Classifying MMR Variants: Time for Revised Nomenclature in Lynch Syndrome

Y. Nancy You¹ and Eduardo Vilar²

Inactivating germline mutations in DNA mismatch repair (MMR) genes are diagnostic for Lynch syndrome. However, the clinical significance of missense variants is uncertain. A threshold level of compromised MLH1 expression, correlating with greater protein instability and MMR functional defect, has been identified to help classify the pathogenicity of missense variants. Clin Cancer Res; 19(9); 2280–2. ©2013 AACR.

In this issue of Clinical Cancer Research, Hinrichsen and colleagues (1) report a critical threshold level of compromise in the expression of MLH1, a major DNA mismatch repair (MMR) gene, that was correlated with greater protein instability and clinical data, thereby providing a means for classifying the pathogenicity of missense variants in MLH1.

Genetic testing for cancer-predisposing syndromes has evolved as a powerful clinical tool. Lynch syndrome, caused by pathogenic mutations in DNA MMR genes, predisposes carriers to colorectal, endometrial, ovarian, and other cancers. Detection of a pathogenic MMR mutation in the proband enables identification of other mutation carriers in the family who would benefit from risk-reduction strategies, including cancer surveillance, chemoprevention, and/or prophylactic surgery. However, mutation testing can provide 3 categories of possible results: pathogenic mutation, variant of uncertain significance (VUS), or informative negative finding (2). Variants, typically missense mutations, pose significant difficulties for management due to their unknown clinical impact (3). Hinrichsen and colleagues aim to address this problem by providing a classifier for the pathogenic potential of MLH1 variants.

Classifying VUS involves integrating multiple lines of evidence for pathogenicity, including (i) direct evidence, arising from clinical pedigree and phenotype data of cosegregation and co-occurrence and (ii) indirect evidence, consisting of in vitro assays of protein function and in silico models predicting the impact of mutations on protein function based on altered splicing, protein structure, and/or evolutionary conservation (2). Hinrichsen and colleagues gathered 38 MLH1 missense variants from public databases and measured the levels of MLH1 expression (by quantitative PCR) and MMR repair activity (by in vitro MMR assay) relative to the wild type. Seven recurrent variants with proficient MMR function, termed “validating variants,” formed the basis for identifying the expression threshold. They were categorized as pathogenic versus neutral based on clinical data. Relative to the wild type, the MLH1 expression levels of the putative pathogenic variants were 52% or lower, whereas those of the putative neutral variants were 65% or higher (1). To further corroborate this threshold, MMR repair function has been shown to be compromised when intracellular MLH1 level falls below 50%. Hinrichsen and colleagues proposed to use MLH1 expression level of 52% (vs. wild type) as the first cutoff for pathogenicity and to use functional assays only to distinguish among high-expressing variants. This proposal is attractive because it is relatively simple and actionable, and its derivation took into account several lines of evidence. However, before clinical implementation, additional research should be considered. First, impaired MMR functional assay remains the gold-standard qualitative surrogate for pathogenicity, and partially eliminating it in a classification algorithm requires further validation. Second, the identified threshold was based on pooling a finite number of VUS with clinical data. Might the level change if more VUS had been investigated? Indeed, locus-specific clinicopathologic data are being accumulated in several well-annotated repositories. The collaboration merging the variant databases of international research groups including Collaborative Groups of Americas on Hereditary Colorectal Cancer, International Society of Gastrointestinal Hereditary Tumors, and the Human Variome Project (http://chromium.liacs.nl/LOVD2/colon_cancer/home.php), will prove essential for validating proposed thresholds and algorithms (4). Finally, the 2008 International Agency for Research on Cancer working group consensus standardized a variant classification system based on qualitative probability of pathogenicity. Integrating the findings of Hinrichsen and colleagues into quantitative multifactorial likelihood models (5) will remain a challenge.
Variants can exert pathogenic effects by several different mechanisms, and Hinrichsen and colleagues focused on the defects in MLH1 protein expression level, suggesting that amino acid substitutions contributed to decreased protein stability. Low-expressing variants exhibited shorter half-life and lower denaturing temperatures, and the affected residues clustered in the core 3-helix motif of the C-terminal "In" subdomain on protein structural analysis (1). Beyond expression, other protein-level mechanisms of pathogenicity may include subcellular localization, protein–protein complex formation, and/or functional efficiency. In addition, on an RNA level, missense mutations can affect mRNA processing, transcript levels, splicing patterns, and transcript stability. Levels of mRNA transcript (measured by real-time PCR) have been reported to allow classification of up to 50% of the variants (6). Thus, comprehensive functional assessment of variants at both the RNA and the protein levels is needed to fully understand the mechanism of pathogenicity. In silico models that predict the functional impact of RNA-splicing alterations (e.g., NNSplice, SplicePort) and protein alterations (e.g., SIFT, PolyPhen-2, and MAPP-MMR) can help prioritize RNA versus protein-level analyses (2, 5, 6).

Unclassified variants can constitute up to 20% to 50% of all those tested for MMR mutations, depending on the criteria used for testing (2). Indeed, different nomenclature and criteria have evolved over time (Fig. 1):

- Originally, "Lynch syndrome" described families with clustering of phenotypic cancers, but after the genetic basis of disease was discovered, "Lynch syndrome" has referred to patients with pathogenic MMR mutations (7).
- The term "hereditary nonpolyposis colorectal cancer" (HNPCC) syndrome was coined on the basis of clinical and familial criteria, initially Amsterdam only and later loosely expanded to include revised Bethesda criteria, regardless of MMR mutation status (8, 9). Although the phrase "Lynch syndrome also known as HNPCC" is commonplace in the literature, "Lynch syndrome" is actually not synonymous with "HNPCC."
- Tumor microsatellite instability (MSI) testing has shown that nearly all patients with Lynch syndrome have MSI-high tumors, but many patients with HNPCC have microsatellite-stable tumors. This latter subgroup of "HNPCC" has been termed "syndrome X" and does not overlap with "Lynch syndrome" (10).
- A growing desire to identify patients with Lynch syndrome and availability of tumor MSI testing have led to universal tumor-based screening to identify patients with nonsporadic MSI-high tumors, who then undergo directed confirmatory genetic testing (11).

Thus, the criteria for genetic testing for Lynch syndrome have expanded from the most stringent Amsterdam criteria to the revised Bethesda criteria, and now universal tumor-based screening. This movement toward increasingly sensitive and less-specific criteria for genetic testing has translated to lower proportions of tested patients with pathogenic mutations (or "Lynch syndrome"); ref. 9) and higher proportions of VUS and uninformative negative results. Although clinical management of Lynch syndrome is well established, that of the latter patients is highly problematic. Specifically, these challenging patients are defined by (i) nonsporadic MSI-high tumors (i.e., no evidence of MLH1 hypermethylation or BRAF mutation), (ii)
positive or negative Amsterdam/Bethesda criteria, or (iii) uninformative negative or likely nonpathogenic variant on directed genetic testing (Fig. 1). Currently, significant knowledge gaps exist regarding their cancer risks relative to patients with Lynch syndrome, their needs for cancer surveillance, their familial pedigrees, and their molecular biology. In parallel, there is an apparent void in our existing nomenclature for these patients who are not described by “Lynch syndrome” or by “HNPCC.” Although “clinical Lynch” and “Lynch-like” have appeared in the literature (12), we herein propose the term “mutation-negative Lynch syndrome” for the patients defined above (Fig. 1). This term expresses the link with Lynch syndrome, assumes the presence of yet unknown MMR genes, and acknowledges potential roles played by other genes yet to be discovered.

Hinrichsen and colleagues have provided a classifier of VUS as pathogenic or not, so that patients can be managed as Lynch syndrome or not. Unfortunately, no consensus exists at present for the management of patients with mutation-negative Lynch syndrome. Some clinicians have considered it safest to manage them just as Lynch syndrome, an approach that likely represents overtreatment. Indeed, the ability to classify missense mutations will only be truly impactful if it translates to differences in patient management, but for that, the mutation-negative Lynch syndrome must be fully understood clinically and molecularly.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: Y.N. You, E. Vilar
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): Y.N. You
Writing, review, and/or revision of the manuscript: Y.N. You, E. Vilar
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): Y.N. You, E. Vilar

Acknowledgments
The authors thank Ester Borras, PhD, for her critical comments.

Grant Support
This work was supported in part by The University of Texas Anderson Cancer Center Core Support Grant (P30 CA016672).

Received March 6, 2013; accepted March 9, 2013; published OnlineFirst March 26, 2013.

References
Classifying MMR Variants: Time for Revised Nomenclature in Lynch Syndrome

Y. Nancy You and Eduardo Vilar

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-13-0392

Cited articles This article cites 11 articles, 2 of which you can access for free at: http://clincancerres.aacrjournals.org/content/19/9/2280.full.html#ref-list-1

Citing articles This article has been cited by 4 HighWire-hosted articles. Access the articles at: /content/19/9/2280.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.