Noninvasive Detection of Glutamate Predicts Survival in Pediatric Medulloblastoma

Martin Wilson1,2, Simrandip K. Gill1,2, Lesley MacPherson2, Martin English2, Theodoros N. Arvanitis2,3, and Andrew C. Peet1,2

Abstract

Purpose: Medulloblastoma is the most common malignant brain tumor occurring in childhood and is a significant cause of morbidity and mortality in pediatric oncology. More intense treatment strategies are recommended for patients displaying high-risk factors; however, considerable variation in outcome remains, indicating a need for improved predictive markers. In this study, 1H magnetic resonance spectroscopy (MRS) was used to investigate noninvasive molecular biomarkers of survival in medulloblastoma.

Experimental Design: MRS was performed on a series of 35 biopsy-confirmed medulloblastoma cases. One case was excluded because of poor quality MRS. The prognostic value of MRS detectable biomarkers was investigated using Cox regression, retrospectively (N = 15). A subsequent validation analysis (N = 19) was also performed to reduce the chance of type I errors. Where available, high-resolution ex vivo MRS of biopsy tissue was used to confirm biomarker assignments.

Results: The retrospective analysis revealed that creatine, glutamate, and glycine were markers of survival (P < 0.01). The validation analysis showed that glutamate was a robust marker, with a hazard ratio (HR) of 8.0 for the full dataset (P = 0.0003, N = 34). A good correlation between in vivo and ex vivo MRS glutamate/total-choline was found (P = 0.001), validating the in vivo assignment. Ex vivo glutamate/total-choline was also associated with survival (P < 0.01).

Conclusion: The identification of glutamate as a predictive biomarker of survival in pediatric medulloblastoma provides a clinically viable risk factor and highlights the importance of more detailed studies into the metabolism of this disease. Noninvasive biomarker detection using MRS may offer improved disease monitoring and potential for widespread use following multicenter validation.

Introduction

Brain tumors present the highest cancer-related mortality rate in children, and medulloblastoma is the most common malignant brain tumor occurring in childhood (1). Although survival rates have improved, the prognosis for this disease remains relatively poor, and survivors often suffer a range of deficits due to the limited specificity of available treatment options (2, 3). Current risk stratification for treatment of medulloblastoma primarily depends on disease spread, the extent of residual disease following resection, patient age, and histologic subtype (4). However, considerable variation in survival is still found within these criteria (5), presenting a clear need for improved indicators of disease risk.

A number of new predictive markers of survival in medulloblastoma have been reported in recent years. Analysis of chromosomal aberrations have shown that poor survival is correlated with 17p loss and 1q gain (6), and more recently, transcriptional analysis of medulloblastoma tissue has identified four distinct molecular subtypes (7). The WNT and Sonic Hedgehog signaling pathways are thought to play a dominant role in the pathogenesis of the first two groups, having good and intermediate survival prospects, respectively. The key molecular pathways of the third and fourth groups are less well established; however, both are characterized by an over-representation of pathways involved in neuronal development (8) and a poorer outcome, with the c-Myc oncogene being frequently amplified and overexpressed in the third group. Together, these newly identified risk factors are likely to inform future treatment strategies of medulloblastoma.

Noninvasive molecular investigations offer great potential for improving disease management and stratification in
Translational Relevance

Medulloblastoma is the most common malignant brain tumor in children. Treatment intensification has led to improved survival rates, albeit with a heavy burden of morbidity. The key clinical strategy is to personalize treatment through risk stratification in a manner that ensures the maximum chance of long-term survival with minimal morbidity. The identification of novel biomarkers of prognosis is an important part of this strategy, and much progress has been made in defining molecular genetic subgroups. However, less progress has been made in identifying downstream molecular markers, and this study identifies intratumoral glutamate as a novel biomarker of poor prognosis. This is of particular clinical relevance because it can be detected noninvasively, allowing the result to be available before surgery and at follow-up if there is residual tumor. Incorporation in multicenter clinical trials is required to allow its role in treatment decision-making to be defined.

Materials and Methods

All patients with a confirmed diagnosis of medulloblastoma undergoing MRI at Birmingham Children’s Hospital (Birmingham, United Kingdom) were eligible to be enrolled on this study. Patients were enrolled on a consecutive basis without additional selection. The accrual period was between September 2003 and September 2011 and patients were followed up until July 2012. The accrual period was chosen to ensure that at least 30 patients were included in the study, because an initial power calculation (two-sample comparison of proportions) showed that 15 patients in two equally sized groups with survival probabilities of 25% and 75% would have a power of 82% at a 5% significance level using a two-sided test. Survival time was defined as the period between the date of diagnosis, taken as the date of first tumor surgery to the date of death; determined from the West Midlands tumor registry database and clinical records. The diagnosis of all tumors was established locally by two histopathologists (World Health Organization 2007 classification; ref. 11). The clinical and radiological features were also reviewed by the multidisciplinary team. Approval was obtained from the research ethics committee and informed consent given by parents/guardians. Investigators were not blinded to patient information; however, because the MRS methodology chosen was fully automated, and therefore user independent, interpretation bias was eliminated.

Because the study spanned a large time period, a number of different treatment protocols were used and are given in Supplementary Materials. The treatment protocols followed national and international clinical trials or guidelines where available and local guidelines based on previous clinical trials where these were not available. The general principles were that a maximal surgical resection of the primary tumor was followed by adjuvant treatment. Children under 3 years of age were treated with intensive chemotherapy regimes and often focal radiotherapy. Older children received craniospinal radiotherapy and chemotherapy, with high-risk patients receiving higher doses of radiotherapy than those with standard risk. Standard risk patients were defined as being older than 3 years of age, M0 stage, no adverse histology, and a complete or near complete resection of the primary tumor. Anaplastic or large-cell medulloblastoma were both considered as adverse histologic subtypes. Near complete resection was defined as a residual tumor of less than 1.5 cm³, measured from the imaging slice displaying the largest cross-section of tumor.

MRS and MRS were carried out at Birmingham Children’s Hospital, before the patient receiving treatment, on a 1.5T Siemens Symphony Magnetom with a single channel head coil and a 1.5T GE Signa Excite scanner equipped with an 8-channel head coil. Standard imaging included T1 and T2 weighted images of the brain followed by gadolinium contrast administration, and then T1 weighted images of the head and spine where appropriate. The conventional imaging set was used to delineate the margins of the primary tumor from known characteristics (12), and the voxel for MRS was placed entirely within this region encompassing as much of the solid component of the lesion as possible.

Point-resolved single voxel spectroscopy (13) was performed with an echo time of 30 ms and a repetition time of 1,500 ms. Cubic voxels of either 2 or 1.5 cm length were used depending on the size of the tumor. Water suppressed data were acquired with 128 repetitions from the larger voxels and 256 repetitions from the smaller ones. A corresponding water unsuppressed spectrum was also acquired with four scans for use as a concentration reference. The TARQUIN (14) analysis package (version 4.2.11) was used to determine metabolite concentration and data quality parameters from the raw MRS data. The following metabolites were measured: alanine (Ala); aspartate (Asp); citrate (Cit); creatine (Cr); γ-Aminobutyric acid (GABA); glycerophosphocholine (GPC); glucose (Glc); glutamine (Gln);...
glutathione (Glt); glutamate (Glu); glycine (Gly); myo-inositol (Ins); lactate (Lac); N-acetylaspartate (NAA); N-acetylaspartylglutamate (NAAG); phosphocholine (PCh); scyllo-inositol (scyllo); taurine (Tau); total-choline (TCho = GPC+PCh); total-NAA (TNAA = NAA+NAAG), and total-lipids at 1.3 ppm (TLip13). It is known that phosphocreatine produces a signal indistinguishable from creatine at a field strength of 1.5T. Therefore, future references to creatine or Cr are equivalent to creatine + phosphocreatine. Although all metabolites listed were included in the fitting process, Asp, Glc and GABA were excluded from further analysis due to limited evidence demonstrating that they are reliably measured in brain tumor tissue. NAA and NAAG were not considered as individual measurements because it is unlikely that these signals can be resolved at 1.5T given the high degree of overlap and low level of TNAA in this tumor group.

Each spectrum and its associated voxel placement were reviewed. Data were rejected if any of the following conditions were met: the voxel was placed closer than 4 mm to lipid containing structures, more than 5% of the voxel was estimated to contain noninvolved brain, the baseline was unstable, obvious artefacts were present, the signal-to-noise ratio was less than 4, or the overall metabolite line width exceeded 0.15 ppm.

To reduce the risk of type I errors in the analysis, the cohort was split into two groups to allow a subsequent validation step: (i) patients diagnosed before January 2007 and (ii) patients diagnosed after January 2007. These two groups are referred to as the initial and validation cohorts, respectively. An exploratory statistical analysis was carried out on the initial cohort to establish potential noninvasive metabolite biomarkers of survival for medulloblastoma. Because MRS can provide a number of potential biomarkers, a more stringent significance value of $P < 0.01$ was chosen to reduce errors associated with multiple comparisons. Kaplan–Meier survival analysis was performed on the initial cohort for each metabolite by dividing the cohort into two groups: cases with metabolite concentrations above and below a cutoff value. The optimal cutoff value was found for each metabolite by performing a χ^2 significance test over a range of values. Values that resulted in fewer than five cases in either group were not considered because of statistical instabilities. Hazard ratios (HR) were calculated at the determined cutoff using Cox regression. The metabolites associated with survival in the initial cohort were then tested pseudoprospectively on the validation cohort by performing a Kaplan–Meier survival analysis using the same cutoff values.

Results

A total of 35 patients with medulloblastoma were eligible for the study and 17 had died by the end of the study period. In one case, the in vivo MRS failed QC due to baseline distortion, making quantitation unreliable, and was excluded from further analysis. The baseline was poor for this particular case due to insufficient water suppression leaving residual signal; an example of this spectrum is given alongside a normal appearing baseline in Supplementary Fig. S1. Sixteen cases were included in the initial cohort (diagnosed before January 2007) and 19 cases were included in the rotor for referencing the ppm scale. The remaining volume of the rotor was filled with D_2O. hr-MAS was performed on either a 600-MHz vertical bore spectrometer using a 4-mm gHx nanoprobe (Varian NMR Inc) or a 500-MHz vertical bore spectrometer using a 4-mm hr-MAS 1H-13C NMR probe with a z-gradient (Bruker UK Limited). Standard pulse acquire MRS with water suppression was performed on each sample and 128 or 256 scans were collected depending on the sample weight. Sample temperature was maintained at 4°C throughout the experiment. Spectral processing and analysis were performed using in-house software. Data were manually phased, baseline corrected, and frequency calibrated to the creatine resonance at 3.03 ppm. Spectral integration was applied to the glutamate and choline region. The Glu/TCho ratio was used for comparison with the in vivo data because water reference data for absolute quantitation was not available for the ex vivo data. The association between ex vivo and in vivo data was assessed graphically and a Pearson product-moment correlation coefficient was calculated.

Table 1. Table of optimized metabolite cutoff values for survival prediction in the initial cohort

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Cutoff (mmol/L)</th>
<th>HR</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>0.24</td>
<td>0.31</td>
<td>0.0806</td>
</tr>
<tr>
<td>Citrate</td>
<td>0.22</td>
<td>0.57</td>
<td>0.3483</td>
</tr>
<tr>
<td>Creatine</td>
<td>2.80</td>
<td>0.19</td>
<td>0.0055</td>
</tr>
<tr>
<td>Glutamine</td>
<td>0.72</td>
<td>1.76</td>
<td>0.3545</td>
</tr>
<tr>
<td>Glutathione</td>
<td>0.65</td>
<td>0.20</td>
<td>0.0245</td>
</tr>
<tr>
<td>Glutamate</td>
<td>2.77</td>
<td>5.65</td>
<td>0.0077</td>
</tr>
<tr>
<td>Glycine</td>
<td>2.10</td>
<td>0.04</td>
<td>0.0001</td>
</tr>
<tr>
<td>myo-Inositol</td>
<td>0.11</td>
<td>1.31</td>
<td>0.6460</td>
</tr>
<tr>
<td>Lactate</td>
<td>2.68</td>
<td>1.82</td>
<td>0.0503</td>
</tr>
<tr>
<td>scyllo-Inositol</td>
<td>0.62</td>
<td>0.28</td>
<td>0.3230</td>
</tr>
<tr>
<td>Taurine</td>
<td>3.11</td>
<td>0.53</td>
<td>0.2872</td>
</tr>
<tr>
<td>TCho</td>
<td>3.21</td>
<td>0.39</td>
<td>0.1563</td>
</tr>
<tr>
<td>TNAA</td>
<td>1.37</td>
<td>0.64</td>
<td>0.4759</td>
</tr>
<tr>
<td>TLip13</td>
<td>9.03</td>
<td>2.31</td>
<td>0.2064</td>
</tr>
</tbody>
</table>

NOTE: HRs were calculated using Cox regression, and significance values represent the χ^2 test for equality.

Abbreviations: LTCho, total-choline; TNAA, total-NAA; TLip13, total-lipid signal at 1.3 PPM.
validation cohort (diagnosed after January 2007). The median observation time was 26 months, defined as time from diagnosis to either death or end of follow-up.

Optimal metabolite cutoff values and their respective HRs and significances for the initial cohort \((N = 15)\) are given in Table 1. Three of the fourteen metabolites tested were found to be predictors of survival \((P < 0.01)\): creatine, glutamate, and glycine. A subsequent survival analysis of creatine, glutamate, and glycine on the validation cohort, using the same cutoff values determined from the initial cohort, found only glutamate to be significant \((P = 0.0096)\).

Glutamate was found to have a HR of 8.0 with lower and upper confidence intervals of 2.2 and 29.0, respectively (likelihood ratio test \(P = 0.0003)\) for the full cohort using a cutoff value of 2.77 mmol/L. Figure 1 shows Kaplan–Meier survival plots for glutamate levels in (A) initial cohort, (B) validation cohort, and (C) full cohort. Significance values represent the \(\chi^2\) test for equality.

The 35 cases included in this study were found to belong to the following histologic subtypes: classic medulloblastoma \((N = 31)\), desmoplastic/nodular medulloblastoma \((N = 2)\), and large-cell medulloblastoma \((N = 2)\). A summary of patient characteristics and common clinical prognostic markers are given in Table 2. The full cohort (excluding one case due to failed MRS QC) consisted of a relatively high proportion of boys to girls (2.4) with the population level expected to be between 1.5 and 2.0 (1) but no difference was found between the survival of boys and girls \((P = 0.5, \chi^2\) significance test). Age at diagnosis was found to predict survival in this cohort with patients under the age of five doing significantly worse than those who were older \((P < 0.002, \chi^2\) significance test), a finding consistent with previous studies (15). Both cases with large-cell medulloblastoma had high levels of glutamate. Cytogenetic analysis was routinely attempted on tumor tissue within the study period, and more recently interphase FISH was undertaken for Myc and chromosome 17 abnormalities. Overall seven cases were found to have chromosome 17 abnormalities in the tumor and one had c-Myc amplification. Five of the seven cases with chromosome 17 abnormalities were alive at the end of the study period. The patient with c-Myc amplification was 4 years and 11 months old at diagnosis, Chang stage M3, and in the high glutamate category. This patient died within 2 years of initial diagnosis.

No difference in survival was found between cases with nonmetastatic (M0) and metastatic (M+) disease for children of all ages \((P = 0.5, \chi^2\) significance test). In addition, no

<table>
<thead>
<tr>
<th>Table 2. A summary of patient characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Glu ((N = 20))</td>
</tr>
<tr>
<td>Male (%)</td>
</tr>
<tr>
<td>M0 (%)</td>
</tr>
<tr>
<td>Median age at diagnosis (y, sd)</td>
</tr>
<tr>
<td>Median observation-time (mo)</td>
</tr>
<tr>
<td>Subtotal resection of primary tumor (%)</td>
</tr>
<tr>
<td>Adverse histology (%)</td>
</tr>
<tr>
<td>Focal radiotherapy (%)</td>
</tr>
<tr>
<td><30 Gy craniospinal radiotherapy (%)</td>
</tr>
<tr>
<td>>30 Gy craniospinal radiotherapy (%)</td>
</tr>
</tbody>
</table>
association was found between glutamate levels and patient age ($P = 0.9$, t-test), metastatic stage ($P = 0.5$, Fisher exact test), or subtotal resection of primary tumor ($P = 0.6$, Fisher exact test). Glutamate was also found to be a predictor ($P < 0.001$, c² test) of survival in the high-risk patients alone ($N = 18$). Three of the cases treated on the standard risk protocol that had died within the study period were classified as having a high level of glutamate.

A scatter plot of glutamate values for all cases is given in Fig. 2 with the optimal cutoff value found from the initial cohort represented as a horizontal line. No significant outliers are seen.

In addition to the sophisticated MRS analysis using TARQUIN (14), a simpler analysis was performed using spectral integration to help confirm the assignment of glutamate in the MRS. An integration of the main glutamate spectral region (between 2.1 ppm and 2.5 ppm) was found to be predictive of survival in the full cohort ($P < 0.05$). Average spectra are shown in Fig. 3 for cases with high (>2.77 mmol/L) and low (≤2.77 mmol/L) levels of glutamate.

Matched hr-MAS data from biopsy tissue were available for 15 cases and a correlation ($r = 0.76$, $P = 0.001$) in the Glu/TCho ratio was found between in vivo and ex vivo results (Fig. 4A), supporting in vivo assignment and quantitation. Similar agreement between hr-MAS and in vivo MRS has been reported previously (16, 17). Furthermore, a separate survival analysis of the hr-MAS data showed a similar trend to in vivo MRS with a high Glu/TCho ratio inferring a poorer survival outcome (Fig. 4B).

Figure 5 shows the typical data quality available from the hr-MAS technique, with the glutamate resonances being clearly identified well resolved from other metabolites. Figure 5A and B shows example hr-MAS data from two patients with low and high Glu/TCho ratios, respectively. The patient with low glutamate was alive at the end of the study period, over 8 years from diagnosis, whereas the patient with high glutamate had died within one year of diagnosis.

Discussion

This study has shown that the concentration of glutamate, detected using in vivo MRS, predicts the survival of children with medulloblastoma. The lack of a strong association between glutamate levels and other known clinical and radiological risk factors implies that this could be a new prognostic risk factor. Three patients with standard risk disease and high levels of glutamate died within the study period and may have benefited from more intensive treatment; in addition, high glutamate was predictive of poor survival in the subgroup of high-risk cases. Glutamate could therefore provide improved treatment stratification for both high-risk and standard risk medulloblastoma. In this study, the limited information available from tumor genetic
testing failed to show an association with poor outcome but it is possible that glutamate mirrors molecular genetic subgroups of poor prognosis and this needs further exploration.

Unlike molecular markers obtained from tissue, MRS has the important property of being noninvasive, potentially offering new options for disease management. For example, with further improvements in adjuvant treatment, the preoperative identification of lower risk disease may in future reduce the need for radical surgery and thereby reduce the risk of postoperative complications such as cerebellar mutism and ataxia (18). Outside the immediate postoperative period, metabolite profiles measured by MRS have been shown to be useful in distinguishing tumor from posttreatment abnormalities present on MRI (19) and tumor glutamate levels should be part of this assessment.

Glutamate was found to be significantly associated with survival in both the initial and validation cohorts despite an overall improvement in survival in the later cohort. Comparing the patient characteristics in the initial cohort with the validation cohort, Table 2 indicates that they are similar except for fewer patients with M0 disease in the initial cohort. In terms of treatment, children in the initial cohort were less likely to have a complete resection of the primary but more likely to have focal radiotherapy or less than 30 Gy craniospinal radiotherapy. The trends in treatment are as expected with the emergence of protocols using lower doses of craniospinal radiotherapy for those with standard risk disease.

Figure 4. A, correlation between \(\text{in vivo} \) and \(\text{ex vivo} \) MRS measurements of Glutamate/Total-choline. B, Kaplan–Meier survival plot for the available \(\text{ex vivo} \) MRS samples (\(N = 15 \)).

Figure 5. Example \(\text{ex vivo} \) MRS spectra from two medulloblastoma patients with low (A) and high (B) levels of Glutamate/Total-choline. Prominent metabolite resonances are labeled as follows: Tau, taurine; PCh, phosphocholine; Cr, creatine; Gln, glutamine; and Glu, glutamate.
Because all the patients were not treated in a uniform manner, treatment could be a potential confounder in the analysis. However, the finding that glutamate is a strong marker of prognosis in two cohorts with consecutive time spans, and therefore treated with different protocols, implies that treatment effects do not account for the finding that high glutamate is associated with poor prognosis. Further studies of specific treatment groups should be undertaken to identify the patient groups for which glutamate level is most relevant. Indeed, the relatively high percentage of cases with metastatic disease and the high number of young children with M0 classic medulloblastoma make this a cohort with relatively poor prognosis, for which the discovery of novel biomarkers of prognosis is all the more important.

The role of glutamate metabolism in medulloblastoma is undereXloped; however, in recent years there has been particular interest in glutamate metabolism in adult gliomas. Studies of cell line and rodent glioma models have demonstrated an elevation in glutamate secretion (20) promoting neural degeneration in the tumor vicinity and disease spread (21). Glutamate metabolism has also been linked with the c-Myc oncogene in adult glioblastoma, where it has been shown that c-Myc–transformed cells exhibit a reduced dependence on glucose and increased glutamine catabolism (22). These findings are relevant to medulloblastoma because glutamine is an immediate precursor to glutamate and Myc oncogenes are known prognostic factors (23), suggesting a potential link between Myc and glutamate/glutamine metabolism in this disease. In the cohort studied, the one case with confirmed c-Myc amplification also had poor outcome and high glutamate, providing anecdotal support for this hypothesis.

Recent improvements in the molecular subtyping of medulloblastoma (7) have led to great interest in the development of preclinical mouse models for the main molecular subgroups (24). These new models, in combination with our findings and modern MRS techniques (25, 26), present a timely opportunity to investigate glutamine metabolism and the efficacy of therapeutic agents targeting this pathway (27–29) with clear translational potential.

The discovery of novel biomarkers of poor survival, although this was not found in vivo.

Choline containing metabolites, such as glycerophosphocholine and phosphocholine, have been highlighted as potentially important biomarkers of poor survival, although this was not found in vivo. Choline containing metabolites, such as glycerophosphocholine and phosphocholine, have been highlighted as potentially important biomarkers in cancer (30). Because of high spectral overlap at 1.5T, these signals were considered in combination as total-choline in this study, and not found to be related to survival. However, additional analysis of the individual signals found that glycerophosphocholine may be related to survival in the test cohort (P < 0.01). Although this observation should be considered as exploratory in nature, it does suggest further investigation with 31P MRS may be warranted.

Assessment of the multicenter reproducibility of MRS measurements, particularly for highly coupled metabolites, such as glutamate, remains an important future goal. The feasibility of this is indicated by a recent multicenter study which produced encouraging results for MRS metabolite profiles in aiding the diagnosis of the most common pediatric brain tumors (31). Overall, short echo time single voxel MRS is widely available and robust for the production of high-quality data in most medulloblastomas. However, poor vendor support for the DICOM MRS data format can make multicenter studies difficult, as extra time and expertise are often required to perform proprietary data conversions to allow offline analysis with vendor neutral tools such as TARQUIN (14). Furthermore, a lack of standardization in hardware and MRS pulse sequences/shapes may introduce vendor specific bias.

Another important factor in the assessment of MRS biomarker detection is the growing clinical adoption of 3T MR systems, likely to lead to the improved detection of coupled metabolites due to reduced spectral overlap available at the higher field strength. Furthermore, optimizing MRS sequences for the detection of a particular molecule has been shown to be an effective strategy for detecting 2-hydroxyglutarate in adult brain tumors (32), a similar approach may yield improved glutamate detection.

The main limitations of this study were the relatively small numbers (N = 35) available and multiple variables considered in the analysis, mitigated to a degree by setting a significant level of P < 0.01 and performing validation on a test dataset. Although this study should be considered as exploratory in nature, multicenter validation is warranted.

In conclusion, the identification of glutamate as a noninvasive prognostic marker of survival in pediatric medulloblastoma offers the potential for improved disease management and highlights related molecular targets for therapy. Future work includes a comparison with established molecular subgroups and multicenter evaluation of this biomarker.
Glutamate Predicts Survival in Medulloblastoma

Grant Support

This work was supported by the Medical Research Council Grant Code G0601327; the EU FP6 projects eUMOUR and Health Agents, and CR-UKa EPSRC Cancer Imaging Programme at the CCLG, in association with the MRC and Department of Health (England), NIHR Research Professorship, Birmingham Children’s Hospital Research Foundation, and Poppyfields. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 22, 2013; revised April 16, 2014; accepted May 25, 2014; published OnlineFirst June 19, 2014.

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M. Wilson, L. MacPherson, M. English, A.C. Peet
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M. Wilson, S.K. Gill, A.C. Peet
Writing, review, and/or revision of the manuscript: M. Wilson, S.K. Gill, L. MacPherson, M. English, T.N. Arvanitis, A.C. Peet
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M. Wilson, A.C. Peet
Study supervision: T.N. Arvanitis, A.C. Peet

Acknowledgments

The authors thank the Birmingham Children’s Hospital Radiology Department, in particular Shaheen Lateef and Rachel Gazzier, for performing the spectroscopy and organizing the raw data. The authors also thank Dr. Carole Cummins (University of Birmingham) for reviewing the statistical methodology and reporting.

References

Noninvasive Detection of Glutamate Predicts Survival in Pediatric Medulloblastoma

Martin Wilson, Simrandip K. Gill, Lesley MacPherson, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-2320

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2014/06/23/1078-0432.CCR-13-2320.DC1

Cited articles
This article cites 30 articles, 9 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/20/17/4532.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/20/17/4532.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.