Variability in Assessing Treatment Response: Metastatic Colorectal Cancer as a Paradigm

Binsheng Zhao¹, Shing M. Lee², Hyun-Ju Lee¹, Yongqiang Tan¹, Jing Qi¹, Thorsten Persigehl¹, David P. Mozley³, and Lawrence H. Schwartz¹

Abstract

Purpose: The cutoff values currently used to categorize tumor response to therapy are neither biologically based nor tailored for measurement reproducibility with contemporary imaging modalities. Sources and magnitudes of discordance in response assessment in metastatic colorectal cancer (mCRC) are unknown.

Experimental Design: A subset of patients’ CT images of chest, abdomen, and pelvis were randomly chosen from a multicenter clinical trial evaluating insulin-like growth factor receptor type 1–targeted therapy in mCRC. Using Response Evaluation Criteria in Solid Tumors (RECIST), three radiologists selected target lesions and measured “uni” (maximal diameter), “bi” (product of maximal diameter and maximal perpendicular diameter), and “vol” (volume) on baseline and 6-week posttherapy scans in the following ways: (i) each radiologist independently selected and measured target lesions and (ii) one radiologist’s target lesions were blindly remeasured by the others. Variability in relative change of tumor measurements was analyzed using linear mixed effects models.

Results: Three radiologists independently selected 138, 101, and 146 metastatic target lesions in the liver, lungs, lymph nodes, and other organs (e.g., peritoneal cavity) in 29 patients. Of 198 target lesions total, 33% were selected by all three, 28% by two, and 39% by one radiologist. With independent selection, the variability in relative change of tumor measurements was 11% (uni), 19% (bi), and 22% (vol), respectively. When measuring the same lesions, the corresponding numbers were 8%, 14%, and 12%.

Conclusions: The relatively low variability in change of mCRC measurements suggests that response criteria could be modified to allow more accurate and sensitive CT assessment of anticancer therapy efficacy.

Introduction

Optimizing the use of quantitative imaging as a more accurate and early biomarker for tumor response is crucial to the development of new therapeutics and, further, for patient management. In drug discovery, the more promptly and precisely a go/no-go decision can be made, the better the chance for a successful trial. In clinical practice, response to a new therapy would ideally be determined with high accuracy as soon as possible after beginning the therapy to permit a change if in fact that therapy is ineffective.

Since the establishment of the Response Evaluation Criteria in Solid Tumors (RECIST) in 2000, unidimensional measurement has become the standard method for assessing tumor response to therapy in clinical trials and clinical practice (1, 2). On the basis of the percentage change in the sum of the longest diameter (SLD) of all target lesions, RECIST reports tumor response to therapy using a 4-category system that was adopted from its predecessor, the World Health Organization (WHO) criteria (3, 4). However, the response and progression cutoff values, for example, 30% or more decrease in SLD, do not correspond to rapid tumor shrinkage or shrinkage at all. For example, studies in metastatic colorectal cancer (mCRC) reported that patients, who received targeted therapies and showed minor early tumor shrinkage of about 10% or more, had better overall survival and...
Targeted cancer therapy results in different patterns of response in solid tumors, including smaller magnitude of size change than cytotoxic therapy. Studies in colorectal cancer demonstrate that tumor “minor” reduction is a predictor of overall survival and progression-free survival. Investigators are finding that more accurate classifications of response can be derived on the basis of biology than the historical response criteria. Such a biomarker or metric of response can be universally used for multiple tumors and targeted therapies. However, a biomarker must be both biologically meaningful and reproducibly measurable by imaging. This study explores the latter, by assessing variability in measuring tumor change in a metastatic setting and also considering heterogeneity of target lesion selection, a previously unstudied factor. Our finding of low measurement variability allows for improving historical response criteria of treatment efficacy.

Translational Relevance
Targeted cancer therapy results in different patterns of response in solid tumors, including smaller magnitude of size change than cytotoxic therapy. Studies in colorectal cancer demonstrate that tumor “minor” reduction is a predictor of overall survival and progression-free survival. Investigators are finding that more accurate classifications of response can be derived on the basis of biology than the historical response criteria. Such a biomarker or metric of response can be universally used for multiple tumors and targeted therapies. However, a biomarker must be both biologically meaningful and reproducibly measurable by imaging. This study explores the latter, by assessing variability in measuring tumor change in a metastatic setting and also considering heterogeneity of target lesion selection, a previously unstudied factor. Our finding of low measurement variability allows for improving historical response criteria of treatment efficacy.

Materials and Methods

Patient image data
This study analyzed a randomly selected subset of the deidentified CT images taken from a completed multicenter phase II/III clinical trial testing a therapy targeting the insulin-like growth factor receptor type 1 (IGF-1R) in patients with mCRC (ClinicalTrials.gov identifier NCT00614393; ref. 13). Case selection was based on the following criteria: the first 30 patients who had at least one measurable lesion at baseline per RECIST and had a follow-up scan at 6 weeks ± 1 day.

The CRC clinical trial study used the standard CT imaging protocol in current clinical trial practice. The majority of the patients had a contrast-enhanced diagnostic chest scan reconstructed with a slice thickness of 5 mm and a sharper convolution kernel and a multiphase contrast-enhanced diagnostic abdomen/pelvis scan reconstructed with a slice thickness of approximately 3 mm and a smoother convolution kernel.

Target lesion selection and measurement
Target lesions at each patient’s baseline study were selected per RECIST 1.0. After target lesion selection, each lesion was delineated on baseline and follow-up scan images using three 3D lesion segmentation software developed for liver, lung, and lymph node/peritoneal metastatic lesions, respectively (14–16). Computer-generated lesion contours were superimposed on the original images, reviewed and edited (if necessary) by radiologists in a side-by-side manner. The standard window/level settings of 1,500/–500, 150/90, and 340/60 (in Hounsfield Unit) were used for reviewing and editing target lesions in the lungs, liver, and lymph nodes (or peritoneal cavity), respectively. If there were multiple phases, portal vein phase images were used for measuring metastatic lesions in the abdomen and pelvis.

On the basis of the delineated contours, the longest axial-plane diameter (unidimensional measurement), its longest perpendicular diameter, and the volume of a lesion were automatically calculated by computer program. The sums of unidimensional (SLD), bidimensional (SBI), and volumetric (SVOL) measurements of all target lesions in each patient, at baseline and 6-week follow-up scans, and their relative changes at 6 weeks from baseline (SLD%, SBI%, and SVOL%), were calculated for each radiologist’s reading.

Reading interpretation modes
Three radiologists (H.J. Lee, J. Qi, and T. Persigehl, with 11, 10, and 8 years’ experience of interpreting oncologic CT images, respectively) participated in the variability study. None were involved in study design or analysis.

Before beginning the measurements, a training session was led by an expert radiologist (L.H. Schwartz) with more than 25 years’ experience interpreting CT images. Rules were reviewed, and relevant issues about target lesion selection were discussed. After the training session, there was no further communication between the readers and the trainer.

Two interpretation modes were evaluated to study biologic heterogeneity and tumor measurement variability.

Interpretation mode 1: target lesion selection and measurement.
To study variability due to both lesion heterogeneity and measurement, each of the three radiologists independently selected target lesions at baseline and measured these target lesions at the baseline and 6-week follow-up scans.

Interpretation mode 2: target lesion measurement only.
In the second experiment, only variability due to measurement was studied. Therefore, each radiologist independently
measured a common set of preselected target lesions on the two scans of each patient. The common target lesions were adopted from one radiologist’s (H.J. Lee) reading conducted in the first experiment. Each of the other two radiologists independently measured the common target lesions that had not been selected (measured) in their first experiment.

Statistical analysis

The baseline characteristics and measurements were summarized as counts and percentages for categorical variables and medians and interquartile (IQR) ranges for continuous variables such as SLD, SBI, and SVOL. Waterfall plots were created for baseline as well as relative change at 6 weeks. For the baseline plots, the variables were log-transformed.

To estimate the within-patient variability using the data from all three radiologists, linear mixed effects models with random intercept were fitted. The model accounted for the correlation among the three radiologists’ measurements for each patient. The model-based estimate for limits of agreement was that is, the residual SD. Analyses were performed using SAS 9.2 and STATA 12.0.

Results

Of the 30 patients, one patient was excluded before statistical analysis because of the inconsistency among the three radiologists in including and measuring coalesced new lymph nodes on the follow-up scan. In the remaining 29 patients, 12 (41%) were 65 years old or older and 11 (38%) were female.

Interpretation mode 1: target lesion selection and measurement

Table 1 shows that three radiologists selected 138, 101, and 146 metastatic lesions as target lesions in 29 patients, respectively. These target lesions were found in the liver (50%–60%), lungs (30%), lymph nodes (3%–12%), and other organs (peritoneal cavity: abdominal wall = 16; 5%–9%). In total, there were 198 different target lesions selected by at least one radiologist, among which 66 (33%) lesions were selected by all three radiologists, 55 (28%) by any two radiologists, and 77 (39%) by only one radiologist. It is interesting to note that about 67% of lymph nodes were selected by only one radiologist, indicating that the most likely site for radiologists to pick up different metastatic lesions as target lesions is the lymph nodes. This could be explained by the widespread nature of lymph nodes.

The number of selected target lesions per patient and the radiologists’ measurements of baseline SLD, SBI, and SVOL are presented in Table 2. The median number of target lesions per patient selected by the three radiologists varied from 3 to 5 and the median total tumor burden measured at baseline varied from 10.4 to 16.3 cm (SLD), 26.1 to 41.5 cm (SBI), and 46.0 to 72.2 cm (SVOL). The maximal variations of the median total tumor burden (the maximal absolute difference among the three radiologists’ median measurements divided by the average of their median measurements) were more than 40% for all three measurement techniques.

The median SLD%, SBI%, and SVOL% at 6-week post-therapy along with the IQRs for radiologists 1, 2, and 3 are presented in Table 3. The median percentage change in total tumor burden measured by the three radiologists varied from −21% to −15% (SLD%), −35% to −25% (SBI%), and −45% to −41% (SVOL%). The within-patient variability in measuring SLD%, SBI%, and SVOL% was ±11%, ±19%, and ±22%, respectively.

Figure 1 displays the waterfall plots of baseline SLD, SBI, and SVOL and their relative changes at 6 weeks for each individual patient by radiologist. It shows that despite widely distributed measurements of total tumor burden at baseline (Fig. 1A–C), relative changes in total tumor burden among the three radiologists were within narrower ranges (Fig. 1D–F).

Looking at the distributions (at an increment of 5%) of the maximal differences of SLD%, SBI%, and SVOL% measured among the three radiologists, Table 4 shows, for instance, that for 86% of the cases the variability in SLD% was within 15%, for 76% of the cases the variability in SBI% was within 20%, and for 83% of the cases the variability in SVOL% was within 25%. With these cutoffs, about or above

<table>
<thead>
<tr>
<th>Individual or All</th>
<th>Total lesion selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLD%</td>
<td>SBI%</td>
</tr>
<tr>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>30%</td>
<td>35%</td>
</tr>
<tr>
<td>45%</td>
<td>50%</td>
</tr>
<tr>
<td>60%</td>
<td>65%</td>
</tr>
<tr>
<td>75%</td>
<td>80%</td>
</tr>
<tr>
<td>90%</td>
<td>95%</td>
</tr>
</tbody>
</table>

Table 1. Distributions of the target lesions selected by radiologists in different sites

<table>
<thead>
<tr>
<th>Individually selected by radiologist</th>
<th>Target lesion distributions (29 patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>Liver</td>
</tr>
<tr>
<td>1</td>
<td>70 (50.7%)</td>
</tr>
<tr>
<td>2</td>
<td>59 (58.4%)</td>
</tr>
<tr>
<td>3</td>
<td>76 (52.1%)</td>
</tr>
<tr>
<td>Commonly selected (no repetition) by radiologists</td>
<td></td>
</tr>
<tr>
<td>All three</td>
<td>38 (38%)</td>
</tr>
<tr>
<td>Any two</td>
<td>29 (29%)</td>
</tr>
<tr>
<td>Only one</td>
<td>33 (33%)</td>
</tr>
<tr>
<td>Total lesions</td>
<td>100</td>
</tr>
</tbody>
</table>
respectively (Table 2). The maximal variations were about 5% for all three measurement techniques, much lower and SVOL (Fig. 2A–C) and their relative changes at 6 weeks, when three radiologists measured the same target lesion set. The median percentage change in total tumor burden were similar for both interpretation modes. Within-patient variability in the measurement variability. Despite the widespread use of linear measurements (mainly unidimensional) in clinical trials and clinical care and the potential adoption of the measurement variability fall into the ranges of 15% (SLD), 20% (SBI), and 25% (SVOL).

Interpretation mode 2: target lesion measurement only

Tables 2 and 3 and Fig. 2 present the distributions of baseline total tumor burdens and their relative changes at 6 weeks, when three radiologists measured the same target lesion set. The median values of radiologists' baseline measurements of SLD, SBI, and SVOL varied from 15.1 to 16.3 cm, 39.1 to 41.2 cm², and 59.7 to 62.7 cm³, respectively (Table 2). The maximal variations were about 5% for all three measurement techniques, much lower compared with when they selected target lesions individually.

The median SLD%, SBI%, and SVOL% at 6 weeks along with the IQRs for radiologists 1, 2, and 3 are presented in Table 3. The median percentage change in total tumor burden measured by the three radiologists varied from −24% to −20% (SLD%), −39% to −35% (SBI%), and −46% to −41% (SVOL%). The within-patient variability in measuring SLD%, SBI%, and SVOL% was ±8%, ±14%, and ±12%, lower than if also considering the variable of target lesion selection.

Figure 2, the waterfall plots of the baseline SLD, SBI, and SVOL (Fig. 2A–C) and their relative changes at 6 weeks (Fig. 2D–F) for each individual patient by radiologist, shows once again that variability in the measurement of total tumor burden was greatly reduced when radiologists measured the same set of target lesions compared with when they selected target lesions individually. However, it is interesting to note that the distribution patterns and variation ranges of the relative changes in total tumor burden were similar for both interpretation modes.

Table 4 shows that for all of the cases, the variability in SLD% was within 15%, for 86% of the cases the variability in SBI% was within 20%, and for 90% of the cases the variability in SVOL% was within 25%.

Discussion

In addition to the objective response rate, many other metrics used in oncology clinical trials as surrogate endpoints (e.g., PFS, time-to-progression) are also based on tumor change detected from longitudinal CT examinations. Understanding variability in the interpretation of tumor change over time is therefore essential, as true tumor biologic change can be reliably determined only when it is above the magnitude of the measurement variability. Despite the widespread use of linear measurements (mainly unidimensional) in clinical trials and clinical care and the potential adoption of the measurement variability...
of the volumetric technique, a more accurate and sensitive method for quantifying tumor change, the magnitude of variability of these measurements is not well known.

An increasing body of literature addresses the issue of measurement variability in the context of therapy response assessment in oncology (17–22). In those studies, radiologists were asked to independently measure/remeasure a preselected set of lesions at a single scan time-point. Though these studies provide the foundation for understanding measurement variability, they do not consider several other variables that may affect the estimation of tumor change. For instance, to evaluate response to therapy in metastatic cancer, the lesions in multiple organs must be monitored and, if not all lesions are to be measured, target lesions must be selected. How does the selection of target lesions affect the estimation of change in total tumor burden? Furthermore, over the course of therapy, both lesions and their surrounding organs/tissues can change. How do such changes affect the consistency of tumor measurements over time?

The unique design of our study differentiates it from previously published variability studies: (i) in addition to

Figure 1. Waterfall plots of the baseline SLD (A), SBI (B), and SVOL (C) and their relative changes at 6 weeks (D–F). Patient’s order in the waterfall plots was determined on the basis of radiologist 1’s baseline measurements (solid circle). The solid circle, hollow circle, and + sign represent radiologists 1, 2, and 3, respectively.
measurement-induced variability, we considered the effect of target lesion selection, (ii) we investigated variability based on patient level (i.e., total tumor burden of all involving sites) rather than on the lesion level in a single site as the majority of studies did, (iii) we explored the variability in relative change of total tumor burden from baseline to the early follow-up scan at 6 weeks (i.e., objective response rate used in response assessment), and (iv) we studied variability in three measurement techniques, uni, bi, and volume.

Our study found that when radiologists independently selected target lesions in patients with mCRC, only one in three of the target lesions was selected by all three radiologists and a little more than one in four were selected by any two radiologists. More than 50% of the target lesions were picked up from the liver and about 30% were from the lungs. The remaining 20% were found in the lymph nodes (~10%) and peritoneal cavity (~10%).

Baseline total tumor burden has shown to be predictive for patient survival (23, 24). First, we looked at the effect of target lesion selection on the estimation of total tumor burden at baseline. It was obvious that fewer target lesions often resulted in a smaller total tumor burden. Compared with measuring the same lesion set, the selection of target lesions drastically increased the variations of different radiologists' baseline measurements; the maximal variations of the median total tumor burden increased from about 5% to more than 40% for all three measurement techniques. However, target lesion selection only increased the within-patient variability in measuring early percentage changes in total tumor burden from 8% to 11% (SLD), 14% to 19% (SBI), and 12% to 22% (SVOL). Our findings suggest that target lesion selection can have a large effect on baseline measurement but a relatively small effect on measuring tumor change.

For each interpretation mode, we also studied intrareader variability by asking one of the participating radiologists to repeat the measurements in a separate session. We found that for each measurement technique, intrareader and interreader variability in relative change was of a similar magnitude when measuring the same lesion set. However, intrareader variability was lower than interreader variability when involving target lesion selection. Because of the considerably large volume of data already presented, we did not report this part of the study.

The levels of measurement variability obtained in this study could be lower than that in the “real world.” We did not consider possible human errors such as mismatching of lesions on longitudinal scans of a patient, as we wanted to study the variability caused only by the selection and measurement of target lesions. Moreover, our side-by-side reading manner and the reader training session held before the beginning of the study all helped to reduce variability. Other techniques may also reduce variance, such as well-controlled imaging acquisition guidelines as proposed by the Quantitative Imaging Biomarker Alliance (QIBA; ref. 25), standardized and optimized thin-section CT imaging acquisition protocols (26, 27), and reducing human error through computer-aided quality assurance programs.

On the basis of our findings of within-patient variability, a conservative suggestion for the cutoff values to identify tumor changes in mCRC would be ±15% for SLD, ±25% for SBI, and ±30% for SVOL. These values are lower than the corresponding response cutoff values of −30%, −50%,

Table 4. Maximal absolute differences of SLD%, SBI%, and SVOL% among three radiologists

<table>
<thead>
<tr>
<th>Interpretation mode</th>
<th>SLD (%)</th>
<th>SBI (%)</th>
<th>SVOL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency % Cumulative (%)</td>
<td>Frequency % Cumulative (%)</td>
<td>Frequency % Cumulative (%)</td>
</tr>
<tr>
<td>1. Target lesion selection and measurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤5%</td>
<td>8</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>5%–10%</td>
<td>12</td>
<td>41</td>
<td>69</td>
</tr>
<tr>
<td>10%–15%</td>
<td>5</td>
<td>17</td>
<td>86</td>
</tr>
<tr>
<td>15%–20%</td>
<td>3</td>
<td>10</td>
<td>97</td>
</tr>
<tr>
<td>>20%</td>
<td>1</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>83</td>
</tr>
<tr>
<td>>30%</td>
<td>5</td>
<td>17</td>
<td>100.0</td>
</tr>
<tr>
<td>2. Target lesion measurement only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤5%</td>
<td>12</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>5%–10%</td>
<td>12</td>
<td>41</td>
<td>83</td>
</tr>
<tr>
<td>10%–15%</td>
<td>5</td>
<td>17</td>
<td>100.0</td>
</tr>
<tr>
<td>15%–20%</td>
<td>5</td>
<td>17</td>
<td>86</td>
</tr>
<tr>
<td>20%–25%</td>
<td>3</td>
<td>10</td>
<td>97</td>
</tr>
<tr>
<td>25%–30%</td>
<td>1</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td>>30%</td>
<td>2</td>
<td>7</td>
<td>100.0</td>
</tr>
</tbody>
</table>
and −65% as proposed by RECIST/WHO guidelines. This indicates that we may be able to detect tumor change at a lower magnitude and/or earlier with the variability-based cutoff values. Furthermore, the spherical relationships among the cutoff values of unidimensional, bidimensional, and volumetric measurements do not seem to exist. Given large measurement values, the volumetric technique seems to yield lower variability than the unidimensional technique. Correlations with clinical outcomes and other biomarkers are required, however, before drawing a conclusion as to the superiority of any one of these techniques, including volumetric measurements.

Limitations of this study include the small number of patients and participating radiologists. However, in many clinical trials, especially phase II, the number of study participants is similar to our study population. Also, many clinical trials rely on a small group of radiologists to serve as the reference radiologists, again, similar in number to our study. Furthermore, tumor diameters and volume were measured using the algorithms developed from a single research laboratory. As we know, different segmentation algorithms may generate different segmentation results and thus different diameter and volume measurements. However, because we used the same algorithm to segment the

Figure 2. Waterfall plots of the baseline SLD (A), SBI (B), and SVOL (C) and their relative changes at 6 weeks (D–F). Patient’s order in the waterfall plots was determined on the basis of radiologist 1’s baseline measurements (solid circle). The solid circle, hollow circle, and + sign represent radiologists 1, 2, and 3, respectively.
same type of tumors on baseline and follow-up scans, algorithm-intrinsic biases should be reduced to a minimum. It is worth mentioning that the evaluation and validation of lung nodule/lesion segmentation algorithms developed by both industry and institution are currently underway (25, 28). In addition, commercial vendors of both imaging hardware and workstations are beginning to offer tumor delineation, volume measurement, and rendering software.

The imaging techniques and the ways the image data were collected and metastatic lesions selected and measured in this study represent the current practice of multicenter clinical trials not only in mCRC, but also in other metastatic cancers. Our finding of relatively low variability associated with tumor change measurement will allow for potentially lowering response cutoff values of current criteria and establishing a new volumetric response method for more sensitive CT assessment of the efficacy of anticancer therapies. More sensitive response assessments would enhance patient care by sparing patients’ continued exposure to the toxicity of futile treatments and giving them earlier access to alternative treatments.

References
5. Morel CG, Hanley JA. The effect of measuring error on the results of toxicity of futile treatments and giving them earlier access to patient care by sparing patients’ continued exposure to the toxicity of futile treatments and giving them earlier access to alternative treatments.

Disclosure of Potential Conflicts of Interest
L. H. Schwartz is a consultant/advisory board member for BioClinica and Icon. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: B. Zhao, P.D. Mozley, L.H. Schwartz Development of methodology: B. Zhao, S.M. Lee, L.H. Schwartz Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): H. J. Lee, Y. Tan, J. Qi, T. Persigehl, P.D. Mozley
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): B. Zhao, S.M. Lee, J. Qi, L.H. Schwartz Writing of the manuscript: B. Zhao, S.M. Lee, H-J. Lee, T. Persigehl, P.D. Mozley, L.H. Schwartz Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): B. Zhao, S.M. Lee, Y. Tan, P.D. Mozley, L.H. Schwartz

Grant Support
This work was supported in part by a sub-award of RN45 QA8 (to B. Zhao) through the NIH grant (award no.: NIHBI-PB-EB-2010-159-JKS) awarded to Dr. Daniel C. Sullivan and in part by the NIH grant U01 CA140267 awarded to L.H. Schwartz and B. Zhao. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received January 29, 2014; revised April 1, 2014; accepted April 17, 2014; published OnlineFirst April 29, 2014.

www.aacrjournals.org
Clin Cancer Res; 20(13) July 1, 2014
3567

Disclosure of Potential Conflicts of Interest
L. H. Schwartz is a consultant/advisory board member for BioClinica and Icon. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: B. Zhao, P.D. Mozley, L.H. Schwartz Development of methodology: B. Zhao, S.M. Lee, L.H. Schwartz Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): H. J. Lee, Y. Tan, J. Qi, T. Persigehl, P.D. Mozley
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): B. Zhao, S.M. Lee, J. Qi, L.H. Schwartz Writing of the manuscript: B. Zhao, S.M. Lee, H-J. Lee, T. Persigehl, P.D. Mozley, L.H. Schwartz
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): B. Zhao, S.M. Lee, Y. Tan, P.D. Mozley, L.H. Schwartz

Grant Support
This work was supported in part by a sub-award of RN45 QA8 (to B. Zhao) through the NIH grant (award no.: NIHBI-PB-EB-2010-159-JKS) awarded to Dr. Daniel C. Sullivan and in part by the NIH grant U01 CA140267 awarded to L.H. Schwartz and B. Zhao. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received January 29, 2014; revised April 1, 2014; accepted April 17, 2014; published OnlineFirst April 29, 2014.

Downloaded from clincancerres.aacrjournals.org on April 14, 2017. © 2014 American Association for Cancer Research.

Clinical Cancer Research

Variability in Assessing Treatment Response: Metastatic Colorectal Cancer as a Paradigm

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-0245

Cited articles
This article cites 24 articles, 10 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/20/13/3560.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.