Molecular Pathways: Targeting ETS Gene Fusions in Cancer

Felix Y. Feng1,2,3, J. Chad Brenner2,3,4,5, Maha Hussain3,6,7, and Arul M. Chinnaiyan2,3,4,7,8

Abstract

Rearrangements, or gene fusions, involving the ETS family of transcription factors are common driving events in both prostate cancer and Ewing sarcoma. These rearrangements result in pathogenic expression of the ETS genes and trigger activation of transcriptional programs enriched for invasion and other oncogenic features. Although ETS gene fusions represent intriguing therapeutic targets, transcription factors, such as those comprising the ETS family, have been notoriously difficult to target. Recently, preclinical studies have demonstrated an association between ETS gene fusions and components of the DNA damage response pathway, such as PARP1, the catalytic subunit of DNA protein kinase (DNA-PK), and histone deactylase 1 (HDAC1), and have suggested that ETS fusions may confer sensitivity to inhibitors of these DNA repair proteins. In this review, we discuss the role of ETS fusions in cancer, the preclinical rationale for targeting ETS fusions with inhibitors of PARP1, DNA-PK, and HDAC1, as well as ongoing clinical trials targeting ETS gene fusions.

Background

ETS transcription factors are aberrantly expressed in several cancers, including prostate cancer (1), the Ewing sarcoma family of tumors (2), melanoma (3), secretory breast carcinoma (4), acute lymphoblastic leukemia (5), gastrointestinal stromal tumors (6), and rare cases of acute myelogenous leukemia (7). The ETS family consists of 28 unique genes (reviewed in ref. 8), of which ERG, FLI1, and ETV1 are the most frequently deregulated in cancer. Prostate cancer frequently harbors rearrangements of ETS genes, in which ERG (50% of all prostate cancers) and ETV1 (5%) are fused to the androgen-regulated promoter and 5′ untranslated region of the TMPRSS2 gene (1, 9). This creates an androgen-regulated TMPRSS2–ETS fusion transcript that encodes a nearly full-length ETS transcription factor (Fig. 1). In addition, almost all Ewing sarcomas contain an ETS rearrangement, including EWS–FLI1 (~90%) or EWS–ERG (~5%–10%) gene fusions, which encode a chimeric protein notable for several features, including (i) provision of an activation domain (from the EWS gene) to the ETS fusion and (ii) replacement of the N-terminus of the ETS protein by an RNA-binding domain from the EWS protein that enhances posttranscriptional splicing of ETS target genes (10; Fig. 1).

Both prostate cancer and Ewing sarcoma ETS genomic rearrangements are thought to occur early in malignant progression. For example, TMPRSS2–ERG fusions are observed during the transition from high-grade prostatic intraepithelial neoplasia lesions to invasive carcinoma (9, 11) and are formed at high frequency in androgen-stimulated cell lines under genotoxic stress (12–14). However, mice genetically engineered to express androgen-regulated ERG or ETV1 develop prostatic intraepithelial neoplasia-like lesions, but do not progress to frank carcinoma (9, 11, 15–17). This suggests that complete ETS-mediated transformation may require additional collaborating mutations. While this spectrum is only beginning to emerge (18–20), it is clear that ERG accelerates prostate carcinogenesis following loss of a highly recurrent prostate cancer tumor suppressor protein called PTEN or in the context of overexpression of the androgen receptor (15–17). Interestingly, TMPRSS2–ERG overexpression leads to increased self-renewal over multiple plating generations in Sca-1 hi/EpCAM + basal/progenitor cells isolated from genetically engineered mice (21), suggesting a role for ETS fusions in prostate cancer progenitor populations. In contrast with prostate cancer, the cells from which Ewing sarcomas are derived are still unknown, limiting the interpretation of genetic mouse models. Despite this impediment, EWS–FLI1 overexpression has been shown to induce leukemic phenotypes when expressed in hematopoietic stem cells (22), to induce skeletal disruption when expressed in mesenchymal progenitors using a PRX1 promoter (23), and to accelerate tumor formation in conjunction with TP53 deletion (23).
Consistent with their role in prostate cancer and Ewing sarcoma progression, ETS transcription factors drive downstream signaling pathways with a number of functional consequences. RNAi-mediated disruption of either TMPRSS2–ERG or EWS–FLI1 expression inhibits cell proliferation, invasion, metastasis, and xenograft growth of prostate cancer or Ewing sarcoma cell line models that harbor the respective fusions (24–26). Accordingly, the transcriptional program driven by overexpression of ETS gene fusions is enriched for invasion and metastasis-associated gene signatures (1, 27, 28). Recently, our group found that both prostate cancer and Ewing sarcoma ETS gene fusions induce DNA double-strand breaks (25, 26). This suggests that ETS gene fusions may drive a mutator phenotype and cause increased genomic instability in some cells.

Given the pathogenic roles of ETS fusions in the progression of both prostate cancer and Ewing sarcoma, ETS fusion products represent intriguing potential therapeutic targets. However, transcription factors, such as the ETS family, have been notoriously difficult to target (29). Potential strategies for targeting ETS fusion genes include therapies directed at the gene promoter, the RNA transcript, the fusion product itself, coregulators of the fusion product, other collaborating lesions, and downstream targets of the fusion. Although each of these strategies holds promise, this review focuses on agents available to patients or currently in clinical trials, each of these strategies holds promise, this review focuses on agents available to patients or currently in clinical trials, including agents for inhibiting ETS fusion activity.

Clinical–Translational Advances

Targeting the promoter of ETS fusions

The fact that the predominant ETS fusions in prostate cancer contain an androgen-responsive promoter (1, 24, 30, 31) provides a strong rationale for treating fusion-positive prostate malignancies with approaches directed against the androgen signaling axis. However, retrospective analyses of clinical samples have not consistently supported the theory that ETS fusion–positive prostate cancers should be preferentially sensitive to androgen deprivation therapy or antiandrogen approaches. In the context of castration-sensitive disease, although data from a radical prostatectomy series suggest that ETS fusion status predicts for response to adjuvant androgen deprivation therapy (32), results from other series have suggested that there is no association between ETS fusion status and response in patients managed with either definitive or adjuvant androgen deprivation therapy or antiandrogen therapy (33, 34). This discrepancy between studies may stem from the inherent issues associated with retrospective biomarker studies, such that imbalances between comparison groups in prognostic factors are not fully taken into account. Alternatively, ETS fusions may simply not predict for response to androgen deprivation therapy in this setting, as all castration-sensitive disease may be similarly responsive to androgen deprivation therapy initially. Regardless, this relationship should be evaluated in prospective studies involving larger numbers of patients.

Following upfront androgen deprivation therapy, many patients will relapse with castration-resistant prostate cancer. The restoration of androgen signaling (35) and TMPRSS2–ERG expression (36) in castration-resistant disease provides a foundation for the hypothesis that ETS-positive castration-resistant prostate cancer may be preferentially responsive to next-generation antiandrogen therapy, such as abiraterone acetate. Abiraterone blocks androgen synthesis by inhibiting the enzyme cytochrome P450 17α-hydroxysteroid dehydrogenase (37) and has improved clinical outcomes for patients with castration-resistant disease in large phase III clinical trials (38, 39).

Using patient specimens from smaller phase I/II studies of metastatic patients treated with abiraterone, Attard and colleagues found that the presence of the predominant ETS fusion, the TMPRSS2:ERG rearrangement, in circulating tumor cells (CTC) correlated with prostate-specific antigen (PSA) response (40). In this study, 38% of patients with ERG fusion–positive CTCs had a >90% decline in PSA level with abiraterone, compared with 7% of patients with ERG fusion–negative CTCs (40). In contrast, Danila and colleagues (41) found that TMPRSS2:ERG status in CTCs was not associated with response to abiraterone. As with the castration-sensitive setting, these discrepancies raise additional questions, including whether ETS fusion status in the CTCs accurately reflects fusion status in the metastatic lesions. To address these questions, a multi-institutional randomized phase II clinical trial (clinicaltrials.gov identifier: NCT01576172) was initiated by our group at the University of Michigan with the objective of assessing several key questions, including the relationships between ETS fusion status and the response to antiandrogen therapy. Specifically, this trial, which requires biopsy of metastatic prostate cancer lesions for enrollment, prospectively stratifies patients by ETS fusion status in biopsies before randomization to treatment, which includes an arm consisting of abiraterone alone. This trial represents one of the first biomarker-driven trials in prostate cancer, and in comprehensively assessing ETS status in metastases, the primary tumor, circulating blood RNA, and CTCs, the study design should provide more definitive answers about whether ETS fusion–positive castration-resistant prostate cancer can be preferentially targeted with a standard next-generation antiandrogen.

Targeting the activity of ETS fusion products

Given the uncertainty on whether antiandrogen therapies can preferentially target ETS-positive prostate cancers, it is clear that better ETS-directed therapies need to be developed. Although transcription factors themselves have conventionally been considered poor druggable targets (29), targeting cofactors necessary for functioning of the ETS gene fusion products may represent a more viable strategy. To date, the most promising cofactors, based on available clinical agents, for inhibiting ETS fusion activity include the enzymes PARP1, the catalytic subunit of DNA protein kinase (DNAPK), and histone deactylase 1 (HDAC1; Fig. 1).
Can we reverse these oncogenic phenotypes by targeting ETS fusions?

ETS fusion in prostate cancer

- 5' fusion partner: TMPRSS2
- 3' fusion partner: ERG
- SLC45A3, Other AR regulated
- Cooperating lesions: AR, PTEN
- Mutagenic phenotype/carcinogenesis
- Migration/invasion/intravasation
- Aberrant transcription
- Differential splicing

ETS fusion in Ewing sarcoma

- 5' fusion partner: EWS
- 3' fusion partner: FLI1
- Cooperating lesions: P53
- Targetable cofactors: PARP1, DNAPK, HDAC1
- EWS-FLI1
- Can we reverse these oncogenic phenotypes by targeting ETS fusions?

Metastatic castration-resistant prostate cancer

- Randomized ETS fusion-stratified phase II study of abiraterone ± veliparib (PARP inhibitors) (NCT01576172)
- Additional phase I studies of PARP1 inhibitors in solid tumors:
 - MK4827 (NCT00749502)
 - BMN-673 (NCT01286987)
 - CEP-9722 (NCT01311713)
 - E7016 (NCT01127178)
 - AG-014699 (NCT01009190)

Metastatic Ewing sarcoma

- Phase II study of olaparib (PARP inhibitor) (NCT01583543)
- Additional phase I study of DNAPK inhibitors in solid tumors: CC-115 (NCT01353625)
PARP1 inhibition as a therapeutic approach for ETS-rearranged malignancies

Our group previously discovered an interaction between the
TMPRSS2–ERG gene fusion product and PARP1, a protein involved in DNA damage response (26). We mapped the interaction to the conserved ETS DNA-binding domain of ERG and demonstrated that PARP1 also interacts with ETV1, EWS–ERG, and EWS–FLI1 (25, 26). Preclinical experiments demonstrated that ETS transcription factor activity was dependent on PARP1 expression and that inhibition of PARP1 could potentiate ETS-induced DNA damage leading to a long-term loss of cell viability (25, 26). Overexpression of either TMPRSS2–ERG or EWS–FLI1 was sufficient to make cell line xenografts sensitive to PARP1 inhibition, indicative of a synthetic phenotype. These findings led to the hypothesis that ETS-rearranged tumors are sensitive to PARP1 inhibition. To test this hypothesis, we completed 11 different cell line or primary tumor xenografts, and of these, only the 6 xenografts with an ETS rearrangement were sensitive to PARP1 inhibition (3 TMPRSS2–ERG, 1 ETV1 rearranged, 2 EWS–FLI1; refs. 25, 26). Subsequent independent validation of the finding that the EWS–FLI1 fusion is associated with response to PARP1 inhibitors was performed via a high-throughput screen of 639 cell lines against 130 drugs under clinical or preclinical evaluation (42); this screen likely could not detect similar associations with prostate cancer ETS fusions as it included only one cell line harboring such a fusion.

The clinical use of PARP1 inhibitors has gained momentum secondary to previous preclinical reports demonstrating that cancers with impaired homologous recombination (HR) such as BRCA1/2-deficient cancers were extremely sensitive to PARP1 inhibition (43, 44). These studies proposed that PARP1 inhibitors cause replication forks to collapse, leading to increased DNA damage, which goes unrepaird in the absence of HR, and early clinical studies have suggested that the PARP1 inhibitor olaparib has activity on the context of BRCA-mutant cancers (45). Of interest, in preclinical studies, ETS fusion–positive xenografts were as sensitive to olaparib as a naturally BRCA1-deficient breast cancer xenograft (26), further strengthening the rationale to assess this biomarker-therapy combination clinically.

PARP1 inhibitors are now being actively evaluated in the clinic for both ETS-rearranged metastatic prostate cancer and Ewing sarcoma. Several of these trials are depicted in Fig. 1. NCT01576172, the multi-institutional phase II trial described earlier, stratifies patients with castration-resistant prostate cancer prospectively by ETS fusion status and randomizes them to abiraterone acetate alone versus abiraterone acetate combined with the PARP1 inhibitor veliparib (ABT-888). In addition to assessing the potential relationship between ETS fusion status and outcomes following abiraterone treatment, this trial also aims to prospectively determine if ETS status can predict for response to the addition of PARP1 inhibition to antiandrogen therapy. Other PARP1 inhibitors being assessed as monotherapy specifically in castration-resistant disease include olaparib (AZD-2281/KU-0059436; phase II, clinicaltrials.gov identifier NCT01682772) and niraparib (MK-4827; phase I expansion in prostate cancer, NCT00749502). The phase II olaparib study has an interesting design, as it uses a two-stage scheme; the first stage is designed to screen for potential biomarkers of response to PARP1 inhibition, and the second is an expansion cohort enriched in identified biomarkers from the first stage (J. De Bono; personal communication). Initial results from the phase I niraparib study were recently reported (46); analysis of archival tumor samples from 18 patients with metastatic castration-resistant prostate cancer did not demonstrate an association between ETS fusion status and response to therapy. Although these findings should be confirmed in larger studies with biopsies obtained immediately before treatment initiation, they do raise the issue that the response to PARP1 inhibitors is likely multifactorial in nature. The results from the prospective biomarker-stratified phase II studies described above will more conclusively determine whether the ETS–PARP1 association seen in vitro will hold up clinically.

Outside of prostate cancer, olaparib has been assessed as monotherapy in a phase II trial for patients with recurrent or metastatic Ewing sarcoma (NCT01583543). As only 4 of the initial 12 patients achieved stable disease (6–18 weeks) and none achieved partial or complete response, further accrual to this trial has been discontinued (47). Because molecular diagnosis was not required for this study, it is unclear whether its results stem from biologic or pharmacologic factors. In addition to this study, several phase I studies, including investigations of PARP1 inhibitors, are currently under way or near completion for patients with any solid tumor; the agents being tested include BMN-673 (NCT01286987), CEP-9722 (NCT01311713), E7016 (NCT01127178), and rucaparib (AG-014699/PF-01367338; NCT01009190).

Several issues need to be addressed when assessing PARP1 inhibitors as a strategy for targeting ETS fusion–positive malignancies. One major concern is which PARP1 inhibitor will be most efficacious in this context. Although some of...
these studies may seem redundant in a clinical context, it is clear that not all PARP1 inhibitors behave similarly. Results from a recent study suggest that PARP inhibitors differ markedly in their ability to cause cytotoxicity by trapping PARP1 and PARP2 enzymes at damaged DNA, a difference that does not correlate with the catalytic inhibitory properties for each agent (48). This finding suggests that certain PARP1 inhibitors may be more effective than others for treating ETS-positive cancers; however, to address this concern, more investigation is needed into the mechanism by which PARP1 inhibitors are cytotoxic in the context of ETS rearrangements. A second issue is whether PARP1 inhibitors are best administered as a monotherapy or in combination with other potentiating agents. Although initial PARP1 inhibitor trials used monotherapy approaches, several PARP1 inhibitor combination studies have been completed in both the phase I and II trial settings using various chemotherapeutics for other malignancies (reviewed in ref. 49). Many of these regimens have integrated alkylating agents due to the observation that PARP1−/− mice are extremely sensitive to this class of therapeutics (49), whereas others use topoisomerase inhibitors. For example, ABT-888 has been shown to enhance the effects of topotecan in adults with refractory solid tumors or lymphomas (50). Notably, our group demonstrated that olaparib and temozolomide significantly reduced tumor volumes in a TMPRSS2–ERG-rearranged prostate cancer cell line xenograft and completely regressed tumors in an EWS–FLI1-rearranged Ewing sarcoma cell line xenograft (25, 26). These results suggest that the combination of temozolomide with a PARP inhibitor would be worthwhile to assess clinically for Ewing sarcoma; in fact, two ongoing phase I studies (NCT01858168 and NCT02044120) are exploring this regimen in patients with this disease.

DNAPK inhibition as a treatment strategy for ETS-rearranged malignancies

As an alternative to PARP1 inhibition, blocking the activity of the DNA repair protein DNAPK represents another potential strategy for targeting ETS fusion–positive cancers. Our group has previously demonstrated that the catalytic subunit of DNAPK also physically interacts with ETS fusion products, such as ERG, ETV1, EWS–ERG, and EWS–FLI1 (25, 26). In vitro studies demonstrated that DNAPK expression and activity were necessary for ETS transcriptional activity, and pharmacologic inhibition or genetic knockdown of DNAPK could also potentiate ETS-transcriptional activity, and therefore drive ETS-positive cancers, which is licensed to Hologic; and has ownership interest in Oncofusion Therapeutics. No potential conflicts of interest were disclosed by the other author.

Conclusions

Although ETS fusions were discovered several years ago, and are important preclinically in several aspects of prostate cancer initiation and progression, targeting of ETS fusions remains a work in progress. Although recent advances have been made in the preclinical space of targeting ETS fusions with clinically available agents, such as inhibitors of PARP1, DNAPK, and HDAC1, these findings need to be validated in clinical trials. Of these agents, the studies targeting ETS with PARP1 inhibitors are furthest along in development and should yield results within the next few years.

Disclosure of Potential Conflicts of Interest

F.Y. Feng reports receiving a commercial research grant from Celgene, speakers bureau honoraria from Ventana, and is a consultant/advisory board member for Medivation/ Astellas. J.C. Brenner reports receiving royalties from the University of Michigan for its intellectual property on the use of PARP inhibitors in ETS-positive cancers, which is licensed to Hologic. A.M. Chinnaiyan is a consultant/advisory board member for Celgene, Hologic, and Oncofusion Therapeutics; reports receiving royalties from the University of Michigan for its intellectual property on the use of PARP inhibitors in ETS-positive cancers, which is licensed to Hologic; and has ownership interest in Oncofusion Therapeutics. No potential conflicts of interest were disclosed by the other author.
ETS Gene Fusions in Cancer

Authors' Contributions
Conception and design: F.Y. Feng, J.C. Brenner, A.M. Chinnaiyan
Analysis and interpretation of data (e.g., statistical analysis, bio-statistics, computational analysis): F.Y. Feng, J.C. Brenner, A.M. Chinnaiyan
Writing, review, and/or revision of the manuscript: F.Y. Feng, J.C. Brenner, M. Hussain, A.M. Chinnaiyan
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): F.Y. Feng, J.C. Brenner
Study supervision: A.M. Chinnaiyan

Acknowledgments
The authors thank Karen Giles for critically reading the article and Steven Kronenberg and Vishal Kohthari for graphic art support.

Referencess

32. Karnes RJ, Cheville JC, Ida CM, Sebo TJ, Nair AA, Tang H, et al. The ability of biomarkers to predict systemic progression in men with high...
Feng et al.

risk prostate cancer treated surgically is dependent on ERG status. Cancer Res 2010;70:8994–9002.

Molecular Pathways: Targeting ETS Gene Fusions in Cancer
Felix Y. Feng, J. Chad Brenner, Maha Hussain, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-0275

Cited articles
This article cites 59 articles, 23 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/20/17/4442.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.