The ATP-Competitive mTOR Inhibitor INK128 Enhances In Vitro and In Vivo Radiosensitivity of Pancreatic Carcinoma Cells

Thomas J. Hayman1,2, Amy Wahba2, Barbara H. Rath2, Heekyong Bae2, Tamalee Kramp2, Uma T. Shankavaram2, Kevin Camphausen2, and Philip J. Tofilon2

Abstract

Purpose: Radiotherapy remains a primary treatment modality for pancreatic carcinoma, a tumor characterized by aberrant mTOR activity. Given the regulatory role of mTOR in gene translation, in this study, we defined the effects of the clinically relevant, ATP-competitive mTOR inhibitor, INK128 on the radiosensitivity of pancreatic carcinoma cell lines.

Experimental Design: Clonogenic survival was used to determine the effects of INK128 on in vitro radiosensitivity of three pancreatic carcinoma cell lines and a normal fibroblast cell line with mTOR activity defined using immunoblots. DNA double-strand breaks were evaluated according to γH2AX foci. The influence of INK128 on radiation-induced gene translation was determined by microarray analysis of polysome-bound mRNA. Leg tumor xenografts grown from pancreatic carcinoma cells were evaluated for mTOR activity, eIF4F cap complex formation, and tumor growth delay.

Results: INK128, while inhibiting mTOR activity in each of the cell lines, enhanced the in vitro radiosensitivity of the pancreatic carcinoma cells but had no effect on normal fibroblasts. The dispersal of radiation-induced γH2AX foci was inhibited in pancreatic carcinoma cells by INK128 as were radiation-induced changes in gene translation. Treatment of mice with INK128 resulted in an inhibition of mTOR activity as well as cap complex formation in tumor xenografts. Whereas INK128 alone had no effect of tumor growth rate, it enhanced the tumor growth delay induced by single and fractionated doses of radiation.

Conclusion: These results indicate that mTOR inhibition induced by INK128 enhances the radiosensitivity of pancreatic carcinoma cells and suggest that this effect involves the inhibition of DNA repair.

Introduction

Radiation regulates gene expression primarily via translational control, a process that operates independently from changes in the transcriptome (1). Moreover, radiation-induced gene translation profiles have revealed a set of genes and networks that are unique to tumor or normal cells (2), suggesting that translation control processes may provide a source of tumor-selective targets for radiosensitization. Along these lines, we recently showed that knockdown of the eukaryotic initiation factor 4E (eIF4E), the rate-limiting protein in cap-dependent translation initiation, enhanced the radiosensitivity of tumor but not normal cell lines (3). These results suggested that eIF4E targeting strategies in combination with radiotherapy may be of benefit in cancer treatment. One approach to targeting eIF4E is through inhibition of mTOR kinase, which regulates mRNA translation in response to a wide variety of environmental signals (4). Specifically as part of the multi-protein complex mTORC1, mTOR phosphorylates eIF4E-binding protein 1 (4E-BP1), resulting in its release of eIF4E, which then initiates the formation of the eIF4F cap complex leading to cap-dependent translation (5). Inhibiting the mTOR-mediated phosphorylation of 4E-BP1 severely limits eIF4E availability and thus eIF4F complex formation, essentially mimicking the knockdown of eIF4E.

To target mTORC1 activity, most studies have focused on rapamycin or its analogs (rapalogs). Whereas these agents effectively inhibit S6 kinase phosphorylation, the other primary substrate of mTORC1, they only partially inhibit phosphorylation of 4E-BP1 (5). In addition, these drugs do not inhibit mTORC2 (6). mTOR containing complex that, although not as well defined as mTORC1, has been reported to phosphorylate several AGC kinases, including Akt, SGr, and PKC. As single agents or in combination...
INK128 is a clinically applicable, competitive inhibitor of mTOR kinase. In contrast to allosteric inhibitors (e.g., rapamycin), INK128 more completely inhibits mTORC1 and inhibits mTORC2, events that may lead to enhanced tumor radiosensitivity. Radiotherapy is a primary treatment modality for pancreatic carcinoma tumors associated with hyperactivation of the mTOR pathway. Toward determining the potential of mTOR to serve as a target for radiosensitization in this tumor type, we initially showed that INK128 enhances the in vitro radiosensitivity of human pancreatic carcinoma cell lines. Treatment of mice bearing pancreatic carcinoma xenografts with INK128 was then shown to decrease tumor mTORC1 and mTORC2 activities along with eIF4F cap complex formation. Whereas INK128 alone had no effect on tumor growth rate, it significantly increased the tumor growth delay induced by single and fractionated irradiation. These data suggest that the combination of INK128 with radiotherapy may be of benefit in the treatment of pancreatic carcinoma.

Methods

Cell lines and treatments

The human pancreatic carcinoma cell lines Miapaca-2 and Panc1 were obtained from American Type Culture Collection (ATCC). PSN1 was provided by Deborah Citrin (National Cancer Institute, Bethesda, MD). The human normal fibroblast cell line MRC9 was obtained from ATCC. Cells were maintained in RPMI (Miapaca-2, Panc1, and PSN1) or MEM (MRC9) media supplemented with 10% FBS (Invitrogen). Cells were cultured less than 3 months after resuscitation and were maintained in an atmosphere of 5% CO2/95% air at 37°C. INK128 (Chemietek) was dissolved in dimethyl sulfoxide (DMSO). Cell cultures were irradiated using 320kV X-ray source at 2.3 Gy/min (Precision XRay Inc.).

Immunoblotting and antibodies

Cells were lysed as described (13). Protein was quantified using BCA protein assay (Thermo Scientific), separated by SDS-PAGE, transferred to polyvinylidene difluoride (PVDF; Bio-Rad), and probed with the indicated antibodies. Bands were visualized using Pierce ECL Western Blotting Substrate (Thermo Scientific). Anti-AKT, anti-phospho-AKT Ser473, anti-4E-BP-1, anti-phospho-4E-BP-1 Thr37/46, anti-eIF4E, and anti-phospho-mTOR Ser2481 were purchased from Cell Signaling Technology. Anti-β-actin was obtained from Sigma-Aldrich. Anti-eIF4G was purchased from BD Biosciences. Donkey-anti-rabbit and sheep-anti-mouse horseradish peroxidase–conjugated secondary antibodies were purchased from GE Healthcare.

Polysome isolation and microarray analysis

Isolation of polysome-bound RNA was conducted as described (1, 2, 21) in biologic triplicate. The isolated RNA was amplified with GeneChip 3′ IVT Express Kit (Affymetrix) and hybridized to GeneChip PrimeView Human Gene Expression Array chips (Affymetrix) per manufacturer’s protocol. Using Partek Genomics suite, RNA normalization and log2 transformation was conducted. Statistical significance was determined by ANOVA testing with Partek Genomics suite. Probesets that were modified by at least ±1.2-fold with P < 0.1 (vs. control) were identified and submitted.
to Ingenuity Pathway Analysis (IPA) as described in Results. The data have been deposited in National Center for Biotechnology Information’s Gene Expression Omnibus (GEO) and are accessible through GEO Series accession number GSE48098.

Immunofluorescent analysis of γH2AX foci
Cells grown in chamber slides, were fixed, permeabilized, and blocked as described (13). The slides were incubated with antibody to phospho-H2AX (Millipore) followed by goat-anti-mouse-Alexa488 (Invitrogen) and mounted with Prolong gold anti-fade reagent containing 4′,6-diamidino-2-phenylindole (DAPI; Invitrogen) to visualize nuclei. Cells were analyzed on a Leica upright fluorescent microscope.

Immunohistochemistry
Tumors were excised and fixed in 10% buffered formalin. Paraffin sections were deparaffinized in xylene and rehydrated in decreasing amounts of alcohol. Sections were cleared for 1 hour at 4 °C followed by incubation with fluorescein isothiocyanate (FITC)-labeled secondary antibody (Invitrogen) and finally mounted with mounting media containing DAPI (Vector) to visualize nuclei. Images were generated from 2 individual tumors per treatment group using a Zeiss confocal microscope with a 63× objective with representative images shown in immunoblotting.

In vivo cap-binding assay
eIF4F cap complex formation in PSN1 xenografts was measured using m7-GTP batch chromatography (22). Briefly, tumors were homogenized and lysed in 20 mmol/L Tris-HCl (pH 7.4), 150 mmol/L NaCl, 1 mmol/L EDTA, 1 mmol/L EGTA, 1 mmol/L β-glycerophosphate, 1 mmol/L sodium orthovanadate, 1% Triton X-100, 0.2 mmol/L pheynylmethylsulfonylfluoride (PMSF). 1× phosphatase inhibitor cocktails II and III (Sigma-Aldrich), and 1× HALT protease inhibitor cocktail (Thermo Scientific) for 15 minutes on ice. Four hundred micrograms of lysate were pre-cleared for 1 hour at 4°C and then incubated with m7-GTP Sepharose 4B beads (GE Healthcare) overnight at 4°C. Beads were washed 3 times with lysis buffer; bound protein was eluted, denatured, and then separated using SDS-PAGE followed by immunoblotting.

In vivo tumor growth delay
Eight- to ten-week-old female athymic nude mice (NCr nu/nu; NCI Animal Production Program, Frederick, MD) were used in these studies. Animals are caged in groups of 5 or less and fed animal chow and water ad libitum. A single-cell suspension PSN1 cells (5 × 10⁶) was injected subcutaneously into the right hind leg. INK128 was dissolved in 5% n-methylpyrrolidone, 15% polyvinylpyrrolidone, and 80% water and delivered by oral gavage. When tumors grew to a mean volume of approximately 180 mm³, mice were randomized into four groups: vehicle-treated controls, drug (INK128, oral gavage), radiation, or drug/radiation combination. The specific treatment protocols are described in Results. Radiation was delivered locally using a Pantak X-Ray source with animals restrained in a custom-designed lead jig. To obtain tumor growth curves, perpendicular diameter measurements of each tumor were measured 2 to 3 times per week with a digital caliper and volumes were calculated using a formula (L × W²)/2. Data are expressed as mean ± SEM tumor volume. Each experimental group contained between 5 and 7 mice. All animal studies were conducted in accordance with the NIH Guide for Care and Use of Animals. Statistical analysis was conducted using one-way ANOVA and Tukey post hoc analysis.

Results
The effects of INK128 on pancreatic cancer cell radiosensitivity as measured by clonogenic survival analysis are shown in Fig. 1A–C. For this study, cells were plated at clonogenic density, allowed to attach overnight, irradiated, followed immediately by adding the specified concentration of INK128. The treatment protocol was chosen based upon our recent study in which maximum radiosensitization induced by the ATP-competitive mTOR inhibitor PP242 occurred when drug was added immediately after radiation (13); concentrations of INK128 used are similar to those achievable in vivo (14). Twenty-four hours after irradiation, media were removed, fresh drug-free media were added, and colonies determined 10 to 14 days later. INK128 treatment alone had no effect on the surviving fraction of PSN1 or Panc1 cells. Because MiaPaCa-2 cells were more sensitive to INK128-induced cytotoxicity, to maintain a minimal level of drug-induced cell killing similar to the other tumor cell lines, the concentration was decreased to 2 μmol/L, which reduced surviving fraction of MiaPaCa-2 cells to 0.85 ± 0.02. In all 3 pancreatic tumor cell lines, treatment with INK128 immediately after irradiation resulted in an increase in radiosensitivity with dose enhancement factors (DEF) at a surviving fraction of 0.1 of 1.32 ± 0.06, 1.45 ± 0.01, and 1.30 ± 0.09 for PSN1, Panc1, and MiaPaCa-2, respectively. As an initial investigation into the potential for tumor-selective actions, the effect of INK128 on the radiosensitivity of the normal lung fibroblast line MRC9 was determined. INK128 treatment alone reduced the MRC9 surviving fraction to 0.73 ± 0.05; in contrast to the 3 tumor cell lines, INK128 had no consistent effect on the radiosensitivity of MRC9 cells (Fig. 1D).

Immunoblot analysis was conducted to determine the effects of INK128 treatment on mTOR activity using the concentrations from Fig. 1. mTORC1 and mTORC2 activity was determined in each cell line after specified times of INK128 exposure (Fig. 2A–D). Toward this end, the level of p-4E-BP1 (t37/46) was used as a marker of mTORC1 activity (5) and p-AKT (s473) was used as a marker of mTORC2 activity (10). INK128 exposure in all 3 tumor cell lines reduced activity of mTORC1 reaching a maximum inhibition by approximately 2 hours as judged by a decrease in...
p-4E-BP1 as well as the observed mobility shift from the slower migrating hyperphosphorylated bands to the faster migrating hypophosphorylated bands seen in total 4E-BP1 (23). Treatment with INK128 also reduced mTORC2 activity reaching a maximum inhibition by approximately 2 hours as indicated by the decrease in p-AKT levels. The results presented in Fig. 2 are thus consistent with an inhibitory effect of INK128 on both mTORC1 and mTORC2 activity as reported for other tumor cell lines (14). Of note, whereas treatment with INK128 did not enhance the radiosensitivity of normal MRC9 cells (Fig. 1D), it did inhibit mTORC1 and mTORC2 activities to similar degrees as detected in the tumor cell lines (Fig. 2D).

To begin to investigate the mechanisms mediating INK128-induced radiosensitization, we focused on PSN1 cells. The critical lesion responsible for radiation-induced cell death is the DNA DSB. Because γH2AX foci correspond to radiation-induced DSBs and their dispersal correlates

Figure 1. Effects of INK128 on cellular radiosensitivity. PSN1 (A), Panc1 (B), Miapaca-2 (C), or MRC9 cells (D) were plated, allowed to attach overnight, irradiated. The indicated concentration of inhibitor was added immediately after radiation. Twenty-four hours after irradiation, media were removed and fresh drug-free media were added. Colony-forming efficiency was determined 10 to 14 days later, and survival curves were generated after normalizing for cell killing from drug alone. Values shown represent the means ± SEM for 3 independent experiments. *P < 0.05; **P < 0.1 according to a Student t test (INK128 vs. control).

Figure 2. Effects of INK128 on mTORC1/2 activity. PSN1 (A), Panc1 (B), Miapaca-2 (C), or MRC9 cells (D) were treated with the specified dose of inhibitor. Cells were collected at the specified time points and subjected to immunoblot analysis. Actin was used as a loading control.
with DSB repair (24, 25), the effects of INK128 on radiation-induced γH2AX were evaluated in PSN1 cells (Fig. 3A). In this study, the same treatment protocol used for the clonogenic survival assays shown in Fig. 1 was used: INK128 was added immediately after irradiation (2 Gy) with γH2AX nuclear foci determined at times out to 24 hours. No difference in foci levels was detected between control (vehicle) and INK128-treated cells at 1 hour after irradiation, suggesting that mTOR inhibition has no effect on the initial levels of radiation-induced DSBs. However, at 6 and 24 hours after irradiation, the number of γH2AX foci remaining was significantly greater in the INK128-treated cells than in control cells. These results suggest that INK128-induced radiosensitization involves the inhibition of DNA DSB repair, at least as reflected by γH2AX foci dispersal. Although INK128 inhibited mTOR activity in MRC9 cells (Fig. 2D), following the same treatment protocol as for PSN1 cells, it had no effect on radiation-induced γH2AX foci or their dispersal in these normal fibroblasts (Fig. 3B), consistent with the lack of an enhancement of radiation-induced cell killing (Fig. 1D).

Given the role of mTOR in regulating eIF4E availability and thus gene translation in response to environmental signals (5), we determined the effects of INK128 on radiation-induced gene translation profiles (1, 2). For this study, PSN1 cells were irradiated (2 Gy) followed by the immediate addition of INK128 (4 μmol/L), 6 hours later, cells were collected for polysome isolation and the polysome-bound mRNA subjected to microarray analysis. INK128 treatment alone decreased the polysome abundance of 4741 genes and increased the polysome abundance of 4119 transcripts as compared with control cells, changes consistent with previous reports and indicating that inhibition of mTORC1/2 has a substantial effect on gene translation (14, 26). Radiation alone increased the abundance of 943 and decreased the abundance of 1,238 transcripts in the polysome fraction compared with control cells. However, in cells receiving radiation followed by INK128, 808 of the 943 genes were no longer increased by radiation and 1,114 of the 1,238 genes were no longer decreased by radiation. These data suggest that mTORC1/2 plays a significant role in radiation-induced control of gene translation. To generate insight into potential functional consequences, the mRNAs no longer increased by radiation in the presence of INK128 (808) were subjected to IPA, which distributes genes into networks defined by known interactions and then matches these networks with specific biologically significant pathways. The top 10 biologic functions of the mRNAs whose radiation-induced upregulation was inhibited by INK128 (Fig. 4A) included cell death and survival, cancer, gene expression and, of perhaps most relevance, DNA replication, recombination, and repair, which when further subdivided (Fig. 4B) is shown to encompass a number of critical aspects of the DNA damage response, including DSB repair and checkpoint control. The specific genes comprising the DNA replication, recombination, and repair biologic function whose radiation-induced upregulation was inhibited by INK128 are listed in Supplementary Table S1. The 10 networks identified by IPA and their associated functions are shown in Supplementary Table S2. Whereas there are a number of functions associated with these networks, of particular interest with respect to radiosensitivity are networks 6 and 8, which again include genes associated with DNA replication, recombination, and repair. The data presented in Fig. 4 and Supplementary Tables S1 and S2 indicate that mTORC1/2 inhibition suppresses the radiation-induced translation of functionally related mRNAs, many of which are related to DNA replication, recombination, and repair, consistent with the radiosensitizing effect shown in Fig. 1. The 1,114 genes that were no longer decreased by radiation after INK128 treatment were also subjected to IPA and the top 10 networks are shown in Supplementary Table S3. However, whereas these genes distributed to biologic functions and networks, there was no obvious relationship to radiosensitivity.

To evaluate the potential of INK128 to enhance radiosensitivity under in vitro conditions, PSN1 cells were grown as leg tumor xenografts in nude mice. Initially, we determined the effects of INK128 on mTORC1 and mTORC2 activity according to immunohistochemical analysis of p-4E-BP1 (137/46) and p-AKT (s473), respectively (Fig. 5A). INK128 (1 or 3 mg/kg) was delivered by oral gavage; PSN1 tumors were collected 2 or 6 hours after treatment and...
processed for immunohistochemical analysis. As compared with controls, 2 hours after INK128 treatment (1 and 3 mg/kg), p-4E-BP1 and p-AKT staining were substantially reduced indicative of mTORC1 and mTORC2 inhibition, respectively. At 6 hours, although remaining below control levels, p-4E-BP1 and p-AKT staining began to return to untreated levels, suggesting a recovery of mTOR activity. These results indicate that INK128 inhibits mTOR activity in PSN1 tumor xenografts.

A biochemical consequence of mTOR inhibition is a decrease in cap-dependent translation, which can be evaluated by elf4F cap complex formation. mTOR controls elf4F cap complex formation primarily by phosphorylation of the translation inhibitor 4E-BP1. Upon phosphorylation, 4E-BP1 is released from the 5' mRNA cap followed by binding of elf4G and subsequently translation initiation (27). Thus, to extend the immunohistochemical analysis of INK128-mediated mTOR inhibition to a functional end-point, m7GTP batch chromatography was used to evaluate elf4F cap complex formation (22, 28) in PSN1 tumor xenografts. Mice were treated with INK128 (3 mg/kg) and tumors collected 2 or 6 hours later (Fig. 3B). At 2 hours after INK128 treatment, elf4F cap complex formation was reduced in PSN1 tumors as indicated by the decrease in bound elf4G and increase in bound 4E-BP1. Consistent with the immunohistochemical analyses of mTOR activity (Fig. 5A), bound elf4G begins to return to control levels at 6 hours after treatment. These results indicate that INK128 inhibits elf4F cap complex formation in PSN1 xenografts. To our knowledge, these are the first data indicating that mTOR inhibition reduces elf4F cap complex formation in tumor xenografts.

Using the data in Fig. 5, a combination protocol was designed aimed at determining whether the INK128-mediated radiosensitization in vivo could be extended to an in vivo tumor xenograft model. Specifically, mice bearing PSN1 leg tumors (~180 mm³) were randomized into 4 groups: vehicle, INK128 (3 mg/kg, oral gavage), radiation (6 Gy), and the combination of radiation and INK128 (INK128 delivered immediately after radiation). The growth rates of PSN1 tumors corresponding to each treatment are shown in Fig. 6A. Whereas INK128 alone had no effect as compared with controls, radiation resulted in a significant decrease in tumor growth rate. However, there was no difference in tumor growth rates between the radiation only and combination treatment group, indicating no enhancement of in vivo tumor radiosensitivity.

mTOR activity in tumor xenografts begins to return as early as 6 hours after INK128 treatment (Fig. 5), suggesting that the duration of mTOR inhibition after irradiation may be a determinant of INK128-induced radiosensitization. Under the in vitro conditions (Fig. 1) that established INK128-mediated enhancement of tumor cell radiosensitivity, drug was added immediately after irradiation and not removed from the culture media until 24 hours later. To determine whether the duration of postirradiation INK128 exposure was a variable in the radiosensitization induced under in vitro conditions, clonogenic survival analysis was conducted using a treatment protocol in which INK128 was added to PSN1 culture media immediately after irradiation and cultures rinsed and fed drug-free media 6, 12, or 24 hours later (Fig. 6B). In each of the 3 treatment protocols, INK128 alone had no effect on the surviving fraction. Whereas removing INK128 12 or 24 hours after irradiation
resulted in an increase in PSN1 radiosensitivity with DEFs of 1.23 and 1.33, respectively, removal of drug at 6 hours had no effect on radiosensitivity.

On the basis of these in vitro data suggesting that maintaining mTOR inhibition beyond 6 hours is critical for INK128-induced radiosensitization along with the in vivo data (Fig. 5), indicating that mTOR activity in PSN1 tumors begins to return 6 hours after INK128 treatment, a tumor growth delay experiment was carried out using a modified combination protocol. In this experiment, INK128 (1.5 mg/kg) was delivered 1 hour before and again 6 hours after radiation (6 Gy), followed the next day by 2 additional INK128 doses separated by 7 hours. It should be noted that the 1.5 mg/kg INK128 dose used in this experiment is half that used in Fig. 6A, yet sufficient to reduce mTOR activity (Fig. 5A). As shown in Fig. 6C, whereas INK128 alone again had no effect on tumor growth rate, the INK128/radiation combination slowed tumor growth rate to a greater extent than radiation alone. For each group, the time to grow from 180 mm³ (volume of tumors at initiation of treatment) to 1,000 mm³ was calculated using the tumor volumes from the individual mice in each group (mean ± SEM). These data were then used to determine the absolute growth delays (the time in days for tumors in treated mice to grow from 180 to 1,000 mm³ minus the time in days for tumors to reach the same size in vehicle-treated mice). For PSN1

Figure 5. The effects of INK128 treatment on mTOR activity in pancreatic tumor xenografts. Mice bearing PSN1 xenografts were treated with vehicle or the indicated dose of INK128 (oral gavage). Tumors were collected 2 or 6 hours later and prepared for immunohistochemical staining or affinity chromatography. A, sections were probed with an antibody specific to the indicated protein followed by staining with an FITC-coupled secondary antibody (green). Nuclei were visualized with DAPI (blue). Each image is a representative of at least 2 mice per treatment group. B, eIF4F complex formation. m7-GTP affinity chromatography was conducted on PSN1 tumor xenografts with m7-GTP-bound proteins resolved via SDS-PAGE followed by immunoblot analysis. Each lane represents the tumor from an individual mouse.
tumors, the absolute growth delay for radiation alone was 6.3 ± 0.7 days. INK128 treatment alone had no effect on tumor growth delay. For tumors treated with the combination of INK128 and radiation, the absolute growth delay was 12.3 ± 0.4 days, which is greater than the sum of the growth delays from the individual treatments and indicative of an enhancement of tumor radiosensitivity (P < 0.01 vs. drug and radiation alone). The DEF obtained using this INK128 treatment protocol was 2.0.

The single-radiation dose study was then extended to a fractionated radiation protocol. In this experiment, INK128 (1.5 mg/kg) was delivered 1 hour before and again 6 hours after each dose of radiation (2 Gy) delivered on 4 consecutive days; INK128 alone contained 5 mice and all other groups contained 6 mice. Values represent the mean tumor volumes ± SEM.

Discussion

mTOR kinase serves as a central node integrating a number of signaling pathways to affect gene translation and ultimately regulate cell proliferation and survival (4). Given that these pathways are frequently activated or dysregulated in tumors, mTOR is considered a target for cancer therapy. In addition, because components of these pathways [e.g., RTKs, RAS, phosphoinositide 3-kinase (PI3K)] have been associated with tumor cell radioresistance, mTOR has been suggested as a target for radiosensitization. Data indicating that eIF4E availability, which is regulated by mTOR via 4E-BP1 phosphorylation (7), can be a determinant of tumor cell radiosensitivity (3) also implicates mTOR as a target for radiosensitization. We recently reported that the competitive mTOR inhibitor PP242, in contrast to the allosteric inhibitor rapamycin, enhanced tumor cell radiosensitivity (13). To
address the potential clinical relevance of this initial observation, we have extended this investigation to the competitive mTOR inhibitor INK128, which is currently undergoing clinical trials as a single agent and in combination with paclitaxel and/or trastuzumab (15). As shown, INK128 inhibited mTORC1 and mTORC2 activity in 3 pancreatic carcinoma cell lines, which was accompanied by an enhancement in radiosensitivity. Although INK128 also inhibited mTOR activity in a normal fibroblast cell line, there was no corresponding enhancement in radiation-induced cell death. These results are thus consistent with eIF4E knockdown preferentially enhancing the radiosensitivity of tumor over normal cell lines (3) and the role of mTOR as a downstream hub for oncogenic signaling processes (29), a number of which can also influence radiosensitivity.

On the basis of the analysis of radiation-induced γH2AX foci, the mechanism of INK128-induced radiosensitization appears to involve an inhibition of DNA DSB repair. Furthermore, clonogenic survival analysis showing that maintenance of mTOR inhibition for greater than 6 hours was required for radiosensitization suggests that INK128 inhibits a later stage of DNA DSB repair. Although the direct interaction of mTOR or one of its substrates with a component of the DNA repair machinery cannot be eliminated, the role of mTOR as a critical regulator of gene translation may play a role in the inhibition of DSB repair. Consistent with this hypothesis, the gene translation profiles generated from polysome-bound RNA indicate that INK128 exposure suppresses the radiation-induced translation of specific mRNA subpopulations; a major subset of these mRNAs corresponded to those coding for proteins involved in DNA replication, recombination, and repair. These results are in line with a recent report showing that the knockdown of elf4G (another component of the eIF4F complex) inhibits the radiation-induced translation of a number of mRNAs related to DNA damage and repair (30). Thus, whereas additional studies are required, INK128-induced radiosensitization appears to involve an inhibition of radiation-induced gene translation leading to an inhibition of DSB repair.

A critical aspect in the preclinical evaluation of a putative radiosensitizing agent is the extension of in vitro studies to an in vivo tumor xenograft model. Such studies typically involve not only defining tumor radiosensitivity but also determining the ability of the agent to target the molecule in question under in vivo conditions. However, despite clearly establishing target inhibition in vitro at the time of irradiation (Fig. 5), a single dose of INK128 was found to have no effect on the radiation-induced growth delay of PSN1 xenografts. This suggested that in contrast to in vitro conditions, there was an additional requirement in terms of mTOR inhibition that was not satisfied in this initial in vivo experiment. Along these lines, because in vitro data indicated that INK128-induced radiosensitization was mediated via processes operative for 6 to 12 hours after irradiation (Fig. 6B), we tested the hypothesis that mTOR inhibition had to be maintained in vivo for longer than the approximately 6 hours achieved by a single dose (Fig. 5). Accordingly, when mice were treated with INK128 before and 6 hours after irradiation, there was a significant enhancement of tumor radiosensitization. This study thus not only illustrates the significance of understanding target dynamics in terms of the mechanisms of radiosensitization but also suggests that this is a critical variable in the design of any potential clinical protocol combining INK128 and radiotherapy.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: T.J. Hayman, K.A. Camphausen, P.J. Tofilon
Development of methodology: T.J. Hayman, H. Bae, P.J. Tofilon
 Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): T.J. Hayman, A. Wahba, B.H. Rath, H. Bae, T. Kramp
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): T.J. Hayman, H. Bae, U. Shankavaram, K.A. Camphausen, P.J. Tofilon
Writing, review, and/or revision of the manuscript: T.J. Hayman, H. Bae, K.A. Camphausen, P.J. Tofilon
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): H. Bae
Study supervision: P.J. Tofilon

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 2, 2013; revised September 27, 2013; accepted October 23, 2013; published OnlineFirst November 6, 2013.

References

Clinical Cancer Research
118 Clin Cancer Res; 20(1) January 1, 2014

Published OnlineFirst November 6, 2013; DOI: 10.1158/1078-0432.CCR-13-2136

Downloaded from clincancerres.aacrjournals.org on June 7, 2017, © 2014 American Association for Cancer Research.
The ATP-Competitive mTOR Inhibitor INK128 Enhances *In Vitro* and *In Vivo* Radiosensitivity of Pancreatic Carcinoma Cells

Thomas J. Hayman, Amy Wahba, Barbara H. Rath, et al.

Clin Cancer Res 2014;20:110-119. Published OnlineFirst November 6, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-2136

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2013/11/06/1078-0432.CCR-13-2136.DC1

Cited articles
This article cites 29 articles, 13 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/20/1/110.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/20/1/110.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.