98%) experienced at least 1 adverse event, and 35 patients (85%) experienced treatment-related adverse events. The most frequently reported treatment-related adverse events included diarrhea (56%), fatigue (34%), hypertension (24%), and rash (24%; Table 2). A total of 11 patients (27%) experienced a total of 33 interruptions in pazopanib and/or lapatinib dosing because of adverse events. Dose reductions because of adverse events occurred in 4 patients with grade 1/2 events, including rash (1), diarrhea and increased serum bilirubin (1), nausea and vomiting (1), and confusional state (1). Five patients (12%) permanently discontinued study therapy because of adverse events.

Clinical activity. One patient in each biomarker strata achieved a partial response based on investigator assessment (Table 3); of note, these responses were maintained for 7.4 and 3.7 months. The 6-month PFS rates were 0% and 15% in the biomarker-positive and biomarker-negative strata, respectively. Median PFS was similar between the 2 groups: 56 days [95% confidence interval (CI), 45–113] in the biomarker-negative stratum and 62 days (95% CI, 56–90) in the biomarker-positive stratum (Fig. 1). The study was stopped for lack of efficacy.

Pharmacokinetics. Analysis of data from 22 patients in the phase II study showed that the mean pazopanib C\(_{24}\) was higher than the therapeutic target concentration of 15 µg/mL (Table 4). However, the mean lapatinib C\(_{\text{max}}\) (1.3 µg/mL) was lower than the value (2.43 µg/mL) that has been associated with therapeutic benefit (34). The pharmacokinetics of either agent did not differ between the biomarker strata (data not shown).

Parallel phase I trial data

Overall, 6 dosing levels were evaluated (Table 5) and the median duration of exposure to pazopanib and lapatinib was 56 days (range, 1–830 days). With the exception of the initial dosing cohort (pazopanib 200 mg q.d. plus lapatinib...
Table 1. Patient baseline characteristics and disposition

<table>
<thead>
<tr>
<th></th>
<th>Phase I* (N = 34)</th>
<th>Biomarker-positive (n = 19)</th>
<th>Biomarker-negative (n = 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, y (range)</td>
<td>48 (26, 70)</td>
<td>56 (42, 73)</td>
<td>50 (20, 76)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>23 (68)</td>
<td>14 (74)</td>
<td>17 (77)</td>
</tr>
<tr>
<td>Female</td>
<td>11 (32)</td>
<td>5 (26)</td>
<td>5 (23)</td>
</tr>
<tr>
<td>ECOG performance status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5 (15)</td>
<td>8 (42)</td>
<td>5 (23)</td>
</tr>
<tr>
<td>1</td>
<td>28 (82)</td>
<td>11 (58)</td>
<td>16 (73)</td>
</tr>
<tr>
<td>2</td>
<td>1 (3)b</td>
<td>0</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Histology at screening, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>8 (24)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grade 4</td>
<td>24 (71)</td>
<td>19 (100)</td>
<td>22 (100)</td>
</tr>
<tr>
<td>Biomarkers, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFRvIII+/PTEN+</td>
<td>ND</td>
<td>8 (42)</td>
<td>NA</td>
</tr>
<tr>
<td>EGFRvIII+/PTEN−</td>
<td>ND</td>
<td>7 (37)</td>
<td>NA</td>
</tr>
<tr>
<td>EGFRvIII+/PTEN+</td>
<td>ND</td>
<td>4 (21)</td>
<td>NA</td>
</tr>
<tr>
<td>pAKT status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>ND</td>
<td>10 (53)</td>
<td>19 (86)</td>
</tr>
<tr>
<td>Negative</td>
<td>ND</td>
<td>9 (47)</td>
<td>3 (14)</td>
</tr>
<tr>
<td>MAPK status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>ND</td>
<td>14 (74)</td>
<td>14 (64)</td>
</tr>
<tr>
<td>Negative</td>
<td>ND</td>
<td>5 (26)</td>
<td>6 (27)</td>
</tr>
<tr>
<td>Missing/unknown</td>
<td>ND</td>
<td>0</td>
<td>2 (9)</td>
</tr>
<tr>
<td>Months since diagnosis, median (interquartile range)</td>
<td>33.5 (14.8–57.6)</td>
<td>10.2 (7.3–18.4)</td>
<td>11.9 (8.1–19.1)</td>
</tr>
<tr>
<td>Prior therapy, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>34 (100)</td>
<td>17 (89)</td>
<td>22 (100)</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>33 (97)</td>
<td>18 (89)</td>
<td>22 (100)</td>
</tr>
<tr>
<td>Biologics</td>
<td>10 (29)</td>
<td>4 (21)</td>
<td>7 (32)</td>
</tr>
<tr>
<td>Immunotherapy</td>
<td>1 (3)</td>
<td>1 (5)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Best response to most recent prior chemotherapy, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>1 (3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PR</td>
<td>1 (3)</td>
<td>0</td>
<td>1 (5)</td>
</tr>
<tr>
<td>SD</td>
<td>11 (32)</td>
<td>6 (32)</td>
<td>10 (45)</td>
</tr>
<tr>
<td>PD</td>
<td>19 (55)</td>
<td>11 (58)</td>
<td>11 (50)</td>
</tr>
<tr>
<td>Unknown/missing</td>
<td>2 (6)</td>
<td>2 (11)</td>
<td>0</td>
</tr>
<tr>
<td>Concomitant EIAC, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any EIAC</td>
<td>34 (100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>24 (71)</td>
<td>0c</td>
<td>0</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>11 (32)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>2 (6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Primidone</td>
<td>1 (3)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: CR, complete response; MAPK, mitogen-activated protein kinase; NA, not applicable; ND, not determined; PD, progressive disease; PR, partial response; SD, stable disease.

*Phase I cohorts included: pazopanib (PAZ) 200 mg + lapatinib (LAP) 1,500 mg q.d., PAZ 800 mg + LAP 1,500 mg q.d., PAZ 800 mg q.d. + LAP 500 mg b.i.d., PAZ 800 mg q.d. + LAP 750 mg b.i.d., PAZ 800 mg q.d. + LAP 1,000 mg b.i.d., PAZ 600 mg b.i.d. + LAP 1,000 mg b.i.d.

bOne patient had a baseline ECOG of 2 that improved to 1 at screening; therefore, this was not considered a protocol violation.

cOne patient received phenytoin 300 mg after initiating study treatment.
1,500 mg q.d.), 1 patient in each of the other 5 cohorts experienced a DLT. Treatment-related adverse events (Table 2) occurred in 28 patients (82%), were primarily grades 1 or 2, and most frequently included diarrhea (56%), hypertension (26%), fatigue (26%), nausea (24%), thrombocytopenia (15%), and neutropenia (12%). Four patients (12%) permanently discontinued study therapy due to adverse events.

<p>| Table 2. Summary of treatment-related adverse events in 10% or more of patientsa |
|----------------------------------|----------------------------------|----------------------------------|
| | Phase I patients, n (%)b (N = 34) | Phase II patients, n (%)c (N = 41) |</p>
<table>
<thead>
<tr>
<th></th>
<th>All grades</th>
<th>Grade 3/4</th>
<th>All grades</th>
<th>Grade 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>19 (56%)</td>
<td>1 (3%)</td>
<td>23 (56%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>9 (26%)</td>
<td>2 (6%)</td>
<td>14 (34%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>9 (26%)</td>
<td>0</td>
<td>10 (24%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>8 (24%)</td>
<td>1 (3%)</td>
<td>7 (17%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Elevated ALT</td>
<td>6 (18%)</td>
<td>2 (6%)</td>
<td>4 (10%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>5 (15%)</td>
<td>2 (6%)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>4 (12%)</td>
<td>3 (9%)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Elevated AST</td>
<td>4 (12%)</td>
<td>1 (3%)</td>
<td>3</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Rash</td>
<td>4 (12%)</td>
<td>0</td>
<td>10 (24%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>NR</td>
<td>NR</td>
<td>8 (20%)</td>
<td>5 (12%)</td>
</tr>
<tr>
<td>Hyperbilirubinemia</td>
<td>NR</td>
<td>NR</td>
<td>5 (12%)</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>NR</td>
<td>NR</td>
<td>5 (12%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Dermatitis acroform</td>
<td>NR</td>
<td>NR</td>
<td>6 (15%)</td>
<td>0</td>
</tr>
<tr>
<td>Elevated amylase</td>
<td>NR</td>
<td>NR</td>
<td>4 (10%)</td>
<td>0</td>
</tr>
<tr>
<td>Elevated lipase</td>
<td>NR</td>
<td>NR</td>
<td>4 (10%)</td>
<td>3 (7%)</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>NR</td>
<td>NR</td>
<td>4 (10%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; NR, not reported.

aPer National Cancer Institute Common Toxicity Criteria for Adverse Events version 3.0 criteria for toxicity grading.

bPhase I cohorts included: pazopanib (PAZ) 200 mg + lapatinib (LAP) 1,500 mg q.d., PAZ 800 mg + LAP 1,500 mg q.d., PAZ 800 mg q.d. + LAP 500 mg b.i.d., PAZ 800 mg q.d. + LAP 750 mg b.i.d., PAZ 800 mg q.d. + LAP 1,000 mg b.i.d., PAZ 800 mg b.i.d. + LAP 1,000 mg b.i.d.

1,500 mg q.d.), 1 patient in each of the other 5 cohorts experienced a DLT. Treatment-related adverse events (Table 2) occurred in 28 patients (82%), were primarily grades 1 or 2, and most frequently included diarrhea (56%), hypertension (26%), fatigue (26%), nausea (24%), thrombocytopenia (15%), and neutropenia (12%). Four patients (12%) permanently discontinued study therapy due to adverse events.

| Table 3. Tumor response based on investigator-assessed best response |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Dose Level, mg | n | Complete | Partial | Stable (<8 wk) | Progressive | Progressive |
| Phase I (concomitant EIAC) | PAZ 200 + LAP 1,500 | 4 | 0 | 1 (25) | 1 (25) | 0 | 2 (50) |
| | PAZ 800 + LAP 1,500 | 6 | 0 | 0 | 2 (33) | 4 (67) | 0 |
| | PAZ 800 + LAP 500a | 5 | 0 | 1 (20) | 2 (40) | 2 (40) | 2 (40) |
| | PAZ 800 + LAP 750a/b | 7 | 0 | 1 (14) | 1 (14) | 2 (29) | 2 (29) |
| | PAZ 800 + LAP 1,000a | 6 | 0 | 1 (17) | 1 (17) | 2 (33) | 2 (33) |
| | PAZ 800a + LAP 1,000a | 6 | 0 | 0 | 4 (67) | 1 (17) | 0 |
| Phase II (no EIAC) | PAZ 400 + LAP 1,000c | 41 | 0 | 2 (5) | 14 (34) | 16 (39) | 9 (22) |
| Biomarker-positive | 19 | 0 | 1 (5) | 7 (37) | 7 (37) | 4 (21) |
| Biomarker-negative | 22 | 0 | 1 (5) | 7 (32) | 9 (41) | 5 (23) |

Abbreviations: LAP, lapatinib; PAZ, pazopanib.

aAdministered twice daily.

bOne patient in this cohort was not evaluable because of missing postbaseline tumor assessment.

cAll patients in phase II.

dPositive/negative for PTEN or EGFRVIII or both.
Pharmacokinetic analyses from 30 phase I patients revealed that overall, mean C_{max} and $\text{AUC}(0–24)$ increased in a dose-proportional manner (Table 4). Median and geometric mean pazopanib C_{max} values generally were similar across cohorts that received pazopanib 800 mg q.d.. Median and geometric mean pazopanib concentrations assessed at 24 hours were lower than the targeted therapeutic exposure (15 μg/mL) in these cohorts. Mean lapatinib C_{max} values in these cohorts were lower than the value (2.43 μg/mL) associated with therapeutic benefit (34).

The median pazopanib C_{24} was approximately 4-fold higher in the pazopanib 600 mg b.i.d. plus lapatinib 1,000 mg b.i.d. expansion cohort (43.8 μg/mL) than in the pazopanib 800 mg q.d. plus lapatinib 1,000 mg b.i.d. dose-escalation cohort (10.9 μg/mL), and was above the target therapeutic concentration (15 μg/mL). However, the geometric means of lapatinib C_{max} after 1,000 mg b.i.d. were similar in the expansion and dose-escalation cohorts (\approx0.74 μg/mL), both of which were below the targeted C_{max} of 2.43 μg/mL.

Table 4. Summary of pazopanib and lapatinib pharmacokinetic parameters

<table>
<thead>
<tr>
<th>Dose level, mg</th>
<th>n/n</th>
<th>$\text{AUC}_{0–24}, \mu$g.h/mL</th>
<th>C_{max}, μg/mL</th>
<th>C_{24}, μg/mL</th>
<th>t_{max}, h</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAZ 200/LAP 1,500</td>
<td>4/4</td>
<td>107 (52, 155)a,bc</td>
<td>10.6 (4.2, 12.4)c</td>
<td>1.4 (0.9, 3.0)c</td>
<td>2.0 (1.8, 4.0)/2.9</td>
</tr>
<tr>
<td>PAZ 800/LAP 500a</td>
<td>4/3</td>
<td>635 (100, 704)d,NR</td>
<td>36.0 (12.2, 55.2)d</td>
<td>6.6 (0.7, 13.7)d</td>
<td>4.0 (2.0, 6.0)/4.0</td>
</tr>
<tr>
<td>PAZ 800/LAP 1,500</td>
<td>6/5</td>
<td>449 (336, 601)$^{e,6.9}$</td>
<td>33.6 (26.7, 42.4)e</td>
<td>8.7 (4.6, 16.4)e</td>
<td>3.2 (1.0, 8.0)/2.0</td>
</tr>
<tr>
<td>PAZ 800/LAP 750a</td>
<td>6/6</td>
<td>457 (197, 1,063)/NR</td>
<td>39.3 (21.8, 70.7)e</td>
<td>8.9 (2.9, 27.2)e</td>
<td>4.0 (2.0, 8.0)/2.0</td>
</tr>
<tr>
<td>PAZ 800/LAP 1,000a</td>
<td>5/6</td>
<td>331 (157, 697)/9.9</td>
<td>27.3 (15.4, 48.3)e</td>
<td>7.4 (2.0, 27.6)e</td>
<td>3.9 (1.0, 8.0)/4.0</td>
</tr>
<tr>
<td>PAZ 600a/LAP 1,000a</td>
<td>4/5</td>
<td>NR</td>
<td>43.8 (38.9, 56.9)e</td>
<td>43.0 (26.1, 47.2)e</td>
<td>5.0 (2.1, 23.7)/2.1</td>
</tr>
<tr>
<td>PAZ 400/LAP 1,000</td>
<td>22/22</td>
<td>615 (512, 739)$^{d,7.6}$</td>
<td>37.5 (33.3, 42.3)d</td>
<td>19.6 (15.1, 25.6)d</td>
<td>3.0 (0.9, 8.0)/4.0</td>
</tr>
</tbody>
</table>

Abbreviations: LAP, lapatinib; NR, not reported; PAZ, pazopanib.

aAdministered twice daily.
bData presented as geometric mean (95% CI), except where indicated.
cData presented as median (range).
an = 3.
bn = 5.
cn = 18.
dn = 19.
compared with those defined in earlier studies (steady state plasma levels of lapatinib in this study were subtherapeutic pazopanib 400 mg plus lapatinib 1,000 mg; ref. 31), the drug at the dose level used in the phase II component (i.e., pazopanib and lapatinib did not alter exposure of either therapy in patients with recurrent glioblastoma (37, 38). That achieved with either pazopanib or lapatinib mono-therapy in patients with recurrent glioblastoma (37, 38).

On the basis of safety and pharmacokinetic review, pazopanib 600 mg b.i.d. plus lapatinib 1,000 mg b.i.d. (cohort 6) was considered safe and tolerable.

All patients in the phase I study had measurable disease at baseline. Three patients achieved a partial response lasting 6.5, 2.4, and more than 7.6 months: 1 patient each in the pazopanib 200 mg q.d. plus lapatinib 1,500 mg q.d., pazopanib 800 mg q.d. plus lapatinib 750 mg b.i.d., and pazopanib 800 mg q.d. plus lapatinib 1,000 mg b.i.d. cohorts (Table 3 and Supplementary Fig. S2).

Discussion

The rationale for this study was based on 2 emerging strategies designed to enhance the antitumor activity of targeted signaling inhibitors in oncology. First, we used a combinatorial regimen predicted to generate at least additive antitumor activity (35). Indeed, preclinical studies have confirmed enhanced glioblastoma inhibition following dual VEGF/EGFR-targeted therapy (27, 28). Second, we stratified patients based on tumor PTEN and EGFRvIII status because these markers have been previously associated with response to EGFR inhibitor therapy (29, 30). Despite these considerations, the combination of pazopanib plus lapatinib exhibited limited antitumor activity in the current study. Of note, disappointing activity was also observed in a recent study in which the addition of the EGFR tyrosine kinase inhibitor erlotinib to bevacizumab yielded antitumor activity no better than previously noted with bevacizumab alone (36). Furthermore, activity in the current study did not differ among patients stratified by tumor EGFRvIII or PTEN status. In fact, the antitumor activity observed was similar to that achieved with either pazopanib or lapatinib mono-therapy in patients with recurrent glioblastoma (37, 38).

Although previous clinical data suggested that combining pazopanib and lapatinib did not alter exposure of either drug at the dose level used in the phase II component (i.e., pazopanib 400 mg plus lapatinib 1,000 mg; ref. 31), the plasma levels of lapatinib in this study were subtherapeutic compared with those defined in earlier studies [steady state geometric mean (95% CI) C_{max} of 2.43 μg/mL (1.57, 3.77) and AUC of 36.2 μg.h/mL (23.4, 56); ref. 39]. Clearly, the subtherapeutic levels of lapatinib likely contributed to the poor outcome, and dosing strategies to achieve better intratumoral lapatinib concentrations in future studies with glioma patients may include pulsatile, intermittent schedules at higher dose level.

However, it is also possible that the underlying rationale for biomarker stratification used in the current study may be erroneous. Indeed, the observation of association of PTEN with response to EGFR tyrosine kinase inhibitor therapy among patients with recurrent glioblastoma is derived from a retrospective analysis (30), and prospective studies have failed to confirm an association with between PTEN, EGFR, or EGFRvIII status and response to EGFR-targeted therapy (23, 24, 26, 37, 40). Furthermore, biomarker characterization in the current study was conducted on archival tumor material obtained primarily at original diagnosis, and therefore may not accurately reflect tumor characteristics at recurrence.

Additional factors that may have contributed to the low activity of these agents include the overall complexity of aberrant cell signaling in malignant glioma (3, 41, 42), deficiency of critical tumor suppressor molecules such as PTEN (43), and activation of alternative pathway mediators (44–46). Finally, although the antitumor activity of EGFR-inhibiting agents may be enhanced by combination with VEGFR-targeting agents in some glioblastoma models (28), it is also possible that anti-VEGF therapy may have diminished lapatinib delivery to the tumor microenvironment (47).

Antiepileptic drugs are commonly used in patients with primary and metastatic brain tumors and may modulate cytochrome function, thereby potentially altering exposure to drugs metabolized by these enzymes (including pazopanib and lapatinib). Of note, both pazopanib and lapatinib exposures in this study were affected by coadministration of EIACs. Specifically, C_{max}, AUC(0–24), and C_{24} were higher for both agents among patients treated in the phase II

Table 5. Summary of DLT reported in phase I

<table>
<thead>
<tr>
<th>Dose level, mg</th>
<th>Patients enrolled, n</th>
<th>Patients with DLTs, n</th>
<th>DLTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort 1</td>
<td>PAZ 200 + LAP 1,500</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Cohort 2</td>
<td>PAZ 800 + LAP 1,500</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Cohort 3</td>
<td>PAZ 800 + LAP 500<sup>a</sup></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Cohort 4</td>
<td>PAZ 800 + LAP 750<sup>a</sup></td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Cohort 5</td>
<td>PAZ 800 + LAP 1,000<sup>a</sup></td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Cohort 6 (expansion cohort)</td>
<td>PAZ 600<sup>a</sup> + LAP 1,000<sup>a</sup></td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Abbreviations: ALT, alanine aminotransferase; LAP, lapatinib; PAZ, pazopanib.

^aAdministered twice daily.
portion of the study (no EIACs) compared with patients treated at comparable dose levels in the phase I aspect of the study (on EIACs). These findings are consistent with those previously reported for lapatinib (37); however, our results are the first to document a negative impact of EIACs on pazopanib exposure in patients with cancer. Pharmacokinetic analyses revealed that patients in both the phase II and phase I components (pazopanib 600 mg b.i.d. cohort) achieved therapeutic levels of pazopanib C24. In contrast, mean therapeutic plasma concentrations of lapatinib were not achieved among patients treated on either the phase II or parallel phase I components of the study. More recently defined agents such as levetiracetam or lacosamide, which are not metabolized by cytochrome P450 enzymes, may be attractive alternatives for patients with central nervous system tumors who require antiepileptic therapy.

In conclusion, although our study confirmed that pazopanib plus lapatinib is well tolerated among patients with recurrent malignant glioma, minimal evidence of antitumor activity was observed. These findings underscore the importance of incorporating pharmacokinetic and interaction analyses into early clinical development of agents for patients with primary central nervous system tumors. Furthermore, it is imperative that future clinical trials continue to strive to identify predictive biomarkers of response to molecular-targeted therapeutics, with the goal of optimizing the delivery of precision medicines for patients with glioblastoma. Although our study indicates that pazopanib plus lapatinib is not sufficiently active with the doses and schedule tested in patients with recurrent glioblastoma, VEGF/VEGFR, and ErbB/EGFR remain important mediators of glioblastoma pathophysiology, and thus remain attractive therapeutic targets for clinical development.

Acknowledgments

The authors thank the study patients and their families. Editorial assistance was provided by Tamalette Loh, PhD, ProEd Communications Inc., Beachwood, Ohio. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 30, 2012; revised November 2, 2012; accepted November 26, 2012; published OnlineFirst January 30, 2013.

Grant Support

This study was sponsored by GlaxoSmithKline, Philadelphia, PA. Medical editorial assistance was also funded by GlaxoSmithKline.

References

A Phase I/II Trial of Pazopanib in Combination with Lapatinib in Adult Patients with Relapsed Malignant Glioma

David A. Reardon, Morris D. Groves, Patrick Y. Wen, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-1707

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2012/12/31/1078-0432.CCR-12-1707.DC1

Cited articles
This article cites 44 articles, 32 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/19/4/900.full.html#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
/content/19/4/900.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.