The Microtubule-affecting Drug Paclitaxel Has Antiangiogenic Activity

Dorina Belotti, Veronica Vergani, Teresa Drudis, Patrizia Borsotti, Maria Rosa Pitelli, Giuseppe Viale, Raffaella Giavazzi, and Giulia Taraboletti

Mario Negri Institute for Pharmacological Research, Via Gavazzeni, 11 24125 Bergamo [D. B., V. V., P. B., R. G., G. T.]; University of Milan Medical School, European Institute of Oncology, 20141 Milan [T. D., G. V.]; and Department of Obstetrics and Gynecology, San Gerardo Hospital, 20052 Monza [M. R. P.], Italy

ABSTRACT

Endothelial cell migration is a critical event during angiogenesis, and inhibitors of cell motility can affect the angiogenic process. Paclitaxel (Taxol®), a microtubule-stabilizing antineoplastic cytotoxic drug, inhibits motility and invasiveness of several cell types. The aim of this study was to investigate the effect of paclitaxel on endothelial cell functions and on angiogenesis. In vivo, paclitaxel (20–28 mg/kg i.v.) significantly inhibited the angiogenic response induced by tumor cell supernatant embedded in a pellet of reconstituted basement membrane (Matrigel) injected s.c. into C57BL/6N mice. In vitro, paclitaxel inhibited endothelial cell proliferation, motility, invasiveness, and cord formation on Matrigel in a dose-dependent manner. The antiangiogenic activity of paclitaxel was not linked to its cytotoxicity, since inhibition of endothelial cell chemotaxis and invasiveness occurred at drug concentrations which did not affect endothelial cell proliferation. Another cytotoxic drug, cisplatin, that inhibited endothelial cell proliferation in vitro, did not affect angiogenesis in vivo. These data indicate that paclitaxel has a strong antiangiogenic activity, a property that might contribute to its antineoplastic activity in vivo.

INTRODUCTION

Agents affecting the cytoskeleton are potential inhibitors of angiogenesis (1). By interfering with cell functions which require an intact cytoskeleton, such as proliferation, migration, and invasion, they can interrupt the angiogenic process at several levels. Microtubule-disrupting agents, such as colchicine and vinblastine, have been reported to inhibit cord formation and endothelial cell migration in an in vitro wound-healing assay (2, 3).

The antineoplastic drug paclitaxel affects the cytoskeleton with a unique mechanism of action: at subnanomolar concentrations, paclitaxel favors the assembly of microtubules, reducing the critical concentration of tubulin dimers and the need for cofactors such as guanosine 5′-triphosphate and microtubule-associated proteins. Paclitaxel also stabilizes formed microtubules by shifting the equilibrium between dimers and polymers in favor of the latter and by stabilizing the microtubules against dissociating conditions such as cold and CaCl₂. This results in the formation of abnormal cytoskeletal structures: cells exposed to paclitaxel in vitro present new microtubules in parallel bundles, asters of mitotic spindles during mitosis, and microtubules not associated with the microtubule organizing centers (4, 5).

The cytotoxic activity of paclitaxel for tumor cells is well known, and preclinical and clinical studies showed it was effective against several tumors, including ovarian, breast, lung, and head and neck carcinomas (5). Other activities of paclitaxel related to different cell functions have been studied as well. The drug inhibits the motility of murine fibroblasts (6), ESb murine T-lymphoma (7), PC-3 prostate carcinoma (8), and A2058 melanoma cells (9). It also inhibits the production of matrix metalloproteinases by tumor cells, thus affecting their invasive behavior (7, 8).

Little is known about the effect of paclitaxel on endothelial cell functions and on angiogenesis. This study investigated the effect of paclitaxel on tumor-induced angiogenesis in in vitro and in vivo experimental models.

MATERIALS AND METHODS

Drugs and Reagents. Paclitaxel (Taxol®; provided by the Division of Cancer Treatment, National Cancer Institute, Bethesda, MD) was dissolved in 50% polyoxyethylated castor oil (Cremophor EL) and 50% ethanol and diluted in 5% glucose to the indicated concentrations for in vivo treatments. For the in vitro experiments, a 1000X stock solution of paclitaxel in absolute ethanol was prepared and then diluted in test medium. Cisplatin (Bristol-Myers Squibb, Wallingford, CT) was dissolved in water.

As a source of tumor-derived angiogenic factor, we used the supernatant of murine endothelioma eEnd.1 cells which release the angiogenic factor EDMF in the culture medium (10). The conditioned medium, prepared as described (10), was separated on heparin-Sepharose, and the fractions containing EDMF, corrected for molarity, were used in vitro and in vivo.

Received 4/18/96; revised 8/5/96; accepted 8/16/96.

1 This study was supported by the Italian Association for Cancer Research, the Italian Research Council (Consiglio Nazionale delle Ricerche, Applicazioni Cliniche della Ricerca Oncologica Project), and the Istituto Superiore di Sanità (AIDS Project). T. D. is a recipient of the Paolo Baffi Fellowship.

2 To whom requests for reprints should be addressed. Phone: (39) 35 319888; Fax: (39) 35 319331.
Matrigel was kindly provided by Dr. A. Albini (National Cancer Institute, Genova, Italy).

In Vivo Angiogenesis Assay. To study angiogenesis in vivo, the method described by Passaniti et al. (11) and previously utilized to evaluate inhibitors of angiogenesis (12) was used. Briefly, tumor cell supernatant, prepared as described above, was embedded in a pellet of Matrigel (10 mg/mL, 0.5 mL) along with heparin (16 units/mL) and injected s.c. into male C57BL/6N mice (Charles River, Calco, Italy). Mice received paclitaxel (28 mg/kg) i.v. immediately before and 2 days after the injection of the pellet of Matrigel. Control mice received the same volume of vehicle.

After 4 days, the angiogenic response was evaluated at autopsy by two blinded observers. Macroscopic evaluation of hemorrhage within and around the Matrigel pellet was graded from - to +4, depending on the extent and intensity of hemorrhage. The pellet was then removed, and the hemoglobin content was measured with the Drabkin procedure as described (12).

For histological analysis, the Matrigel pellets in combination with surrounding skin and soft tissue were fixed in 10% neutral buffered formalin for 24 h and embedded in paraffin. Five-μm sections were stained with H&E, and the following histological features were independently evaluated and graded by two blinded observers: (a) cellularity associated with the surface of the pellet (scored as: 1, scanty; 2, moderate; and 3, abundant); (b) cells invading the pellet (scored as above); (c) presence of cords and tubes within the pellet (scored as: 0, none; 1, occasional; 2, moderate; and 3, prominent); and (d) presence of blood-filled channels and/or lacunae (scored as above). For each sample, the resulting sum was recorded as the final score.

In Vitro Assays. Endothelial cells were obtained from human umbilical vein and cultivated as described (12). A colorimetric assay was used to assay proliferation (12). Briefly, 4 × 10^5 cells were plated in each well of a 96-well plate. After 24 h, paclitaxel or cisplatin was added at the concentration indicated in “Results”; the drugs were either removed after 4 h or left for the duration of the assay (72 h). After 3 days, the plate was stained with 0.5% crystal violet in 20% methanol, rinsed with water, and air dried. The stain was eluted with a 1:1 solution of ethanol:0.1 M sodium citrate, and absorbance at 540 nm was measured with a Multiscan MC (Titertek; Flow Laboratories, Milan, Italy; Ref. 12). Data are expressed as the percentage of control proliferation (vehicle-treated cells); the IC_{50} (drug concentration causing 50% inhibition) was calculated from the plotted data.

Chemotaxis was assessed using the Boyden chambers and 8-μm pore size, gelatin-coated polycarbonate Nucleopore filters, as described previously (12). For chemoinvasion, the filter was coated with an even layer of Matrigel (0.5 mg/mL), and the assay was conducted as described elsewhere (12). Endothelial cells were detached by a brief exposure to 0.25% trypsin-0.02% EDTA, washed in DMEM with 0.1% BSA, resuspended in this medium at the concentration of 1–2 × 10^6 cells/mL, and added to the upper compartment of the Boyden chamber. Paclitaxel or cisplatin was added to the endothelial cells at the indicated concentration and incubated throughout the assay (4 h for chemotaxis, 6 h for chemoinvasion). Data are expressed as the percentage of control migration (vehicle-treated cells); the IC_{50} (drug concentration causing 50% inhibition) was calculated from the plotted data.

To analyze the production of matrix metalloproteinases, subconfluent cultures of endothelial cells were washed three times with serum-free medium and incubated for 20 h in the same medium containing vehicle or paclitaxel. The conditioned medium was then collected and processed for gelatin zymography; the remaining cells were counted. Gelatin zymography was performed essentially as described (13), with 1 mg/mL gelatin in a 10% polyacrylamide-SDS gel. The sample volume was adjusted according to the number of cells. The experiment was repeated twice.

Cord formation on Matrigel was assessed by plating endothelial cells (6 × 10^6/0.5 mL) on a layer or polymerized Matrigel (270 μL) essentially as described (14). Paclitaxel (1 nM) or vehicle (absolute ethanol) was added to the medium. Photographs were taken with an inverted microscope 48 h after plating.

RESULTS

Paclitaxel Affects Angiogenesis In Vivo. s.c. injection of a tumor cell supernatant embedded in a pellet of Matrigel induced a strong angiogenic response in 4 days, with macroscopic hemorrhages around the pellet and a 2.8–3.3-fold in-

crease in the hemoglobin content compared to pellets containing Matrigel alone. Systemic treatment of mice with paclitaxel resulted in dose-dependent inhibition of the angiogenic response compared to vehicle-treated animals. Inhibition of hemoglobin content was significant at 20 mg/kg ($P < 0.05$) and was maximal at 28 mg/kg, with no effect at 10 mg/kg (Fig. 1). In the same assay, batimastat and tissue inhibitor of metalloproteinase 2, used as reference drugs, caused up to 38 and 75% inhibition of the hemoglobin content of the pellets, respectively (12).

Macroscopic evaluation of the area revealed markedly less hemorrhage surrounding the pellet in the animals treated with 20 and 28 mg/kg paclitaxel: 55% of the vehicle-treated mice presented hemorrhage compared to 22% and 20% of the mice treated with 28 and 20 mg/kg paclitaxel, respectively. Moreover, the mean intensity of hemorrhage scored 1.03 ± 0.3, 0.17 ± 0.08, and 0.25 ± 0.2 for vehicle, 28 and 20 mg/kg paclitaxel, respectively.

Histological analysis of pellets containing the angiogenic factors showed a variable degree of cellularity surrounding and invading the pellets of Matrigel. Cells were scattered singly

Fig. 2 Inhibition of angiogenesis in vitro by paclitaxel: histological analysis of the Matrigel pellets. Infiltration of cells, either single or organized in vascular structures, is evident in the pellets of mice treated with vehicle (a), but is greatly reduced in mice treated with paclitaxel (28 mg/kg, b). H&E, ×100.
Fig. 3 Effect of paclitaxel on in vitro endothelial cell proliferation, motility, and chemoinvasion. The antiproliferative effect of paclitaxel was assessed by treating endothelial cell with the drug for 4 h (○) or 72 h (---). Chemotaxis and chemoinvasion were tested in a Boyden chamber using tumor cell-conditioned medium (○) or bFGF (□) as attractants. In these assays, paclitaxel was added to the cells at the concentration indicated and left throughout the assay (4 and 6 h, respectively). Data are expressed as the percentage of proliferation, migration, and invasion compared to control response (ethanol alone), and the means of triplicates from one experiment are representative of at least three. Bars, SE.

throughout the Matrigel or organized in thin cords and tubules without a clearly defined lumen, in blood vessels with a recognizable lining of flattened endothelial cells, and in larger blood lacunae, without any apparent cell lining (Fig. 2a). A significant reduction in the angiogenic response was observed in the pellets of mice treated with paclitaxel compared to vehicle. The cellularity surrounding and infiltrating the pellets was reduced, and cords, tubules, vessels, and lacunae were less frequent (Fig. 2b). The histological score of the cases under study, evaluated as described in “Materials and Methods,” ranged from 3 to 11. A strong response (histological score ≥6) was observed in 7 of 10 vehicle-treated mice, but only in 1 of 8 paclitaxel-treated mice (P = 0.024, Fisher’s exact test).

Paclitaxel Affects Endothelial Cell Functions in Vitro.

In vitro experiments were then performed to study the possible mechanisms of the antiangiogenic activity of paclitaxel. The effect was investigated on endothelial cell functions related to the angiogenic process: proliferation, migration, invasiveness, and cord formation.

The effect of paclitaxel on endothelial cell proliferation was assessed with a colorimetric assay, and endothelial cells were exposed to the drug for either 4 h or 3 days. The short time exposure (4 h) was chosen to compare the effect of paclitaxel on proliferation and motility in the same experimental conditions (see below). When endothelial cells were exposed to paclitaxel for 4 h, only a marginal inhibitory effect was observed (up to 17.3% inhibition; Fig. 3). A strong inhibition of endothelial cell proliferation (up to 60.5% inhibition) was instead observed when cells were exposed to paclitaxel for 3 days (Fig. 3, dashed line).

Paclitaxel also inhibited endothelial cell motility response to tumor-derived angiogenic factors. Inhibition was dose dependent, occurring at concentrations as low as 10 nm and reaching 86.2% at 100 nm (Fig. 3). The IC₅₀ was 0.4 nm. In one experiment, the angiogenic factor bFGF was used as a chemoattractant, and in this case paclitaxel also inhibited the endothelial cell chemotactic response (Fig. 3).

An important event during angiogenesis is the degradation of the basement membrane by endothelial cells to allow their migration into the underlying interstitial matrix. Matrix-degrading enzymes, whose production is stimulated by several angiogenic factors, play an important role in matrix digestion by invading endothelial cells (15). As a model to study endothelial cell invasiveness, we used the chemoinvasion assay in which endothelial cells are induced to digest a layer of reconstituted basement membrane (Matrigel) and to migrate through the filter. Paclitaxel inhibited endothelial cell chemoinvasion, with maximum inhibition (72%) at 10 nm and an IC₅₀ of 0.5 nm (Fig. 3). We also found that production of the matrix metalloproteinase MMP-2, evaluated by zymography, was reduced in paclitaxel-treated endothelial cells (up to 37% inhibition at 10 μM, Fig. 4).

The final event during angiogenesis is the organization of endothelial cells in a three-dimensional network of tubes. *In vitro*, endothelial cells plated on Matrigel align themselves, forming cords, already evident a few hours after plating. The
addition of paclitaxel (1 nM) to the assay resulted in complete inhibition of endothelial cell alignment and cord formation (Fig. 5).

Lack of Antiangiogenic Activity of Cisplatin in Matrigel. To rule out a direct association between antiangiogenic and antiproliferative activity, we have studied the effect on endothelial cell functions in vitro and on angiogenesis in vivo of another cytotoxic drug, cisplatin, known to have a strong antiproliferative effect on different cell types. As expected, cisplatin was very effective in inhibiting endothelial cell proliferation in vitro: already after a 4-h exposure IC50 was 200 μM (Fig. 6). Inhibition of endothelial cell motility was observed only at toxic concentrations of cisplatin (IC50, 290 μM). Notwithstanding its antiproliferative activity, cisplatin (4 mg/kg) did not inhibit the angiogenic response in Matrigel in vivo (Fig. 6).

DISCUSSION

Tumor-induced angiogenesis, the formation of neovessels from preexisting ones, is critical for supporting tumor growth...
Angiogenesis was assayed as described in the legend to Fig. 1. Mice received cisplatin (4 mg/kg) or vehicle i.v. on days 0 and 2. Data are expressed as hemoglobin content of the pellet (g/dl), and the means for data from two independent experiments (n = 12–17) are represented. Hemoglobin content of pellets containing Matrigel alone was 0.31 ± 0.18 g/dl (n = 17). Bars, SE.

Fig. 6 Effect of cisplatin on endothelial cell functions *in vitro* and angiogenesis *in vivo*. The effect of cisplatin on cell proliferation was assessed by treating endothelial cells with the drug for 4 h (○) or 72 h (- - -). Chemotaxis was tested as described in the legend to Fig. 3. Data are expressed as the percentage of proliferation and migration compared to control response, and the means for data from two independent experiments are represented. Angiogenesis was assayed as described in the legend to Fig. 1. Mice received cisplatin (4 mg/kg) or vehicle i.v. on days 0 and 2. Data are expressed as hemoglobin content of the pellet (g/dl), and the means for data from two independent experiments (n = 12–17) are represented. Hemoglobin content of pellets containing Matrigel alone was 0.31 ± 0.18 g/dl (n = 17). Bars, SE.

and progression not only by providing the necessary blood supply but also by allowing metastatic cells into the circulation (16). Promising preclinical studies have shown the antineoplastic activity of angiostatic agents, and several antiangiogenic drugs are currently under investigation in clinical trials. The present study reports that paclitaxel inhibits angiogenesis induced *in vivo* by tumor cell supernatants. This indicates that the antiangiogenic activity of the drug might contribute to its antineoplastic activity, thus tumor growth might be affected not only by direct cytotoxicity for tumor cells but also by inhibition of neovessel formation. This might be particularly important in the case of vascular tumors and tumors characterized by a strong angiogenic activity. Indeed, paclitaxel has been recently described to be active in a Phase II clinical trial in patients with HIV-associated Kaposi’s sarcoma, a vascular tumor characterized by a strong angiogenic activity (14, 17).

Paclitaxel inhibited angiogenesis at doses (20–28 mg/kg) that have shown antitumor activity in preclinical studies in mice. Indeed, these doses inhibit the growth of different murine tumors in syngeneic mice and human tumors transplanted in nude mice (18, 19).

Paclitaxel inhibited the proliferation of endothelial cells. The drug did not affect endothelial cell attachment to tissue culture plastic (data not shown), thus ruling out that the inhibition of cell proliferation is indirectly mediated by an effect of paclitaxel on cell adhesion. Given the effect of paclitaxel on endothelial cell proliferation, it was therefore important to study the relationship between antiproliferative and antiangiogenic activity. To this purpose, two approaches were followed.

Studying the effect of the drug on *in vitro* endothelial cell functions relevant to the angiogenic process, we have found that paclitaxel inhibited endothelial cell motility in response to tumor-derived chemotactic factors and to bFGF. Interestingly, endothelial cell motility was inhibited to a greater extent and at lower drug concentrations than was proliferation. Moreover, the antiproliferative effect of paclitaxel was greatly reduced when endothelial cell proliferation was assessed in treatment conditions similar to those used for the chemotaxis assay (4-h exposure to the drug), and no relevant antiproliferative effect was observed at the same doses that inhibited chemotaxis. These findings suggest that the effect of paclitaxel on endothelial cell motility might be more important than that on proliferation in the overall inhibition of angiogenesis *in vivo*. Paclitaxel might conceivably affect tumor-induced angiogenesis *in vivo* at local concentrations lower than those necessary to cause a cytotoxic effect on tumor cells. The cytotoxic properties of paclitaxel make it difficult to recognize whether its antineoplastic activity is due to inhibition of angiogenesis or to a direct toxic effect on tumor cells. More studies are thus needed to clarify the therapeutic relevance of these findings and to develop treatment strategies.

The second indication that the antiangiogenic effect of paclitaxel is not merely dependent on inhibition of proliferation is the lack of antiangiogenic activity of cisplatin, another cytotoxic antineoplastic drug. Cisplatin inhibited endothelial cell proliferation *in vitro* but not angiogenesis *in vivo* at doses that are related to the maximum tolerated dose and that have shown antineoplastic activity in murine systems (19, 20). This finding is in agreement with other studies describing the lack of antiangiogenic activity of cisplatin (21, 22). Both paclitaxel and cisplatin inhibited endothelial cell motility; however, in contrast to paclitaxel, the inhibition of cell motility by cisplatin appears to be a direct consequence of its high antiproliferative activity, since it occurred only at doses which inhibited cell proliferation.
Altogether, our findings indicate that the antiproliferative effect of paclitaxel is not the main mechanism for its angiogenic activity and that drugs which affect endothelial cell proliferation are not necessarily angiogenic. Our study also indicates that the in vitro Matrigel model of angiogenesis represents a good model to study true angiogenic drugs independently on their effect on endothelial cell growth.

The first evidence of an inhibitory activity of microtubule-affecting drugs on endothelial cell migration was reported in studies on an in vitro wound-healing assay using paclitaxel, colchicine, and vinblastine (2, 3, 23). Interestingly, in this assay, colchicine and vinblastine inhibited cell motility without affecting proliferation however (2). Recently, the inhibitory activity of paclitaxel on angiogenesis in the chick chorioallantoic membrane model has been reported, although no mechanism for this inhibition has been studied (24).

Paclitaxel also prevented two other functions related to angiogenesis involving the interaction of endothelial cells with the extracellular matrix: cord formation in a three-dimensional network and endothelial cell invasiveness through a layer of Matrigel. These processes require both motility and the production of matrix-degrading enzymes by invading cells. Paclitaxel affected both activities: besides its effect on motility, it also reduced the production of the matrix metalloproteinase-2 by endothelial cells, as already reported for other cell types (8).

Antiangiogenic factors can act by different mechanisms: they can either act directly on endothelial cell functions or block angiogenesis indirectly, e.g., by blocking the production of angiogenesis stimulating factors or by inhibiting the recruitment and activation of inflammatory cells known to release angiogenic factors (1, 16). The finding that paclitaxel inhibited several endothelial cell functions in vitro indicates that its antiangiogenic activity in vivo is not indirect, but that it acts directly on the endothelial cell response to angiogenic factors.

This study demonstrated that paclitaxel is a potent antiangiogenic agent. The effect does not appear to be a mere consequence of its cytotoxicity, since it inhibits other endothelial cell functions with even greater potency. We propose that the antiangiogenic property of paclitaxel might contribute to its antineoplastic activity.

REFERENCES

The microtubule-affecting drug paclitaxel has antiangiogenic activity.

D Belotti, V Vergani, T Drudis, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/2/11/1843

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.