Gene Modification of Primary Tumor Cells for Active Immunotherapy of Human Breast and Ovarian Cancer

Ramila Philip,1 Bryan Clary, Elisa Brunette, Lydia Kilinski, Deepa Murugesh, Martin Sorich, Josephine Yau, Jane Lebkowski, H. Kim Lyerly, and Mohan Philip

ABSTRACT

We have previously shown that cationic liposomes facilitate adeno-associated virus (AAV) plasmid transfections of primary and cultured cell types. To test the clinical feasibility of using genetically modified tumor vaccines for the treatment of breast and ovarian cancers, we have constructed an expression plasmid pMP6IL2 and investigated the use of liposome-mediated gene delivery into primary, uncultured human breast and ovarian tumor cells to produce interleukin 2 (IL-2)-secreting tumor cells. We have demonstrated significant levels of IL-2 expression in tumor cell lines and primary breast and ovarian tumor cells using this AAV-based expression plasmid complexed to cationic liposomes. Transfections with the non-AAV plasmid containing the identical expression cassette as the AAV plasmid induced IL-2 expression in the tumor cell line but failed to produce IL-2 in primary tumor cells. Significant levels of IL-2 were induced with the AAV plasmid regardless of liposome compositions used for transfection. The transfected breast cell line and primary tumor cells were able to express the transgene product for up to 28 days after lethal radiation. The transfection efficiency was comparable for both the tumor cell line and primary tumor cells and ranged from 20 to 50% for both cell types as assessed by intracellular IL-2 staining. Although the primary tumor cell preparations consist of mixed population of cells, at least 40% of the tumor cells expressed the transgene as assessed by immunostaining for IL-2. The ability to efficiently express transgenes in freshly isolated, nondividing tumor cells may potentiate active immunotherapy strategies for gene-based cancer treatment.

INTRODUCTION

The role of soluble factors to augment antitumor immune responses has been well recognized in recent years (1, 2). Since most immunomodulators act as local hormones, it was thought that local delivery of these cytokines might have a more pronounced therapeutic benefit (3, 4). The failure to demonstrate any significant immunological response by repeated injection of cytokines at the tumor site initiated the search for an alternate cytokine delivery system which would enable a potent antitumor immune response. Recent studies using animal models have shown that genetically modified tumor cells expressing cytokines such as IL-2, IL-4, IL-6, IFN-γ, or granulocyte-macrophage colony-stimulating factor were capable of inducing an immune response against preexisting tumors (5–13). It has been shown that localized secretions of IL-2 from genetically modified tumor cells mediated tumor rejection and induced immunological memory that protected animals from subsequent tumor challenge (10). The apparent success of using genetically modified tumor cells to induce protective immunity in animal studies has inspired interest in using active immunotherapy strategies in cancer patients.

The development of cytokine gene-modified tumor vaccine strategies for human breast or ovarian cancer therapy has warranted a number of technical advances. The major obstacle is the development of a simple and efficient gene transfer method for use on noncultured primary human tumor cells. Among the existing gene delivery methods for stable or transient expression, retroviral vectors have thus far been widely used to genetically modify tumor cells for immunization studies (14, 15). Despite extensive progress, the retroviral vectors used to deliver gene-modified tumor vaccines suffer from low-expression efficiency and safety concerns (16). The most serious limitation of this vector system is that retroviruses require actively dividing cells for gene expression, which is often difficult or unattainable in breast or ovarian tumor specimens.

We have previously shown that nonviral gene delivery using cationic liposomes can result in efficient gene transfer and high-level transient expression in dividing and nondividing cell types (17). In our recent studies, we have demonstrated that AAV-based plasmids complexed to cationic liposomes achieved not only efficient gene delivery, but also sustained high-level gene expression in primary cell types (18). When combined with cationic liposomes, plasmids containing the AAV ITRs caused

Received 7/28/95; revised 9/18/95; accepted 9/20/95.

1 To whom requests for reprints should be addressed, at Applied Immune Sciences, Inc., 5301 Patrick Henry Drive, Santa Clara, CA 95054. Phone: (408) 980-5935; Fax: (408) 980-5888.

2 The abbreviations used are: IL, interleukin; AAV, adeno-associated virus; ITR, inverted terminal repeat; CMV, cytomegalovirus; ATCC, American Type Culture Collection; DDB, dimethyl dioctadecylammonium bromide; DOPE, dioleoylphosphatidylethanolamine; Chol, cholesterol; FBS, fetal bovine serum; PE, phycoerythrin.
5–10-fold higher expression than plasmids without AAV ITRs. In the present study, cationic liposomes were used to deliver a modified AAV plasmid into freshly isolated breast and ovarian tumor cells. In addition, we demonstrated that the transfected and irradiated primary tumor cells maintain a high level of gene expression.

MATERIALS AND METHODS

Plasmid Constructs. All noncompatible restriction ends were filled in with T4 DNA polymerase before ligation. The CMV immediate early promoter was isolated as an ApaI(5′) and BamHI(3′) fragment by PCR using primers with overhanging restriction sites and cloned into the BamHI-Apol sites of blueprint KSII+ (Strategene, La Jolla, CA) to give pBSKSII-CMV. This clone contains sequences 173,560–174,328 of human CMV (EMBL-Genbank Accession no. X17403). pOG44 (Strategene) was digested with EcoRI and PstI to give a fragment containing the adenovirus major late and mouse immunoglobulin-intervening sequence (19), which was cloned into the BamHI site in pBSKSII-CMV to give pBSKSII-CMI. The SV40 polyadenylation signal sequences were obtained by digesting pREp4 (Invitrogen, San Diego, CA) with XbaI and Asp718 and cloned into the XbaI site in pBSKSII-CMI to yield pMP1.

The complete AAV genome was cloned into a pBR-based vector by Laughlin et al. (20) and was obtained through ATCC (catalogue no. 37216). In this clone, the AAV sequences are flanked by BglII sites. This clone was digested with NcoI, and the larger fragment was purified. A polylinker with overhanging NcoI ends was made by annealing two oligonucleotides (CATGGCTCGAGCTTAGAGCTGGGCAACGTCTGTA CC and CATGGGTACCAAGCTTGGCCCGGCTCTCTAGA CTCGAGC) and cloned into the NcoI site to yield pAl. This clone has 625 bases of the AAV 5′ end consisting of left terminal repeat, P5 promoter, and the first 304 bases of the rep 78/68-coding sequence. This clone also has 190 bases of the 3′ end of the AAV consisting of left terminal repeat and 45 bases adjoining. Since the pBR origin of replication produces very low plasmid copy numbers, the AAV portion of pAl was transferred into the high copy number bluescript plasmid. pbSPbPA1 was constructed by digesting pAl with BglII. The fragment containing the AAV expression cassette was filled in and cloned into SacI-Asp718 sites of Bluescript KSII+. The pBSshII fragment from pMP1 was cloned into pbSPbPA1 at the PvuI and HindIII sites to give pMP6. This vector has the AAV left terminal repeat and 48-base adjacent 5′ sequences along with the CMV promoter, a hybrid intron consisting of the adenovirus major late-intervening sequence and mouse immunoglobulin-intervening sequence, the SV40 polyadenylation signal, and the last 190 bases of AAV including the right terminal repeat. The human IL-2-coding sequences obtained by digesting pBC12-IL-2 (21) with HindIII and BamHI were cloned into pMP1 and pMP6 which had been digested with Nhel and BamHI to produce pMP1IL-2 and pMP6IL-2, respectively. The chloramphenicol acetyl transferase-coding sequence obtained by digesting pCDNA3-CAT (Invitrogen) with HindIII was cloned into the Nhel site in pMP1 and pMP6.

Liposome Preparation. Small unilamellar liposomes were prepared with the cationic lipid DDAB (Sigma, St. Louis, MO) in combination with the neutral lipid DOPE (Avanti Polar Lipids, Alabaster, AL) and Chol (Calbiochem, La Jolla, CA). Lipids were dissolved in chloroform. DDAB was mixed with DOPE in a 1:1 molar ratio to produce DDAB:DOPE. To produce DDAB:Chol:DOPE, equivalent molar amounts of all three lipids were mixed. The lipid mixtures were dried on a rotary evaporator. The lipid film was then rehydrated by adding sterile double-distilled water to yield a final concentration of 1 mM DDAB. This solution was sonicated with a probe sonifier (Branson, Henrietta, NY) until clear. Liposomes were stored at 4°C under argon.

Tumor Cell Lines and Primary Tumor Isolation. The human breast adenocarcinoma cell line MCF-7 was obtained from ATCC. The cell line was maintained in DMEM supplemented with 10% FBS and incubated at 7% CO₂.

Tumor samples, as effusions from breast and ovarian cancer patients, were obtained with informed consent. Pleural or peritoneal effusions were either T-cell depleted using the MicroCELLector-CD5/8 flasks (AIS, Santa Clara, CA) or separated by differential Ficoll sedimentation. For the differential Ficoll separation, cells were layered over a discontinuous gradient of 100% IsoPrep (Robbins Scientific, Sunnyvale, CA) and 75% IsoPrep and centrifuged for 20 min at 2000 rpm. After centrifugation, the tumor cells were removed from the top of the 75% gradient. Tumor cell preparations were stained with anti-CD3 antibody (Becton Dickinson, San Jose, CA), and flow cytometric analysis was performed using a FACScan (Becton Dickinson) to assess lymphocyte contamination. Cells were transfected on the same day of isolation or after 2–4 days in culture in AIM V.

Transfection. MCF-7 cells were harvested and counted immediately before transfection. Cells were plated at 10⁶ cells/100-mm tissue culture dish in 2 ml serum-free DMEM. Ten μg plasmid DNA were mixed with either 20 (DDAB:DOPE) or 30 nmol (DDAB:Chol:DOPE) total lipid. One ml serum-free DMEM was added to the lipidosome-DNA complex, and then 75% gradient was added to the cells. After incubating the cells at room temperature for 15 min, 3 ml DMEM containing 20% FBS were added to each plate.

Primary breast and ovarian tumor cells were transfected as described above, but transfections were performed in AIM V media. Where irradiation is indicated, transfected cells were γ-irradiated (10,000 rads) the day after transfection.

IL-2 Assay. At various time points after transfection, supernatants were collected and IL-2 was quantitated using a Quantikine IL-2 ELISA kit from R & D Systems (Minneapolis, MN). IL-2 levels are expressed as pg/10⁶ cells/24 h.

Southern Blot Analysis. Genomic DNA was extracted from cells using standard methods. After digestion with PvuII/HincII, 1 μg DNA was loaded onto a 1% agarose gel, electrophoresed, and transferred to a Hybond N+ nylon membrane (Amersham, Arlington Heights, IL). The membranes were hybridized with an IL-2 gene fragment labeled with 32P by random priming (Megaprime DNA labeling kit; Amersham) at 65°C in rapid hybridization buffer (Amersham) and washed according to the manufacturer’s instructions. Autoradiograms of these filters.
were exposed on X-ray film (type XAR; Eastman Kodak Co., Rochester, NY).

Intracellular IL-2 Staining and Flow Analysis. Transfected cells were stained for intracellular IL-2 protein levels by a modified flow cytometry procedure (23). For 18 h immediately prior to harvesting transfected cells for intracellular IL-2 determination, cells were incubated in culture medium containing 3 μM monensin. Cells were washed in azide buffer and stained for 20 min at 4°C with a cocktail of monoclonal antibodies containing 260F9, 317G5, 520C9, 741F8 (ATCC, Rockville, MD), BT4Z4.1, and BT8FF1.5 (kindly provided by Dr. Robert Bast, M. D. Anderson, Houston, TX) that were raised against human breast cancer cell lines. After washing with standard azide buffer, cells were stained with an R-PE-conjugated goat antimouse F(ab')2 fragment second-step antibody (Caltag, South San Francisco, CA) for 20 min at 4°C. Cells were washed in standard azide buffer and resuspended in 50% FBS-PBS. Ice-cold 70% ethanol was added to the cells with vortexing. After incubation at 4°C for at least 30 min, the cells were washed with standard azide buffer and aliquoted into staining tubes. Nonspecific antibody binding was blocked by incubation with rabbit IgG (Zymed, South San Francisco, CA) for 30 min at room temperature. The cells were washed, then stained with FITC-conjugated anti-human IL-2 antibody (R & D Systems) for 20 min at 4°C. After washing with standard azide buffer, the cells were resuspended and analyzed by flow cytometry.

RESULTS

IL-2 Gene Transfer into a Breast Tumor Cell Line and Primary Breast and Ovarian Tumor Cells. Fig. 1 illustrates the plasmid DNA constructs used in these studies. Both pMP1IL-2 and pMP6IL-2 plasmids contain the CMV immediate early promoter sequence and a hybrid intron followed by the IL-2 cDNA. In addition to this expression cassette, pMP1IL-2 contains the identical sequences in addition to AAV ITRs at both ends of the expression cassette. Plasmid pMP6IL-2 contains both the right and left AAV ITRs containing left TR containing right TR AAV sequence AAV sequence containing left TR CMV immediate/early promoter Intron IL-2 cDNA SV40 Polyadenylation Bluescript backbone pMP1IL2 5.1 kb pMP6IL2 5.6 kb

were transfected with both the AAV (pMP6IL-2) and non-AAV (pMP1IL-2) plasmids using both DDAB:DOPE and DDAB:Chol:DOPE liposomes. The cells were irradiated 24 h after transfection, and culture supernatants were tested for IL-2 using an ELISA. Transfected cells were irradiated 24 h after transfection, and supernatants were collected at various time points and assayed for IL-2 using an ELISA. IL-2 expression was consistently higher using the AAV plasmid pMP6IL-2 compared to that achieved with the non-AAV plasmid pMP1IL-2 (Fig. 2). Although significant levels of IL-2 were produced by MCF-7 after transfection with pMP1IL-2, the levels produced by cells transfected with pMP6IL-2 were 3-5-fold higher at every time point, regardless of the liposome composition used.

The optimal liposome-mediated gene transfer conditions, as determined in this cell line, were applied to determine the ability to transfect freshly isolated human breast and ovarian tumor cells obtained from pleural and peritoneal effusions. The effusion samples were enriched for tumor cells by depleting T lymphocytes using either AIS MicroCELLector-CD5/8 flasks or differential Ficoll gradient centrifugation. On average, 86 ± 14% (n = 5) of the T lymphocytes were depleted from the tumor samples as assessed by CD3 monoclonal antibody staining. This enriched population contained 80-90% tumor cells as assessed by light microscopy, flow cytometry, and immunohistochemical staining for oncogene expression (data not shown). The tumor cells were transfected with both the AAV (pMP6IL-2) and non-AAV (pMP1IL-2) plasmids using both DDAB:DOPE and DDAB:Chol:DOPE liposomes. The cells were irradiated 24 h after transfection, and culture supernatants were tested for IL-2 using an ELISA. Fig. 2b illustrates the data from one representative ovarian transfection experiment. IL-2 expression was significantly higher when pMP6IL-2 was used for transfection, regardless of the liposomes used. Similar results were obtained from three breast and five ovarian tumor samples. In both the ovarian and breast primary tumor cells, the expression levels induced by pMP1IL-2 were less than 10 pg/10⁶ cells/24 h as opposed to 1000-3000 pg/10⁶ cells/24 h when pMP6IL-2 was used. High-level IL-2 expression was observed for up to 10 days after transfection with the AAV plasmid regardless of the liposome composition. Similar results were obtained using Lipofectin and LipofectAMINE (GIBCO-BRL, Gaithersburg, MD; data not shown).
IL-2 plasmid constructs with and without AAV ITRs complexed to either DDAB:DOPE (DD:D) or DDAB:Chol:DOPE (DD:C:D) liposomes were compared for their ability to induce gene expression in breast cancer cell line MCF7 (a) or a primary ovarian tumor sample (b). Cells were transfected with plasmid DNA complexed to cationic liposomes at a ratio of 1 μg DNA:1 nm DDAB. The transfected cells were γ-irradiated (10,000 rads) 24 h after transfection. Supernatants were collected after a 24-h media change at various time points and assessed for IL-2 levels using an ELISA. In a, each column represents the mean of three experiments; bars, SD.

Southern Blot Analysis of AAV- and Non-AAV-transfected Primary Tumor Cells. To verify the delivery of the AAV and non-AAV plasmids to cells, Southern blot analysis of genomic DNA from transfected primary tumor cells was performed. Primary breast tumor cells were transfected with either pMPIIL-2 or pMP6IL-2 complexed to DDAB:DOPE liposomes. Seven days after transfection, genomic DNA was prepared from the transfected cells, and Southern blot analysis was performed.
Transfected cells were harvested 7 days after transfection, and genomic DNA was prepared. Genomic DNA was digested with PvuII/HinCII. As a control, plasmids were cut with loaded lug/lane enzymes. One μg DNA was loaded per lane. The blots were probed with a 32P-labeled non-AAV plasmid. Fig. 3 illustrates that equal amounts of each plasmid were loaded onto the cells.

Duration of IL-2 Gene Expression Induced by AAV Plasmids Complexed to Cationic Liposomes. To determine the duration of gene expression, the MCF-7 tumor cell line was transfected using pMP6IL-2 complexed to DDAB:DOPE liposomes. The cells were γ-irradiated with 10,000 rads 24 h after transfection. Levels of IL-2 secreted into the culture supernatant over a 24-h period was measured at various time points using an ELISA. In addition, the cell-free supernatants collected 72 h after transfection were tested for biological activity in a CTLL-2 bioassay. These supernatants were able to induce proliferation of the IL-2-dependent CTLL-2 cell line in a 24-h bioassay as measured by [3H]thymidine incorporation. Recombinant IL-2 (20 IU/ml) yielded 9550 cpm, and 100 μl supernatant from transfected MCF-7 and primary breast tumor yielded 39023 cpm and 17988 cpm, respectively. As shown in Fig. 4a, significant levels of IL-2 were expressed by day 2, and the levels persisted up to day 28. Although the cell viability had declined significantly by day 28, these cultures were still able to maintain a high level of IL-2 expression. This experiment was repeated with freshly isolated primary breast tumor cells. As illustrated in Fig. 4b, IL-2 expression by breast tumor cells was detectable up to 28 days after irradiation, as observed with MCF-7. Similar results were obtained with 14 breast and 10 ovarian tumor samples.

Effect of Lethal Irradiation on IL-2 Gene Expression. To examine the effect of irradiation on IL-2 gene expression, secretion of IL-2 from irradiated and nonirradiated transfected cells was compared at various time points. Transfections were performed on both the MCF-7 cell line and primary tumor cells using the AAV plasmid complexed to DDAB:DOPE liposomes. One half of the transfected cells was subjected to 10,000 rads and maintained in culture in parallel to the nonirradiated cells. Supernatants were collected from both cultures at various time points, and IL-2 levels were measured using an ELISA. In both the tumor cell line (Fig. 5a) and the primary tumor cells (Fig. 5b), IL-2 expression by irradiated cells was equivalent to expression by nonirradiated cells during the first 7 days after transfection. Expression lasted up to day 30 after irradiation (data not shown). Therefore, in the irradiated cultures, IL-2 gene expression was maintained for up to 28 days after transfection due to growth arrest induced by the irradiation. After 28 days, extensive cell death occurred, resulting in a significant decline in the level of IL-2 in the culture supernatants. These experiments were performed with three breast and five ovarian samples with similar results.

Transfection Efficiency of AAV Plasmids. To determine the AAV plasmid transfection efficiency, individual cells were assessed for IL-2 expression using intracellular IL-2 immunostaining and flow cytometric analysis. Both the MCF7 cell line and primary tumor cells were transfected using pMP6IL-2 complexed to DDAB:DOPE liposomes. Transfected cells were treated with monensin 48 h after transfection for 16 h. The cells were then fixed, permeabilized, and treated with FITC-conjugated anti-IL-2 antibody and analyzed by flow cytometry. To identify the tumor cells that expressed IL-2, the transfected cells were also stained with a cocktail of six antibodies that are specific for breast tumor antigens present on a subpopulation of breast tumor cells. As shown in Fig. 6, approximately 50% of the MCF7 and 40% of the primary tumor cells were positive for intracellular IL-2. Although there was a 10-fold difference in IL-2 levels between MCF7 and primary tumor cells as determined using an ELISA (Fig. 4), the percentage of cells expressing IL-2 as assessed by intracellular immunostaining was comparable for both cell types. The breast cancer antibody cocktail stained only 40% of MCF7 and 20% of the primary breast tumor cell preparation. Although 40% of the total primary tumor cell preparation expressed IL-2, only 15% was positive for both IL-2 and breast cancer antigens. In comparison, 35% of the MCF7 cells were positive for breast tumor antigens and expressed IL-2. Although the antibody cocktail did not label all of the tumor cells in the sample, double-stained cells provide evidence that approximately 15% of the tumor cells were expressing IL-2.

DISCUSSION

Previous animal studies indicate a potent protective immune response can be generated in vivo using cytokine gene-modified tumor cells (5-12). Local secretion of cytokines such as IL-2 from genetically modified tumors mediated rejection and immunological memory (10). Active immunotherapy of certain human cancers using cytokine gene modification of primary tumor cells is currently being tested in clinical trials. Therefore, it is critical to genetically modify the primary human tumor cells to perform these studies. Although tumor cells gene modified with the use of retroviral vectors can express the appropriate cytokine at levels shown to induce protective immunity in animal models (10), the retroviral vectors can only transduce dividing cells, a requirement that has made the genetic
modification of many primary human tumors difficult, if not
unfeasible. One alternative to the technical difficulty in geneti-
cally modifying tumor cells has been to generate fibroblasts
expressing cytokine genes and mixing these with unmodified
tumor cells for vaccination (24). Another obvious alternative is
to explore other methods of gene delivery to human tumor cells.

An ideal alternative method to cytokine gene delivery to
human tumor cells would be safe, simple to use, and lead to
levels of cytokine gene expression in lethally irradiated cells
sufficient to induce systemic immunity. Among the alternative
viral vector systems, recombinant adenovirus and pox virus
delivery is currently hindered by significant immune responses
to the expressed viral proteins. Another alternative, recombinant
AAV, has been considered because it has proven to be efficient
in infecting both dividing and nondividing cell types (25, 26). In
addition, AAV has the ability to accommodate introns and
Fig. 5 To determine the effect of irradiation on long-term IL-2 gene expression, IL-2 secretion from the irradiated and nonirradiated transfected MCF7 cell line (a) and primary breast and ovarian tumor cells (b) was determined. All cells were transfected with pMP6IL-2 plasmid DNA complexed to DDAB:DOPE liposomes. One half of the transfected cells were γ-irradiated at 10,000 rads 24 h after transfection. Irradiated and nonirradiated cells were maintained in culture in parallel. Supernatants were collected at various time points and assessed for IL-2 levels using an ELISA. In a, each column represents the mean of three experiments; bars, SD.

expresses far fewer viral proteins, minimizing the AAV-specific immune response that may be elicited. Although AAV vectors are considered safe, their production requires a complex co-infection with adenovirus that must then be purified, which has resulted in relatively low titers of the AAV vector, with the possibility that contaminating adenovirus is present. Therefore, we considered a simple, efficient, and safe transfection system incorporating an AAV plasmid that delivered with the use of carrier molecules such as liposomes. Cationic liposomes have been shown to mediate transient expression of plasmid DNA in mammalian cell types (27, 28). The levels of IL-2 expressed by the non-AAV plasmids did not
Efficiency of transfection was assessed by intracellular IL-2 immunostaining and flow cytometric analysis. MCF7 and primary breast tumor cells were transfected with pMP6IL-2 complexed to DDAB:DOPE liposomes. Three days after transfection, the cells were immunostained with antibodies against breast cancer antigens, then permeabilized and stained with a human IL-2 antibody. a, flow cytometric plots of MCF7 and a primary breast tumor sample. Control cells were stained with FITC- and PE-conjugated isotype controls. IL-2 was directly conjugated to FITC; the secondary antibody to breast cancer antibodies was PE-conjugated goat antimouse antibody. b, percentage of cells positive for IL-2, breast cancer antigens, or both, as assessed by flow cytometry. Columns, means of three experiments; bars, SD.
reach the levels that had been shown to induce protective immunity in animal models (10). The use of the AAV plasmids overcomes the low expression levels that have previously limited the use of cationic liposomes for transfection. As an example, a direct comparison was made between a non-AAV plasmid and an AAV plasmid. Using an AAV-plasmid, the level of expression was 3–10-fold higher, and the expression lasted for more than 25 days, both significantly greater than levels and duration of expression with the non-AAV plasmid. Because human gene-modified tumor immunotherapy studies utilize lethally irradiated tumor cells as in vivo stimulants, the adequacy of cytokine expression must be tested following lethal irradiation. Irradiation of AAV plasmid-transfected cells with 10,000 rads did not alter the level and duration of expression of cytokine expression in either cell lines and primary tumor cells, although the dose of irradiation was sufficient to inhibit cell division (22).

Finally, the most stringent assessment of the adequacy of cytokine gene expression from lethally irradiated cells must be measured by its ability to induce systemic antitumor immunity and protection from disease progression in tumor-bearing animals. Lipofection of AAV-based plasmids demonstrated levels of expression that should induce protective immunity, as expression of IL-2 from AAV plasmid-transfected tumor cells was either comparable or surpassed the levels of IL-2 from retrovirally transfected cells (data not shown) that were known to induce protective immunity in animal models. Furthermore, a direct comparison of active immunotherapy with either retroviral-transduced cells or AAV plasmid-transfected cells in a murine model of metastatic breast cancer demonstrated that the AAV plasmid-transfected cells induced systemic immunity that resulted in inhibition of pulmonary metastasis in tumor-bearing mice.

In this report, we have demonstrated the ability of AAV plasmid with cationic liposomes to transfect primary tumor cells isolated from pleural and peritoneal effusions, although this same process can be applied to transfected primary tumor cells isolated from solid tumors, as previously described (18). Pleural and peritoneal effusions include lymphocytes, tumor cells, and other cell types. We have successfully enriched tumor cells by depleting the lymphocyte population using the AIS MicroCEL-Lector CD5/CD8 devices or differential Ficoll. Since liposome-mediated gene transfer is efficient in transfecting a wide variety of cell types, the efficiency of tumor cell transfection was assessed by flow cytometry after double staining with IL-2 and breast antigens. Although the final tumor preparation contains other contaminating cell populations, at least 50% of the cells that were positive for breast cancer antigens were also positive for IL-2 as assessed by the double staining, which indicates that tumor cells are indeed transfected and expressing IL-2. In addition, the IL-2 produced as a result of liposome-mediated AAV plasmid transfection of both cell lines and primary tumor cells was shown to have biological activity in a CTL-L-2 proliferation assay.

Primary tumor cells in general are poor transgene expressors, indicating a defect or restriction in transcriptional and/or translational regulation. Thus, it is important to design a plasmid construct that would induce transgene expression in uncultured tumor cells. Although both the AAV and non-AAV plasmids induced high-level IL-2 gene expression in the MCF7 cell line, only the AAV plasmid caused a significant level of expression in primary tumor cells. We demonstrated by Southern blot analysis of genomic DNA that both the AAV and non-AAV plasmid DNA were delivered in comparable amounts into the primary tumor cells. Liposome compositions did affect the delivery of the DNA into primary tumor types, but did not have any effect on the expression levels, indicating that the plasmid, and not the carrier molecule, has the significant role in expression. Despite comparable amounts of DNA in primary tumor cells, significant levels of IL-2 expression were obtained only with the AAV plasmid, suggesting that the difference between the AAV and non-AAV plasmid lies in the level of expression.

One feature of the AAV plasmid that may explain the high levels of expression is the incorporation of the AAV ITRs into the plasmid (18). In addition, the AAV-based expression plasmid described in this report differs from our previously published AAV construct in its ITR sequences and polyadenylation signal, and it contains a hybrid intron. Although the AAV ITR’s biological effects are unknown, it is speculated that they may act as a promoter-enhancers to induce higher levels of mRNA, and thus higher levels of expression. In addition, ITRs may contribute to the plasmid maintenance in the cell and protect the plasmid from degradation. Of interest, however, was that 10–20% of tumor samples transfected with pMP62IL-2 and containing plasmid DNA did not express any detectable levels of IL-2.

We are exploring a variety of possibilities to identify factors resulting in defective expression in these primary tumor cells.

In this report, it is demonstrated that efficient gene expression of biologically active cytokine molecules in primary tumor cells can be obtained utilizing a simple liposome-based delivery of AAV plasmid DNA. Furthermore, the transfection process is independent of cell division and liposome compositions, and can be used for more than one tumor type. Similar to breast and ovarian tumor cells, significant levels of gene expression have been obtained for both primary cultured human prostate (22) and melanoma tumor cells. The achievement of nonviral gene transfer into a wide variety of primary tumor cell types would offer greater chances of developing an efficient gene-based immunological treatment for cancer.

REFERENCES
3. Rubenik, I., Perlman, P., Indrova, M., Simova, J., Jandlova, T., and Neuwirt, J. Growth inhibition of an MC-induced mouse sarcoma by

4 Unpublished data.
5 Manuscript in preparation.

Gene modification of primary tumor cells for active immunotherapy of human breast and ovarian cancer.

R Philip, B Clary, E Brunette, et al.

Updated version Access the most recent version of this article at: http://clincancerres.aacrjournals.org/content/2/1/59

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.