Serial Diffusion MRI to Monitor and Model Treatment Response of the Targeted Nanotherapy CRLX101

Thomas S.C. Ng1, David Wert3, Hargun Sohi1, Daniel Procissi1, David Colcher2, Andrew A. Raubitschek2, and Russell E. Jacobs1

Abstract

Purpose: Targeted nanotherapies are being developed to improve tumor drug delivery and enhance therapeutic response. Techniques that can predict response will facilitate clinical translation and may help define optimal treatment strategies. We evaluated the efficacy of diffusion-weighted magnetic resonance imaging to monitor early response to CRLX101 (a cyclodextrin-based polymer particle containing the DNA topoisomerase I inhibitor camptothecin) nanotherapy (formerly IT-101), and explored its potential as a therapeutic response predictor using a mechanistic model of tumor cell proliferation.

Experimental Design: Diffusion MRI was serially conducted following CRLX101 administration in a mouse lymphoma model. Apparent diffusion coefficients (ADCs) extracted from the data were used as treatment response biomarkers. Animals treated with irinotecan (CPT-11) and saline were imaged for comparison. ADC data were also input into a mathematical model of tumor growth. Histological analysis using cleaved-caspase 3, terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling, Ki-67, and hematoxylin and eosin (H&E) were conducted on tumor samples for correlation with imaging results.

Results: CRLX101-treated tumors at day 2, 4, and 7 posttreatment exhibited changes in mean ADC = 16 ± 9%, 24 ± 10%, 49 ± 17%, and size (TV) = −5 ± 3%, −30 ± 4%, and −45 ± 13%, respectively. Both parameters were statistically greater than controls [p(ADC) ≤ 0.02, and p(TV) ≤ 0.01 at day 4 and 7], and noticeably greater than CPT-11–treated tumors (ADC = 5 ± 5%, 14 ± 7%, and 18 ± 6%; TV = −15 ± 5%, −22 ± 13%, and −26 ± 8%). Model-derived parameters for cell proliferation obtained using ADC data distinguished CRLX101-treated tumors from controls (P = 0.02).

Conclusions: Temporal changes in ADC specified early CRLX101 treatment response and could be used to model image-derived cell proliferation rates following treatment. Comparisons of targeted and non-targeted treatments highlight the utility of noninvasive imaging and modeling to evaluate, monitor, and predict responses to targeted nanotherapeutics. *Clin Cancer Res; 19(9); 2518–27. ©2013 AACR.*

Introduction

Targeted cancer nanotherapies are increasingly being explored as alternatives to conventional therapeutics. They have the potential to increase treatment efficacy and reduce TRT through improved tumor drug delivery (1). Compared to conventional therapies, nanoscale therapeutics show increased plasma half-life and can localize to the tumor mass via targeting mechanisms such as enhanced permeability and retention (EPR; refs. 2 and 3). Recently, the EPR effect has been coupled with surface functionalization of particles (4) to improve retention in the tumor and target specific tumor cell subsets. Moreover, evidence exists that nanotherapies can also escape multidrug resistance pathways (3).

Nanotherapies may prove to be useful for the treatment of malignant lymphoma. Despite great advances in lymphoma management, more than half of the patient population diagnosed with aggressive non-Hodgkin’s lymphoma, 30% to 40% with advanced Hodgkin’s lymphoma, and many with indolent lymphoma still develop resistance or relapse of the disease (5–7). Several strategies, including multidrug chemotherapy, immunotherapy, and radiation-based therapies, are currently being explored as salvage regimens (6, 7). Important considerations during the treatment selection process include the need to minimize TRT as well as the need to avoid cross-resistance from first-line regimens (6, 8). Thus, the use of targeted nanotherapies offers an interesting therapeutic alternative.

Authors’ Affiliations: 1Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena; 2Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, California; and 3Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska

Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).

Corresponding Author: Thomas S.C. Ng, 1200 E. California Blvd., MC 114-96, Pasadena, CA 91125, USA. Phone: 626-395-5833; Fax: 206-339-6296; E-mail: florinato@cal.berkeley.edu
doi: 10.1158/1078-0432.CCR-12-2738
©2013 American Association for Cancer Research.
Translational Relevance

Targeted nanotherapies are being developed for cancer treatment. The advantage of these therapies over conventional treatments lies in their ability to increase drug uptake in tumors while reducing treatment-related toxicity (TRT). Clinically applicable biomarkers will facilitate translation of nanotherapies to the clinic. We evaluated the applicability of diffusion MRI to monitor CRLX101 (a cyclodextrin-based polymer containing the DNA topoisomerase I inhibitor camptothecin) efficacy in a preclinical model of malignant lymphoma. Diffusion MRI distinguished animals treated with CRLX101 from controls as early as day 2 posttreatment. Diffusion MRI also showed the reduced efficacy of irinotecan compared to CRLX101. Incorporating diffusion MRI data into a mathematical model of tumor growth allowed prediction of the enhanced antiproliferative effect of CRLX101 as compared to irinotecan. These results show that serial imaging using diffusion MRI, combined with judicious modeling of imaging data, provides useful biomarkers to evaluate, monitor, and predict the efficacy of targeted nanotherapies in the clinic.

The nanoparticle CRLX101 (formerly IT-101; Cerulean Pharma Inc.) is a conjugate of a β-cyclodextrin–based polymer and 20(S)-camptothecin (CPT). CPT is a topoisomerase I inhibitor with a broad activity spectrum (9). CRLX101 increases the solubility of CPT, keeps CPT in its active lactone form, improves CPT tumor localization, and minimizes CPT-associated TRT (10, 11). Preclinical in vivo studies of CRLX101 showed its efficacy in a broad range of solid tumors (6, 12), including subcutaneous and disseminated xenograft lymphoma models (6). CRLX101 is currently in phase I and phase II trials for a variety of solid tumors (13).

A major challenge for clinical translation of cancer nanotherapies is the effective evaluation of treatment response. Imaging technologies have been used to monitor responses to conventional therapy (14). Typical methods rely on changes in tumor size (15, 16). Morphological imaging using computerized tomography, ultrasound, and anatomical MRI can assess changes in the appearance or growth of tumor masses. However, such changes often occur at least several weeks after treatment, which may delay useful modifications of the treatment course. A functional imaging technique, diffusion MRI (17), is being investigated to evaluate therapeutic responses in animal models (18, 19) and human clinical studies (20, 21). A quantitative metric derived from these studies, the apparent diffusion coefficient (ADC), has been shown to be sensitive to tumor therapy response. Although the diffusion of water within tumors is mediated by many complex processes, ADC has been shown to be related to tumor cellularity and extracellular volume (22). Increased ADC values over the course of a treatment time course are correlated with tumor treatment response to small molecule chemotherapy (18, 19), adoptive immunotherapy (23), and photodynamic therapy (24).

Mathematical models of cancer growth attempt to predict tumor treatment response on an individual basis. Modeling adds an extra dimension to clinical management by enabling prospective, patient-specific adjustments of treatment regimens (25, 26). Noninvasive imaging data have been applied successfully to models of tumor growth and treatment response in brain (27, 28) and kidney (29) tumors. These studies show that incorporation of imaging data into mathematical models of tumor growth can provide insights at the cellular scale that may elude conventional measures of tumor progression, such as the RECIST criteria (30). Furthermore, because the efficacy of nanotherapies is a complex function of the drug payload and the carrier’s interaction with the tumor microenvironment (31), image-based modeling of treatment response may also provide mechanistic insights into the functioning of nanotherapies in vivo.

The purpose of this study is to determine the feasibility of diffusion MRI to evaluate and predict early treatment efficacy of the nanotherapy CRLX101. Using a preclinical model of Burkitt’s lymphoma, we compared the diffusion MRI response of low-dose CRLX101 to a high-dose administration of a water-soluble CPT analog, irinotecan (CPT-11), and to controls. Furthermore, serial diffusion MRI data were incorporated into a mathematical model of tumor cell proliferation to evaluate its ability to highlight and predict the antiproliferative activity of CRLX101 in vivo.

Materials and Methods

Cell culture and human lymphoma xenograft models

Daudi cells (human Burkitt’s lymphoma line) were obtained from the American Type Culture Collection (Manassas, VA). Cells were maintained in sterile culture media as previously described (32). Six- to 8-week-old female athymic nu/nu mice (Charles River) were injected with 0.2 mL of 1:1 mixture of tumor cell suspension in 1% human serum albumin in HBSS (Mediatech) and Matrigel (BD Biosciences) subcutaneously into their right groin. Approximately 3 × 10⁶ cells were injected for each mouse. Mouse care and experimental procedures were carried out in accordance with protocols approved by the Animal Care Committees at City of Hope and Caltech.

In vivo MRI studies

A Biospec (Bruker-Biospin Inc.) 7T MRI scanner and a home-built birdcage coil were used for image acquisition. For all imaging sessions, animals were anesthetized using a 1.3% to 1.75% isoflurane/air mixture and body temperature was maintained at 35°C to 37°C with warmed air flowing through the bore. For anatomical imaging, a rapid acquisition with relaxation enhancement (RARE) MRI...
sequence [TR/TE = 4000/23 milliseconds; RARE factor = 4; number of averages = 2; field-of-view (FOV) = 35.4 × 35.4 mm²; image matrix = 128 × 128; slice thickness = 0.754 mm] was used to collect 40 contiguous images across the mouse torso, allowing tumor visualization.

Treatment monitoring began approximately 21 days postxenograft inoculation, when tumors reached a size of 300 to 800 mm³. Tumor sizes were determined from region of interests (ROIs) drawn on anatomical MRI for each time point. On the day of treatment, mice were either injected with: (a) 0.9% saline i.v., (b) 100 mg/kg CPT-11 i.p., or (c) 5 mg/kg CRLX101 (i.v., dosages defined here reflect the CPT equivalent dose). Dosage and treatment cohorts were defined to be consistent with previous studies of CRLX101 (6, 12). Anatomical and diffusion MRI scans were acquired immediately before treatment (day 0, baseline), 2, 4, and 7 days posttreatment. A total of 19 mice were imaged for this study. CRLX101 and control groups contained 7 mice. Within those treatment groups, \(n = 3 \) were imaged on days 0, 2, and 4 and \(n = 4 \) were imaged on days 0, 2, 4, and 7. All mice in the CPT-11 group \((n = 5) \) were imaged on days 0, 2, 4, and 7.

Diffusion MRI was acquired with a spin–echo diffusion MRI sequence (ref. 33; TR/TE = 3000/25 milliseconds; \(\Delta = 35 \) milliseconds, \(\delta = 3 \) milliseconds, with \(b \) values = 0, 800, and 1,200 s/mm² acquired in 3 orthogonal directions; FOV = 35 × 25 mm²; image matrix = 175 × 125 (zero-filled to 256 × 125; slice thickness = 0.754 mm)). The number of slices acquired in each study was determined by the tumor size to ensure full coverage of the tumor mass.

ADC maps were generated using diffusion images by fitting to the Stejskal–Tanner equation (34). The \(S_0 \) images derived from this analysis were used as templates to segment the tumor region. Segmentation was done manually using MRicro (www.mricro.com). Images were processed using MATLAB (Mathworks Inc.).

Modeling tumor growth using diffusion MRI

A simplified logistic model of tumor growth, developed by Atuegwu and colleagues (27), was applied to serial diffusion MRI data to estimate tumor cell proliferation rates and tumor cell number. Because it was not possible to spatially coregister tumor images from multiple time points on a voxel-by-voxel basis, we only considered ROIs based on the whole tumor. Briefly, the model is defined by

\[
N(t) = \frac{\theta N(t_1)}{N(t_1) + (\theta - N(t_1))e^{-kt}}
\]

where \(N(t) \) is the number of cells per tumor voxel at time \(t \), \(N(t_1) \) is the number of cells present at \(t = t_1 \), the first time point in the calculation, \(k \) is the cell proliferative rate and \(\theta \) the cell carrying capacity in the population, here assumed to be the maximum number of cells in the imaging voxel. If a linear relationship between ADC and cellularity is assumed, ADC can be related to cell number by

\[
\frac{ADC(t) - ADC_{w}}{ADC_{min} - ADC_{w}} = \left(\frac{N(t)}{\theta} \right)
\]

and \(k \) and \(N(t) \) derived by combining (1) and (2):

\[
\frac{ADC(t) - ADC_{w}}{ADC_{min} - ADC_{w}} = \left(\frac{ADC(t_1) - ADC_{min}}{ADC(t_1) - ADC_{w}} \right) e^{-kt},
\]

where \(ADC_{w} \) is the ADC of free water (\(~3 \times 10^{-3} \) mm²/s; ref. 35) and \(ADC_{min} \) is the minimum ADC value calculated from all voxels within a given tumor ROI at \(t = t_1 \).

The ability of the model to calculate tumor growth for this lymphoma model was tested by calculating \(N_{calculated} \) and \(N_{estimated} \) using day 0/2 and day 2/4 ADC data, respectively. These were compared to \(N_{calculated} \) and \(N_{estimated} \), which were estimated from actual ADC data taken on day 4 and 7.

Cellular proliferation rates \((k) \) were also calculated for each individual using a combination of ADC data between different time points \((day 0/2, 0/4, 2/4, 4/7) \).

Histological assessment

A separate group of tumor-bearing animals \((n = 24) \) were used to compare histological and noninvasive imaging results. The animals were treated identically as those in the imaging studies. At days 0, 2, 4, and 7, animals \((n = 2 \) per time point) from each treatment group were sacrificed by transcardiac perfusion and tumors were excised. Tumors were placed in 4% paraformaldehyde overnight, dehydrated in 70% ethanol, and subsequently embedded in paraffin. Paraffin blocks were sectioned at a slice thickness of 4 μm.

Paraffin sections were deparaffinized in xylene and rehydrated through a descending gradient of alcohol (100%, 95%, 80%, 2 minutes at each concentration) and then water.

Antigen retrieval was achieved with 10 mmol/L Tris, 1 mmol/L EDTA, and 0.05% Tween pH 9.0 for 20 minutes in a steamer and then cooled for 20 minutes. Individual sections from each treatment cohort and time point were then incubated with primary antibodies to the cellular proliferation marker Ki-67 (1:200, Neomarkers, RM-9106-SO) or the apoptotic marker cleaved caspase-3 (CC3, 1:500, Invitrogen, 700182). Immunohistochemistry was done on a DAKO Autostainer utilizing a peroxidase DAB method (Leica, Novalink RE7150-K) followed by counterstaining with hematoxylin.

Staining for apoptosis was done using a terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling (TUNEL) assay (Roche, Insitu Cell Death Detection Kit) and visualized with a peroxidase DAB method (Leica, Novalink), followed by counterstaining with hematoxylin.

Corresponding sections were also stained with hematoxylin and eosin (H&E) for overall tumor and cellular morphology.
All slides were scanned on a Ventana Coreo Slide Scanner for visualization. Three fields per tumor were analyzed using images obtained at 20× magnification. The percentage of Ki-67 staining was done with ImmunoRatio (36). Hematoxylin, TUNEL, and CC3 slides were analyzed using ImageJ. Slide images from each respective stain was first extracted using a color deconvolution (37) plugin; the density of cellular staining was then calculated.

Statistical analysis

Comparison of ADC, tumor size, and cell proliferation data among the 3 treatment groups was accomplished at each time point using a Kruskal–Wallis test. Multiple comparison tests were done with Bonferroni correction after a Mann–Whitney test. $N_{\text{estimated}} (t)$ and $N_{\text{calculated}} (t)$ data were compared using Pearson correlation coefficient (PCC) and concordance correlation coefficient (CCC). A P-value of 0.05 or smaller was considered to be statistically significant. All analyses were done using R (http://www.r-project.org/).

Results

Diffusion MRI is sensitive to early CRLX101 treatment response

ADC maps of representative tumor response to the various treatment groups are shown in Fig. 1. ADC values remained constant for the control animal (top row) over the course of 7 days, with low ADC values (green) over most of the tumor volume at each time point. The CPT-11–treated animal (bottom row) showed a similar ADC pattern, with low ADC values over most of the tumor volume across all time points. On day 2 after CPT-11 administration, clusters of high ADC values (as indicated by red to orange pixels) can be seen around the edges of the tumor, suggesting CPT-11 response. By day 4 and day 7, small high ADC clusters still existed, but were approximately the same as seen on day 2. The ADC patterning remained similar between day 4 and day 7. Compared to the 2 other treatment cohorts, the CRLX101-treated tumor (middle row) showed an increase in the ADC value (shift to red) throughout the whole tumor bulk by day 2 posttreatment. This increase continued onto day 4 and 7.

To compare the diffusion MRI response among treatment groups, the mean percentage change of ADC values from baseline were calculated (Fig. 2). CRLX101-treated tumors clearly exhibited increasing tumor ADC values over the course of 7 days compared to baseline (16 ± 9%, 24 ± 10%, and 49 ± 17% change from baseline on day 2, 4, and 7, respectively). CPT-11–treated tumors also showed a mean increase in ADC values over the week (5 ± 5%, 14 ± 11% at day 4, and 19 ± 11% at day 7). Compared to the control cohort, ADC increases observed in CRLX101-treated animals were significant on all days (day 2: $P < 0.01$, †; day 4: $P < 0.01$, †; day 7: $P < 0.01$, †). This was not the case for the CPT-11 group (day 2: $P = 0.02$, †; day 4: $P = 0.05$, †; day 7: $P = 0.05$, †). Error bars denote SE.
Diffusion MRI response correlates with traditional measurements of tumor growth

Tumor volume changes as sorted by treatment cohort are shown in Fig. 3. Control tumors steadily increased in size during the week time course (25 ± 17%, 49 ± 15%, and 130 ± 44% change from baseline on day 2, 4, and 7, respectively), whereas CRLX101-treated tumors steadily decreased in size (−5 ± 3%, −30 ± 4%, and −45 ± 13%). As with the ADC values, size decrease in the CPT-11–treated group was less dramatic (−15 ± 5%, −22 ± 13%, and −26 ± 8%) compared to the nanotherapy-treated group. The tumor size decreases in the CRLX101-treated group were not significantly different to control on day 2 (P = 0.08), but were significant by days 4 and 7 (both P < 0.01). In comparison, CPT-11 group tumor size changes were only significantly different to the control group on day 4 (P < 0.01).

Logistic model of tumor growth can be applied to diffusion MRI of malignant lymphoma

Tumor cell number determined by incorporating diffusion MRI data into a model of tumor growth is shown in Fig. 4. \(N_{\text{calculated}} \) compared to \(N_{\text{estimated}} \) for days 4 and 7 are shown in Fig. 4A–C, respectively. The PCC between \(N_{\text{calculated}} \) and \(N_{\text{estimated}} \) is 0.92 (P < 0.0001). The CCC is 0.83. PCC and CCC between \(N_{\text{calculated}} \) and \(N_{\text{estimated}} \) are 0.91 (P < 0.0001) and 0.9 using day 0/4 data and 0.86 (P < 0.0001) and 0.86 using day 2/4 data. These values show a strong relationship between the simulated and estimated tumor cell number.
Data, showing that the current simplified logistic model can be applied to the diffusion MRI data generated in this study.

Modeling of tumor proliferation using diffusion MRI show antiproliferative activity of CRLX101

Model-derived mean cell proliferation rates (in units of 1/day) measured from different time points across treatment groups are shown in Fig. 5. Corresponding boxplots are shown in Supplementary Fig. S1. CRLX101-treated animals showed negative tumor proliferation rates across all time points (−0.09 ± 0.05, −0.05 ± 0.03, −0.05 ± 0.01, and −0.11 ± 0.05 for day 0/2, 0/4, 2/4, and 4/7, respectively) and were significantly different (p = 0.02) to control tumors (0.03 ± 0.02, 0.02 ± 0.01, 0.02 ± 0.02, and 0.04 ± 0.04). CPT-11 animals (−0.04 ± 0.04, −0.02 ± 0.02, −0.06 ± 0.02, and 0.01 ± 0.01) showed negative proliferation rates between day 0 and 4. These were significantly different to controls for rates calculated between day 2/4 (p = 0.03). Interestingly, proliferative rates in CPT-11 tumors calculated between day 4 and 7 became positive.

Histological assessment of CRX101 response

Treatment-induced changes observed by diffusion MRI were compared with histology (Fig. 6, Supplementary Fig. S2 and Table S1). Tumor sections were stained for CC3 to monitor apoptotic activity (Fig. 6A, Supplementary Fig. S2A). Control tumors showed a low level of staining for CC3 throughout the week (13–110 positive stains/mm²). By comparison, CRLX101-treated tumors showed a significant increase in CC3 activation (620 ± 96 vs. 110 ± 92 control, p < 0.01) on day 2. Levels remained significantly increased compared to time-matched control tumors on day 4 and 7 (p < 0.01), albeit lower than day 2 CC3 levels. CPT-11–treated animals also showed significant increases in CC3 levels compared to control tumors on day 2 (p = 0.03) and 4 (p = 0.02), but were indistinguishable to time matched controls by day 7 (p = 0.6). Analysis using a TUNEL assay (Fig. 6B, Supplementary Fig. S2B) to stain for apoptotic cells by detecting 3’ DNA strand breaks (a biochemical hallmark of apoptosis) showed similar results. CRLX101-treated tumors showed an increase in apoptotic cells by day 2 of treatment (p < 0.01), which persisted on day 4 and 7. CPT-11–treated tumors showed an intermediate increase in apoptotic cells by day 2 posttreatment compared to CRLX101 tumors (350 ± 42 vs. 470 ± 57, p < 0.01 compared to controls), but were borderline different to controls by day 7 (p = 0.05). By comparison, control tumors did not show an increase in apoptotic cell staining throughout the week (p > 0.4).

Because the active ingredient of CRLX101 and CPT-11, camptothecin, inhibits cellular proliferation, we also stained tumors using the cellular proliferation marker Ki-67 (Fig. 6C, Supplementary Fig. S2C). Control tumors maintained high (94.5–98.2%) Ki-67 expression throughout the week. By comparison, both CRLX101 (46.8 ± 5.2%, p < 0.01) and CPT-11 (51.7 ± 8.2%, p < 0.01) treated tumors showed decreased Ki-67 staining by day 2 of treatment. Ki-67 expression in CRLX101 tumors remained significantly decreased compared to controls throughout the week (p < 0.01), whereas Ki-67 expression in CPT-11–treated tumors trended back toward control values and were borderline different to controls by day 7 (p = 0.05).

H&E-stained sections from the control group showed a dense cellular pattern that remained consistent from...
baseline to day 7 (Fig. 6D, Supplementary Fig. S2D). By comparison, CRLX101 tumors showed a gradual decrease in cellular density over 7 days (Day 0: $1.2 \times 10^4 \pm 170$ cells/mm2, Day 7: $5.3 \times 10^3 \pm 300$, $P < 0.01$). An increase in the number of amorphous cells can be observed in day 4 and 7 tumors. CPT-11 tumor sections show a decrease in cellular density on day 2 to 4 (Day 0: $1.1 \times 10^5 \pm 830$ cells/mm2, Day 4: $5.3 \times 10^3 \pm 440$, $P < 0.01$). By day 7, the cellular patterns have trended back toward baseline ($9.7 \times 10^3 \pm 220$ cells/mm2).

Discussion

In this study, diffusion MRI was used to follow the response of a preclinical model of malignant lymphoma to a targeted nanotherapy (CRLX101) and its small molecule chemotherapy counterpart (CPT-11). As shown in Figs. 1 and 2, CRLX101 treatment led to quantifiable changes in ADC as early as day 2. By comparison, CPT-11 treatment also resulted in detectable changes in ADC, but was attenuated compared to the CRLX101 treatment. This attenuation is similar to what was observed by Lee and colleagues (38), who showed that attenuation or decrease of ADC values after an initial increase is indicative of tumor repopulation and emerging resistance. The ADC changes correlated with tumor growth kinetics, which indicated that CRLX101 treatment resulted in marked tumor regression whereas only mild regression was seen with CPT-11 treatment (Fig. 3). Moreover, the diffusion MRI results reflected histology. CRLX101 and CPT-11–treated tumors showed an increased magnitude of these effects, highlighting its improved efficacy compared to CPT-11. Supplementary Fig. S2 and Table S1 provide further analysis of the histology (scale bar = 500 μm).

Figure 6. Histological assessment of CRLX101 and CPT-11 response. Tumors treated with CRLX101 (5 mg/kg), CPT-11 (100 mg/kg), or saline were harvested for histology on days 0, 2, 4, and 7. Tumor samples were subsequently sectioned and stained with: A, cleaved caspase-3 (CC3, costained with hematoxylin); B, TUNEL (costained with hematoxylin); C, Ki-67 (costained with hematoxylin); and D, hematoxylin and eosin. Compared to controls both CRLX101 and CPT-11 showed increased CC3 activity and decreased Ki-67 activity by day 2 posttreatment, shown by the increased staining. This reflects the antiproliferative, antitumor activity of both agents. CRLX101-treated tumors showed an increased magnitude of these effects, highlighting its improved efficacy compared to CPT-11. Supplementary Fig. S2 and Table S1 provide further analysis of the histology (scale bar = 500 μm).
concordant with previous studies showing high topoisomerase I inhibition by CRLX101 and CPT-11 within 48 hours of administration (6). Taken together, these results confirm the improved efficacy of CRLX101 compared to small molecule chemotherapy. Furthermore, diffusion MRI was able to show this improved efficacy at an early time point.

Other functional imaging techniques are being investigated to monitor early responses in lymphoma (16). Many of these studies involve nuclear imaging, specifically positron emission tomography (PET). In particular, 18F-fluoro-2-deoxy-d-glucose (FDG-PET; ref. 39) and 3H-fluoro-2-deoxy-DL-thymidine (40) are promising imaging biomarkers of lymphoma response. Interpretation of nuclear imaging studies can be complex, as many different physiological processes can result in a positive signal during treatment. For example, local inflammation following therapy can increase the FDG-PET signal, masking treatment response (41). Diffusion MRI readouts are less sensitive to such inflammatory effects (42). Concerns of ionizing radiation overexposure, especially in lymphoma patients who may be exposed to serial imaging scans and/or radiation therapy (43) also necessarily limits the number of nuclear imaging scans that can be obtained from a patient, especially at early treatment time points.

Although ADC by itself is already a promising imaging biomarker to indicate tumor response to CRLX101, the availability of ADC datasets from multiple time points enables mathematical modeling of tumor growth. This potentially allows the prediction of future treatment response in an individual patient. We applied a simple logistic model of tumor growth (26) to ADC data. The model makes the simplifying assumption that each imaging voxel consist only of tumor cells and that ADC changes are entirely because of the reduction in cellularity; yet it still provides instructive predictions using diffusion MRI datasets. This was shown by the strong correlation between simulated and estimated tumor cell number at both day 4 and 7 (Fig. 4). Proliferation rates generated from this model separated CRLX101-treated and control groups (Fig. 5) and highlighted the enhanced antiproliferative effect of CRLX101 (6). Analysis of proliferative rates across time points may add insights to a treatment’s mode of action. For example, consideration of the CPT-11 ADC and tumor growth data alone through day 7 would indicate that the tumor may still be responding to treatment, albeit less than with the nanotherapy. However, analysis of the proliferation data indicated that between day 4 and 7 CPT-11 tumors showed a trend toward positive proliferation rates, suggesting treatment failure. The latter analysis is consistent with histology: by day 7 Ki-67 and apoptotic staining in CPT-11 tumors were similar to baseline and control. In contrast, CRLX101 proliferation rates were negative between day 0 and 2, increased slightly between days 2 and 4 before decreasing again from day 4 to 7. This observation is consistent with CRLX101 Ki-67 staining, but is not immediately apparent from looking at ADC changes alone. The reason for this fluctuation of proliferation rate is unclear; tumor uptake and biochemical activity of CRLX101 have only been followed for up to 48 hours (6). Histological results showed that CC3 activity for CRLX101-treated tumors increased between day 0 and 2, decreased between day 2 and 4 before increasing again by day 7 (Supplementary Fig. S2). CRLX101-treated tumors also showed elevated TUNEL activity throughout the week compared to both CPT-11 and control. These results suggest that increased apoptosis contributes to the negative proliferation rates calculated from diffusion MRI data. The enhanced anti-tumor effect of CRLX101 may act via antiangiogenesis and the nanotherapy’s ability to prolong drug release via hydrolytic and enzymatic cleavage of the cyclodextrin polymer (11). These factors may be synergistic, leading to the increased efficacy observed at the latter time point.

Techniques that can probe CRLX101’s dynamic antiangiogenic effects within the tumor, such as dynamic contrast-enhanced MRI (44), may be able to elucidate this process.

Because it was difficult to spatially coregister individual tumor images across time points, imaging data were only analyzed at a whole tumor ROI level. Thus, the heterogeneity of the tumor mass, which may also be an important determinant to treatment response, was not investigated. This may be addressed in future studies by prudent spatial coregistration across time points. Furthermore, the current model can be integrated into more sophisticated models (45) of tumor growth. Such models can account for the multiscale factors linking molecular scale phenomena, microvascular changes, and biochemical activity of CRLX101 have only been followed for up to 48 hours (6). Histological results showed that CC3 activity for CRLX101-treated tumors increased between day 0 and 2, decreased between day 2 and 4 before increasing again by day 7 (Supplementary Fig. S2). CRLX101-treated tumors also showed elevated TUNEL activity throughout the week compared to both CPT-11 and control. These results suggest that increased apoptosis contributes to the negative proliferation rates calculated from diffusion MRI data. The enhanced anti-tumor effect of CRLX101 may act via antiangiogenesis and the nanotherapy’s ability to prolong drug release via hydrolytic and enzymatic cleavage of the cyclodextrin polymer (11). These factors may be synergistic, leading to the increased efficacy observed at the latter time point. Techniques that can probe CRLX101’s dynamic antiangiogenic effects within the tumor, such as dynamic contrast-enhanced MRI (44), may be able to elucidate this process.

In conclusion, we have showed that diffusion MRI can monitor the early response to CRLX101 treatment in a preclinical model of malignant lymphoma. Modeling of the ADC data emphasized the enhanced antiproliferative effect of CRLX101 compared to controls and CPT-11. This shows the utility of diffusion MRI for preclinical and clinical evaluation of targeted nanotherapies such as CRLX101 and suggests that an image-driven modeling approach can provide insights to their mechanism(s) of action in vivo.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interests were disclosed.

Authors’ Contributions

Conception and design: T.S.C. Ng, D. Procissi, D.M. Colcher, A.A. Raubitschek, R.E. Jacobs

Development of methodology: T.S.C. Ng, D. Wert, D. Procissi, A.A. Raubitschek, R.E. Jacobs

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): T.S.C. Ng, D. Wert, H. Sohi, D.M. Colcher

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): T.S.C. Ng, A.A. Raubitschek, R.E. Jacobs

Writing, review, and/or revision of the manuscript: T.S.C. Ng, D. Procissi, Andrew A Raubitschek, R.E. Jacobs

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): T.S.C. Ng, D.M. Colcher

Study supervision: T.S.C. Ng, A.A. Raubitschek, R.E. Jacobs
Acknowledgments

The authors thank Dr. Thomas Schuelp of Calando Pharmaceuticals for providing the CRXL101, Dr. Andrey Demyanenko, Desiree Cue, Bita Alaghebandian, and Sonia Collazo for their technical assistance. Drs. Mark Davis, Yun Ven, and Scott Fraser gave helpful advice and support.

Grant Support

The project was funded by NIBIB R01 EB00093, NIH R01 EB00194, NRSRA T32GM07616, City of Hope Lymphoma SPORE Grant (P50 CA107399), the Beckman Institute, and the Caltech/City of Hope Biomedical Initiative.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 20, 2012; revised February 18, 2013; accepted March 11, 2013, published OnlineFirst March 26, 2013.

Ng et al.

References

29. Thribber GM, Weisleder R. A systems approach for tumor pharma
34. Tuominen VJ, Ruotoistenmaki S, Vitanen A, Jumppanen M, Isola J. Immunorecto: a publicly available web application for quantitative...

Serial Diffusion MRI to Monitor and Model Treatment Response of the Targeted Nanotherapy CRLX101

Thomas S.C. Ng, David Wert, Hargun Sohi, et al.

Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-12-2738

Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2013/04/23/1078-0432.CCR-12-2738.DC1

This article cites 49 articles, 20 of which you can access for free at: http://clincancerres.aacrjournals.org/content/19/9/2518.full.html#ref-list-1

This article has been cited by 3 HighWire-hosted articles. Access the articles at: /content/19/9/2518.full.html#related-urls

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.