Cancer Therapy: Preclinical

Reversible LSD1 Inhibition Interferes with Global EWS/ETS Transcriptional Activity and Impedes Ewing Sarcoma Tumor Growth

Savita Sankar1, Emily R. Theisen2,3, Jared Bearss2, Timothy Mulvihill4, Laura M. Hoffman5, Venkataswamy Sorna2, Mary C. Beckerle1,5, Sunil Sharma2,6, and Stephen L. Lessnick1,7,8

Abstract

Purpose: Ewing sarcoma is a pediatric bone tumor that absolutely relies on the transcriptional activity of the EWS/ETS family of fusion oncoproteins. While the most common fusion, EWS/FLI, utilizes lysine-specific demethylase 1 (LSD1) to repress critical tumor suppressors, small-molecule blockade of LSD1 has not yet been thoroughly explored as a therapeutic approach for Ewing sarcoma. We therefore evaluated the translational potential of potent and specific LSD1 inhibition with HCI2509 on the transcriptional program of both EWS/FLI and EWS/ERG as well as the downstream oncogenic phenotypes driven by EWS/ETS fusions in both **in vitro** and **in vivo** models of Ewing sarcoma.

Experimental Design: RNA-seq was used to compare the transcriptional profiles of EWS/FLI, EWS/ERG, and treatment with HCI2509 in both EWS/FLI- and EWS/ERG-containing cell lines. We then evaluated morphologic phenotypes of treated cells with immunofluorescence. The induction of apoptosis was evaluated using caspase-3/7 activation and TUNEL staining. Colony forming assays were used to test oncogenic transformation and xenograft studies with patient-derived cell lines were used to evaluate the effects of HCI2509 on tumorigenesis.

Results: HCI2509 caused a dramatic reversal of both the up- and downregulated transcriptional profiles of EWS/FLI and EWS/ERG accompanied by the induction of apoptosis and disruption of morphologic and oncogenic phenotypes modulated by EWS/FLI. Importantly, HCI2509 displayed single-agent efficacy in multiple xenograft models.

Conclusions: These data support epigenetic modulation with HCI2509 as a therapeutic strategy for Ewing sarcoma, and highlight a critical dual role for LSD1 in the oncogenic transcriptional activity of EWS/ETS proteins. *Clin Cancer Res; 20(17); 4584–97. ©2014 AACR.*

Introduction

Dynamic epigenetic regulation, including DNA methylation and posttranslational histone modification, is required for normal development and maintenance of tissue-specific transcriptional programs. Abnormal regulation can lead to altered gene expression and malignant transformation (1, 2). Indeed, enzymes which mediate epigenetic modifications are emerging as therapeutic targets in cancer (1, 2). Histone lysine methylation, specifically, can signify both activating and repressive chromatin, depending on the site of methylation (3). For example, methylation at histone H3K4 indicates active chromatin while methylation at H3K9 and H3K27 indicates repressive chromatin (3). While DNA methyltransferases (DNMT) and histone deacetylases (HDAC) are involved in global epigenetic processes, histone lysine methyltransferases (KMT) and demethylases (KDM) regulate histone methylation and gene expression in a manner that is often cell-type specific (4–8). Genetic mutations, chromosomal translocations, and translocation-derived fusion proteins affecting KMTs and KDMs contribute to impaired tumor suppression...
Ewing sarcoma is an aggressive cancer, with bleak survival rates (10%–30%) for patients with metastatic or relapsed disease. Treatment with the LSD1 inhibitor HCI2509 disrupts the global transcriptional function of EWS/ETS fusions, impairs multiple EWS/ETS-associated oncoprotein phenotypes, and shows single-agent efficacy in multiple xenograft models of Ewing sarcoma. With several targeted LSD1 inhibitors in preclinical development, these results highlight a new therapeutic strategy for this disease.

Translational Relevance

Ewing sarcoma is an aggressive cancer, with bleak survival rates (10%–30%) for patients with metastatic or relapsed disease. Treatment with the LSD1 inhibitor HCI2509 disrupts the global transcriptional function of EWS/ETS fusions, impairs multiple EWS/ETS-associated oncoprotein phenotypes, and shows single-agent efficacy in multiple xenograft models of Ewing sarcoma. With several targeted LSD1 inhibitors in preclinical development, these results highlight a new therapeutic strategy for this disease.

and altered developmental plasticity in several malignancies (8–14). Strategies targeting individual KMTs and KDMs critical for a particular malignancy may confer increased therapeutic specificity (15).

Lysine-specific demethylase 1 (LSD1) is a KDM implicated in neuroblastoma, acute myeloid leukemia, breast, prostate, bladder, lung, liver, and colorectal tumors (16–21). Recently, high LSD1 expression was reported in certain mesenchymal tumors, including Ewing sarcoma (22, 23). Ewing sarcoma is a highly aggressive pediatric malignancy characterized by the presence of a translocation-derived fusion oncoprotein and aberrant transcription factor, EWS/FLI (24). The majority of cases present with the EWS/FLI fusion, while several other related EWS/ETS fusions are occasionally observed as well (25). The most common of these is EWS/ERG, which presents in approximately 10% of cases (25). While the 5-year overall survival for patients with local disease is 70% to 80%, for those who present with metastases, or those who have relapsed, this drops to a bleak 10% to 30% (26, 27). In addition, treatment carries elevated risk for long-term side effects, including limb dysfunction, infertility, and secondary malignancies (28). Targeted therapies with increased efficacy and reduced toxicity are imperative. Though the role of LSD1 in Ewing sarcoma pathogenesis was still vague, the LSD1 inhibitor tranylcypromine impaired growth of Ewing sarcoma cell lines in vitro (23). Tranylcypromine is used clinically as a monoamine oxidase inhibitor, but has low potency as an LSD1 inhibitor, and has several documented off-target effects precluding widespread clinical use targeting this enzyme.

Further investigation showed LSD1 recruitment by EWS/FLI as a member of the nucleosome remodeling and histone deacetylase (NuRD) complex to repress the critical EWS/FLI targets LOX and TGFBR2 (29). Treatment with the potent LSD1 inhibitor, HCI2509, caused derepression of these genes and impaired tissue culture cell viability in multiple Ewing sarcoma cell lines at physiologically relevant concentrations (29). The sensitivity of multiple cell lines to LSD1 inhibition suggests a pivotal role for LSD1 in Ewing sarcoma beyond repression of select EWS/FLI targets. The extent of the role that LSD1 plays in the global transcriptional program orchestrated by EWS/FLI, and other EWS/ETS fusions, remains uncharacterized. The experiments herein describe the global transcriptional effects of HCI2509 treatment in Ewing sarcoma and the downstream antitumor effects that result.

Materials and Methods

Constructs and retroviruses

The Luciferase-RNAi (Luc-RNAi), EWS/FLI-RNAi (EF-2 RNAi), 3x-FLAG EWS/FLI, 3x-FLAG Δ22, and 1x-FLAG R2L2 cDNA are previously described (30–32). The 1x-HAHMOX1 cDNA was generated and subcloned into the Murine Stem Cell Virus (MSCV) retroviral vector (Clontech), siRNA controls targeted toward LSD1, CHD4, REST, RCoR1, NCoR, and Sin3A are described previously (29).

Antibodies and reagents

The following antibodies were used for immunodetection: M2-anti-FLAG (HRP; Sigma A8592), anti-FLI-1 (Santa-Cruz sc-356X), anti-α-Tubulin (Calbiochem CP06), anti-HA (Abcam ab9110), anti-H3 total (Abcam ab1791), anti-H3K4 me1 (Abcam ab8895), anti-H3K4 me2 (Millipore, 07–030), anti-H3K4 me3 (Active Motif, 39159), anti-H3K9 me1 (Abcam ab9045), anti-H3K9 me2 (Abcam ab1220), anti-H3K9 me3 (Abcam ab8898), anti-HMOX1 (Sigma SAB1410641), anti-Paxillin (BD Transduction Labs 610619), anti-LSD1 (Cell Signaling Technology 2184) AlexaFluor secondary (Molecular Probes), AlexaFluor Phalloidin (Molecular Probes). HCI2509 is previously described (33).

Cell culture

Ewing sarcoma cell lines harboring the EWS/FLI (A673, TC-71, SK-N-MC, SKES1, and EWS502) or EWS/ERG fusion (TTC-466) were grown in appropriate selection media, as previously described (34, 35). NIH 3T3 cells with and without EWS/FLI expression were previously reported (36). Growth assays (3T5) were previously described (35).

Colonization formation assays

Soft agar assays were described previously (35). Methylcellulose assays were performed by plating 1 × 10⁵ cells in a 1:1 mix of 2% methylcellulose and growth media as previously described (29).

Quantitative reverse-transcriptase PCR

Total RNA was extracted using an RNaseasy kit (Qiagen). Total RNA was then amplified and detected using SYBR green fluorescent for quantitation. Normalized fold enrichment was calculated by determining the fold-change of each condition relative to the control. The data in each condition was normalized to internal housekeeping control genes, GAPDH and RPL19. Primer sequences are provided in Supplemental Data (Supplementary Table S3).

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) was performed as previously described (37) using anti-LSD1 antibody (Abcam ab17721). Quantitative PCR was performed with HMOX1 gene primers amplifying a region ~29 base pairs
upstream of the transcription start site (TSS). **BCL2L1** was used as a normalization control (38). Primer sequences are provided in the Supplementary Data (Supplementary Table S3).

In vivo studies

Xenografts: A673, SK-N-MC, or SKES1 cells were injected into the right hindflanks of nude mice at 1 × 10^6 cells or 1 × 10^6 cells or 2.5 × 10^5 cells per flank, respectively. For all xenograft studies, 10 mice per condition were injected subcutaneously; therefore, 10 tumors were measured per group. In the SK-N-MC study, one animal perished due to an unrelated rash and was censored from analysis. Tumors were measured using digital calipers and volumes were calculated as follows: (L × W × D)/2. Treatment was initiated on day 7 after bioluminescent imaging confirmed tumor engraftment in the A673 study, whereas SK-N-MC and SKES1 studies were initiated once tumors reached a volume of >100 mm^3. Mice in each group were sacrificed once tumors reached a size limit of 2 cm^3. Kaplan–Meier survival curves were plotted using GraphPad Prism. Tumor volume and body weight were recorded for all three models. Harvested tumors were flash frozen, homogenized by mortar and pestle in liquid nitrogen, and analyzed for RNA or protein. All xenograft experiments were performed in accordance with protocol 11–11003 approved by the University of Utah Institutional Animal Care and Use Committee.

Blood Counts: The facial vein was identified and pierced with a lancet, blood was collected in a heparin capillary tube, and analyzed using a HemaTrue hematology analyzer (Heska).

Immunofluorescence assays

A total of 5 × 10^4–1.5 × 10^5 A673 and TTC-466 cells were seeded onto fibronectin-coated coverslips, allowed to adhere for ≥24 hours, treated with vehicle or HCI2509 at 0.5, 1, and 2 μmol/L for 3 days in DMEM 10% FBS, and fixed, stained, and imaged as previously described (39). Briefly, cells were immunostained with paxillin antibody (1:100) or LSD1 antibody (1:400) and then with secondary antibody (1:100) and DAPI (0.3 μmol/L). Fluorescent cell images were collected on a Zeiss Axioskop2 mot plus microscope with a 40 × dry objective (NA 0.75 NeoFluo), AxioCam MR camera, and Axiovision v4.8.1 software (Carl Zeiss MicroImaging, Inc.). Cell area analysis was performed with ImageJ (NIH freeware) and MetaMorph software (Molecular Devices); ≥50 cells were analyzed from >10 microscope fields, conversion factor 1 μm = 6.2 pixels. Image datasets were analyzed in GraphPad Prism 5 using unpaired t-tests and graphed as mean and SD.

RNA sequencing analysis, GSEA, and Venn overlaps

See Supplementary Methods for a description of RNA-seq data collection. Overlaps between the different gene sets were performed using VennMaster (http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/vennm/doc.html). Statistical significance of the overlaps was determined using χ^2 analysis. Gene set enrichment analysis (GSEA) was performed using GSEA v2.0.10 (http://www.broad.mit.edu/gsea/). Functional annotation analysis was performed by DAVID (david.abcc.ncifcrf.gov). Heatmaps were generated by converting read counts to fragments per kilobase gene model per million reads (FPKM). Genes were included in the heatmap if their differential abundance was more than 3-fold in both experiments and the Benjamini–Hochberg false discovery rate was <0.05. The data were normalized per gene across both experiments and log10 transformed. Heatmaps were created using the R gplots package. Ranks were based on averages of treatment and control.

Cell viability determination and EC_50 shift analysis

A673 cells were stably infected and selected for expression of control Luc-RNAi or EFi-2-RNAi. A total of 2 × 10^4 cells per well were seeded in a 96-well plate, allowed 24 hours to adhere, and treated with either vehicle or HCI2509 for 96 hours. Viability was assayed using CellTiter-Glo (Promega).

In vitro apoptosis assays

Caspase/viability. 2 × 10^4 cells per well were seeded in a 96-well plate, treated with either vehicle or two times their respective EC_50 for HCI2509. Caspase activation and cell viability were assayed using Caspase-Glo 3/7 (Promega) and CellTiter-Glo (Promega), respectively, at 0, 24, and 48 hours.

TUNEL staining. A673 cells were treated with either vehicle or 2 μmol/L HCI2509 for 48 hours and then assayed using the DeadEnd Colorimetric TUNEL (Promega). Images were collected on an Olympus 1 × 70 inverted microscope, Olympus EOS Rebel XSi camera, and EOS Utility software (Canon U.S.A., Inc.).

Data availability

Raw sequence reads can be found in the NCBI SRA under numbers SRA096343, SRA096347, SRA096354. Differentially expressed genes from each RNA-seq dataset are in Supplementary Table S1.

Results

LSD1 inhibition reverses the EWS/ETS-driven transcriptional program in Ewing sarcoma

HCI2509 is a specific and reversible noncompetitive inhibitor of LSD1 previously shown to derepress the critical EWS/FLI target genes LOX and TGFBR2 and to kill multiple Ewing sarcoma cell lines in vitro (29, 30). Interestingly, HCI2509-mediated derepression of LOX and TGFBR2 was dependent on the expression of EWS/FLI. To determine whether the Ewing sarcoma cell death observed with HCI2509 treatment was also dependent on EWS/FLI, we knocked down the fusion protein using retroviral-mediated shRNA, and assessed viability after treatment with HCI2509. Cells expressing EWS/FLI were approximately 10-fold more susceptible to treatment with HCI2509 compared to cells with EWS/FLI knockdown (Fig. 1A), which confirmed the efficacy of HCI2509 is dependent upon the presence of EWS/FLI. On the basis of previous results showing that HCI2509 decreased viability in multiple
Figure 1. Global EWS/FLI transcriptional activity is disrupted by HCI2509. A, cell viability assay showing the difference in HCI2509 sensitivity between A673 cells with control (EC50 = 113 nmol/L; 95% confidence interval (CI), 81.9–158 nmol/L) and EWS/FLI knockdown (EC50 = 1,825 nmol/L; 95% CI, 1,111–2,999 nmol/L). The dose–response curves were determined after 96 hours of treatment and normalized to the vehicle controls. Mean and SD are shown (n = 3). Stable EWS/FLI knockdown was analyzed by Western Blot analysis as shown in the inset. B and C, heatmap representation of the HCI2509 expression profile matched to the rank-ordered EWS/FLI- (B) and EWS/ERG knockdown (C) profiles. Genes were ranked by mean deviation of the log-transformed FPKM (Fragments Per Kilobase per Million mapped reads). The columns for each condition represent one independent biologic replicate. Each row represents a different gene. D and E, GSEA from RNA-seq experiments using the EWS/FLI–regulated genes (D) in A673 cells as the rank-ordered dataset and the 281 HCI2509 upregulated and 376 HCI2509 downregulated genes as the gene sets and EWS/ERG–regulated genes (E) in TTC-466 cells as the rank-ordered dataset and the 216 HCI2509 upregulated and 357 HCI2509 downregulated genes as the gene sets. Normalized enrichment scores (NES) and P values are shown. F, qRT-PCR validation of NKX2.2, CAV1, GSTM4, E2F1, IGF-1, RUNX2, IGFBP3, HMOX1, and CDH1 as HCI2509 targets in A673 and TTC-466 cells treated for 48 hours with vehicle or HCI2509 at 2 × EC50. Normalized fold change is indicated as a heatmap. The P value for each fold change is <0.05 (n = 3). Individual P values are reported in Supplementary Table S2.
patient-derived Ewing sarcoma cell lines containing EWS/FLI, we next asked whether the effects were restricted to EWS/FLI-containing lines, or whether they can be generalized to other Ewing sarcoma–associated fusions. As was seen for EWS/FLI-containing cell lines, the Ewing sarcoma cell line TTC-466 containing the alternative EWS/ETS fusion, EWS/ERG, was also sensitive to HCl2509 treatment (Supplementary Fig. S1A). Like A673 cells, TTC-466 cells with EWS/ERG knockdown showed decreased sensitivity to HCl2509. We further tested whether introducing EWS/FLI into a heterologous cell line induced sensitization to HCl2509 treatment in NIH 3T3 fibroblasts (Supplementary Fig. S1B). No sensitization was observed, suggesting EWS/ETS-dependent sensitization is unique to Ewing sarcoma cells.

To assess changes in gene expression caused by LSD1 inhibition in the context of EWS/ETS fusion transcriptional activity, we first generated transcriptional signatures for EWS/FLI and EWS/ERG. A673 and TTC-466 cell lines were subjected to retroviral-mediated shRNA knockdown of EWS/FLI and EWS/ERG, respectively, and the differentially expressed genes were assessed using RNA-seq (A673 data is previously reported; ref. 40). We first analyzed the similarity between EWS/FLI and EWS/ERG transcriptional regulation, and found the overlap between these transcriptional profiles was significant by both χ² and GSEA (Supplementary Fig. S1C and S1D).

Having established similarity between the EWS/FLI and EWS/ERG transcriptional profiles, we next determined the global transcriptional signature of HCl2509 using RNA-seq in both A673 and TTC-466 cells. The comparison of the HCl2509 signature with both fusion proteins showed treatment with HCl2509 comprehensively reversed the transcriptional profiles driven by both EWS/FLI (Fig. 1B) and EWS/ERG (Fig. 1C). Thus, genes normally upregulated by EWS/FLI and EWS/ERG were downregulated by LSD1 inhibition with HCl2509, and vice versa. χ² analysis showed a statistically significant overlap between EWS/FLI-activated and HCl2509-downregulated genes and vice versa (Supplementary Fig. S1E). This was also true for the TTC-466 cell line (Supplementary Fig. S1F). Importantly, when either EWS/FLI- or EWS/ERG-upregulated target genes were analyzed with HCl2509-upregulated genes, and vice versa, no significant overlap was observed (data not shown). These results suggest substantial reversal of global transcriptional activity of both EWS/ETS fusions and highlights the importance of LSD1 in EWS/ETS-mediated transcriptional dysregulation, for both EWS/ETS-repressed and EWS/ETS-activated genes.

We alternatively compared HCl2509 and EWS/ETS transcriptional profiles using GSEA with a more stringent cutoff of a 4-fold change and FDR of 1×10^{-15} for the EWS/FLI gene set and a 3-fold change and FDR of 1×10^{-10} for the EWS/ERG gene set. The HCl2509 downregulated genes clustered significantly with upregulated EWS/ETS target genes and vice versa (Fig. 1D and E). This confirmed the mechanism of HCl2509 action specifically correlated to the EWS/ETS transcriptional function.

Because EWS/FLI interacts directly with the NuRD/LSD1 complex, we hypothesized the effects of LSD1 inhibition would be observed at genes regulated by direct binding of EWS/FLI. To test this, we compared the HCl2509 regulated gene list to a set of previously identified EWS/FLI direct target genes (38). GSEA showed significant correlation for genes both up- and downregulated directly by EWS/FLI in the HCl2509-regulated gene list (Supplementary Fig. S1G), suggesting that LSD1 is critical to the transcriptional function of EWS/FLI at its direct targets. Since HDAC2 and HDAC3 were previously shown to be directly recruited by EWS/FLI to mediate transcriptional repression (29), we also compared changes in gene expression mediated by the HDAC inhibitor vorinostat (30) to the EWS/FLI direct targets (38). As expected, genes that are directly repressed by EWS/FLI became derepressed with vorinostat treatment (Supplementary Fig. S1H). However, vorinostat had no effect on genes directly activated by EWS/FLI (Supplementary Fig. S1H). Together, these data illustrate that LSD1 inhibition has a unique dual effect in both transcriptional activation and repression mediated by EWS/FLI, whereas targeted inhibition of HDACs only blocks EWS/FLI-mediated transcriptional repression.

We next assessed the functional significance of the HCl2509 and EWS/ETS overlapping gene sets with the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The most significant classes of genes downregulated by HCl2509 are related to DNA replication and cell cycle while the classes of genes upregulated by HCl2509 are related to regulation of cell death and extracellular matrix (Supplementary Fig. S1I and S1J). These are consistent with previously described molecular functions dependent upon EWS/FLI (41). We then used both A673 and TTC-466 cell lines to validate target genes from the HCl2509 RNA-seq profiles which have been identified as EWS/FLI targets critical for oncogenic transformation, survival, and differentiation (31, 42–48). Using quantitative reverse transcriptase PCR (qRT-PCR), genes activated by EWS/FLI became derepressed with vorinostat treatment (Supplementary Fig. S1B). No sensitization was observed, suggesting EWS/FLI-containing cell lines, or whether they can be general-
phenotypes associated with EWS/ETS knockdown. Ewing sarcoma is characterized histologically by small round blue-staining cells. In the context of EWS/FLI knockdown, cells display morphologic phenotypes typical of the putative mesenchymal stem cell cell-of-origin (39). EWS/FLI knockdown induces a robust actin cytoarchitecture with striking actin stress fibers anchored to integrin-based focal adhesions, increased cell adhesion, and spreading, that correlated with increased migration (39). To assess the effect of HCI2509 on cellular architecture, we performed immunofluorescence microscopy. Control A673 cells showed the characteristic small round cell phenotype of Ewing sarcoma with short, thin actin fibers (Fig. 2A and Supplementary Fig. S2A). Treatment with HCI2509 induced organizing of actin stress fibers throughout a well-spread cell, with robust paxillin-containing focal adhesions (Fig. 2A and Supplementary Fig. S2A). Cell area of the phalloidin-stained cells was measured to quantify the effect. HCI2509-treated A673 cells showed a dose-dependent increase in cell area (Fig. 2B). To show observed morphologic changes were on target, we knocked down LSD1 using siRNA and assessed both cytoskeletal architecture and cell area. Consistent with the increased cell spreading phenotypes we observed with HCI2509 treatment, decreased LSD1 protein levels correlated with increased cell spreading (Supplementary Fig. S2B and S2C). TTC-466 likewise showed dose-dependent changes in actin staining, focal adhesions, and cell spreading (Supplementary Fig. S2D–S2F), suggesting treatment with HCI2509 generated the morphology associated with the loss of EWS/FLI.

Figure 2. Morphologic changes in A673 with HCI2509 treatment. A, immunofluorescence images of A673 cells treated with increasing doses of HCI2509 for 3 days. Staining was performed for F-actin stress fibers (red–phalloidin) and for focal adhesions (green–paxillin), and nuclei (blue). HCI2509 induced a dose-dependent increase in the cell spreading and morphology. B, cell area in pixels shows a dose-dependent increase in cell spreading with increasing doses of HCI2509. A673 cells were fixed and stained with phalloidin. Cell area was quantified as previously described (39). Data is plotted as Mean with SD and P values were calculated using a Student’s t-test (*, P < 0.0001).
HCI2509 affects oncogenic transformation, histone methylation, and causes apoptosis

We next tested whether HCI2509 would impair EWS-ETS-driven oncogenic transformation using colony formation assays as a measure of anchorage-independent growth (Fig. 3A and B and Supplementary Fig. S3A–S3C). Interestingly, both the A673 and TTC-466 showed a shift in sensitivity (Fig. 3A and B) to the low nanomolar range in three-dimensional cultures. Thus, the EC50 observed was significantly lower than those seen in viability assays (29).

Given the role of LSD1 in H3K4 and H3K9 demethylation, we also characterized changes in global histone methylation at these residues (Fig. 3C). Immunodetection of methylation status was quantified using densitometry for
statistical analysis. Due to the subtlety of the observed changes, several biologic replicates were performed. Interestingly, A673 cells showed no change in H3K4 monomethylation, and while H3K4 dimethylation (H3K4me2) and trimethylation (H3K4me3) trended higher, the effect was not statistically significant (Fig. 3C). However, H3K9 monomethylation (H3K9me1) significantly decreased, with a complementary increase in H3K9 dimethylation (H3K9me2) and trimethylation (H3K9me3; Fig. 3C). TTC-466 cells generally recapitulated the effects seen in A673 (Fig. 3C), but the results showed more variability.

We used DAVID analysis to examine the functional relevance of HCI2509 differentially expressed genes apart from the overlap with the EWS/FLI transcriptional profile (Supplementary Fig. S1E). Notably, genes upregulated by HCI2509 related to cell-cycle arrest and programmed cell death, while downregulated genes associated with S-phase, cell cycle, and proliferation (data not shown). Thus, HCI2509 likely reduces Ewing sarcoma cell viability (29) through induction of apoptosis. We therefore used TUNEL staining and caspase activation to assay whether HCI2509 triggered apoptosis. TUNEL-stained cells treated with HCI2509 for 48 hours showed increased staining as compared with vehicle (Fig. 3D). Similarly, treatment with HCI2509 showed increased activation of caspase-3/7 over 48 hours, which corresponded with decreased viability in multiple Ewing sarcoma cell lines (Fig. 3E and F and Supplementary Fig. S3D–S3F). Collectively, these data show HCI2509 not only reversed EWS/FLI-associated oncogenic phenotypes, but also altered H3K9 methylation status and induced apoptosis.

HMOX1 is an on-target response biomarker for HCI2509 treatment in vitro

Screening efforts to identify HCI2509 (33) suggested induction of HMOX1 was an effect proportional to the biochemical potency of the inhibitor (Supplementary Fig. S4A). We evaluated whether HMOX1 constituted biologic output to demonstrate target engagement. HMOX1 was significantly upregulated by HCI2509 in both EWS/FLI transcriptional profiles. We assessed the regulation of HMOX1 by alternative EWS/ETS fusions and found HMOX1 was repressed across EWS/ETS fusions (Fig. 4A). Moreover, Venn Master analysis revealed HMOX1 was one of 81 genes present in the overlap between EWS/FLI targets upregulated by HCI2509 and genes downregulated by EWS/FLI in primary Ewing sarcoma samples (ref. 41; Fig. 4B). On the basis of the repression of HMOX1 in primary tumors and robust HCI2509-induced derepression across tested cell lines, we asked whether HMOX1 protein also increased. We found HMOX1 protein levels elevated with EWS/FLI knockdown returned to baseline levels with EWS/FLI re-expression (Fig. 4C) and likewise increased in response to HCI2509 (Fig. 4D).

We next asked whether HMOX1 induction was dependent upon both LSD1 and EWS/FLI function. Targeted LSD1 ChIP showed enrichment at the HMOX1 promoter (Fig. 4E). Both siRNA-mediated knockdown of LSD1 and LSD1 inhibition with HCI2509 derepressed HMOX1 in a dose-dependent manner (Fig. 4F and G). Moreover, this dose-dependent increase was validated at the protein level using ELISA (Fig. 4H). EWS/FLI knockdown resulted in similar HMOX1 induction as 100 nmol/L LSD1 siRNA (Fig. 4I). HMOX1 repression was restored with full-length EWS/FLI rescue; however, rescue with either the Δ22 mutant (49) lacking most of the EWS domain or the DNA-binding mutant R2L2 (50) failed to repress HMOX1 (Fig. 4I and Supplementary Fig. S4B). This is consistent with other EWS/FLI-repressed targets (29), and jointly implicates the repressive function of the EWS domain together with the DNA-binding domain of FLI in suppressing HMOX1 expression.

The necessity of the EWS domain raised the question about which corepressor complex EWS/FLI recruits to repress HMOX1. EWS/FLI is known to recruit the NuRD complex to enact repressive transcriptional activity at some target genes (29) so we first probed whether NuRD was responsible for HMOX1 repression. Knockdown of the NuRD complex with CHD4-RNAi induced a 4.5-fold increase in HMOX1 (Fig. 4J). RNAi-mediated knockdown of the REST, Co-REST, NcoR/SMRT, and Sin3A complexes were also evaluated. Only REST knockdown showed a significant, though lower magnitude, increase in HMOX1 mRNA (Supplementary Fig. S4C). These results are consistent with recruitment of LSD1 by REST (51), but highlight the central role of the NuRD complex in repressing HMOX1.

Because HMOX1 protein was strongly induced in cells treated with HCI2509 in addition to those with EWS/FLI knockdown, we investigated whether HMOX1 affects cellular transformation. A673 cells overexpressing HMOX1 (Supplementary Fig. S4D) showed little difference in doubling times compared with control (Supplementary Fig. S4E). In addition, oncogenic transformation was not affected in cells overexpressing HMOX1 (Supplementary Fig. S4F). These findings support a model in which HMOX1 is directly repressed by EWS/FLI-mediated recruitment of the NuRD complex with its associated LSD1 subunit, but does not play a role in proliferation or the oncogenic phenotype. Thus, in Ewing sarcoma HMOX1 is a useful biologic readout of LSD1 inhibition and associated disruption of EWS/ETS transcriptional activity.

HCI2509 as a single agent significantly reduces tumor growth in vivo

Having observed HCI2509-mediated disruption of global EWS/ETS transcriptional function, reversal of EWS/ETS-associated morphologic and oncogenic phenotypes, and induction of apoptosis, we next investigated whether HCI2509 would impair tumorigenesis in vivo. In A673, SK-N-MC, and SKE1 xenograft models, daily intraperitoneal treatment with 30 mg/kg HCI2509 delayed tumor growth as a single agent (Fig. 5A and B and Supplementary Fig. S5A). Animal weights were recorded to monitor nonspecific toxicity with none observed (Supplementary Fig. S5B–S5D). Blood counts were also examined due to

![Image](https://example.com/image)
Figure 4. Regulation of HMOX1. A, validation of HMOX1 as a target gene of multiple EWS/ETS fusion. qRT-PCR analysis of HMOX1 in A673 cells infected with a control shRNA (Luc) or an EWS/FLI shRNA followed by rescue with an empty vector, an RNAi-resistant EWS/FLI, EWS/ETV1, EWS/ERG, EWS/ETV4, or EWS/FEV cDNA. Error bars indicate SD (n = 3). P values were calculated using Student’s t-test. †, P value determined against Luc-RNAi/Empty vector (P = 1.51E−5). ‡, P values determined against EF-2-RNAi/Empty vector (P ≤ 2.78E−4). B, Venn diagram representation of the HCI2509-upregulated and EWS/FLI-downregulated gene set (from Supplementary Fig. S1E) overlapped with EWS/FLI-downregulated targets in primary tissue samples. The χ² determined P value is indicated. (Continued on the following page.)
LSD1 Inhibitor Blocks Oncogenic EWS/ETS Function

hematopoietic toxicity associated with LSD1 knockdown (52). During 4 weeks of treatment, no significant difference was observed between vehicle and treated groups (Supplementary Fig. S5E). Importantly, animals treated with HCI2509 showed improved survival over 60 days (Fig. 5C and D) as compared with vehicle in both A673 and SK-N-MC xenograft models.

We also evaluated HMOX1 in tumors from the A673 study using 6 tumors from the vehicle group and 6 tumors from the treatment group. HMOX1 RNA was elevated in three treatment tumors as compared with the control tumors (Fig. 5E). Moreover, this result was validated at the protein level with HMOX protein nearly undetectable in three representative control tumors and expressed in all three HCI2509-treated tumors with elevated HMOX1 mRNA (Fig. 5F). This suggested HCI2509 both engages LSD1 and disrupts EWS/FLI transcriptional activity in vivo. When considered with the impaired tumorigenesis and increased survival, these data substantiate LSD1 inhibition with HCI2509 as a potential therapeutic strategy for Ewing sarcoma.

Discussion

Our findings reveal a novel dual role for LSD1 in mediating both the transcriptional activating and repressive function of EWS/ETS fusions in Ewing sarcoma and modulating the oncogenic phenotypes resulting from the presence of EWS/ETS fusions proteins. Small-molecule blockade of LSD1 with the potent and reversible inhibitor, HCI2509, comprehensively disrupted the transcriptional signature of EWS/FLI and EWS/ERG as well as the subsequent downstream malignant characteristics of Ewing sarcoma as depicted in Fig. 6. Transcription factors are notoriously difficult targets for drug discovery and development programs and identification of small molecules which disrupt EWS/FLI has been an elusive goal (53). Recently, disruption of the c-Myc oncogenic transcription factor was achieved through targeted inhibition of the epigenetic reader BRD4 with the small-molecule inhibitor JQ1, which downregulated MYC transcription, decreased c-Myc protein, and disrupted c-Myc transcriptional function (54, 55). Our results likewise support an approach underlining oncogenic transcription factors by targeting their associated epigenetic machinery. The observed difference in transcriptional outcomes between LSD1 inhibition and HDAC inhibition with vorinostat (30) highlights the importance of selecting the correct target and demonstrates the potential to tailor epigenetic therapy based on the context of the disease.

The A673 cell line has been used to investigate the transcriptional effects of EWS/FLI because it is relatively tolerant of EWS/FLI knockdown (31). While A673 cells expressing EWS/FLI shRNA lose transformation (31) and show morphologic characteristics similar to the putative cell-of-origin for Ewing sarcoma (39), cell growth and viability are not impaired. HCI2509 treatment largely reproduced the loss of transformation consistent with down-regulation of EWS/ETS-activated targets and upregulation of EWS/ETS-repressed targets. However, unlike EWS/FLI knockdown, treatment with HCI2509 triggered caspase-dependent apoptosis in A673 cells. This effect was consistent across cell lines, suggesting additional mechanisms of action for HCI2509. Upon analysis of the genes regulated by HCI2509, but not overlapping with the EWS/FLI transcriptional profile we noted that in this context, HCI2509 upregulated genes associated with cell-cycle arrest and programmed cell death, while genes associated with S-phase, cell cycle, and proliferation were downregulated. This is consistent with both the observed apoptotic phenotype and the reported role for LSD1 in the maintenance of dedifferentiation in cancer (16–19, 56) and regulation of the cell cycle in stem-like cells (57–60). In addition, LSD1 is known to regulate non-histone proteins, including p53 (61). LSD1-mediated demethylation of p53 disrupts association of its cofactor 53BP1 and prevents induction of apoptosis (61). Thus, the sensitivity of Ewing sarcoma cell lines to LSD1 inhibition with HCI2509 may be the result of two tiers of LSD1-specific effects and this is reflected in the different EC50s of the phenotypes described with treatment. Sankar and colleagues previously reported the EC50 for HCI2509 in cell viability assays for multiple Ewing sarcoma cell lines ranging from 0.19 to 1.4 μmol/L (29). In this report, both A673 and TTC-466 cell lines show a loss of transformation in colony forming assays below 100 and 50 nmol/L of HCI2509 treatment, respectively. This suggests a model for HCI2509 mechanism of action in Ewing sarcoma where the first tier of effects disrupt the transforming function of EWS/ETS at concentrations much lower than the second tier of effects, which result in induction of apoptosis. Nonetheless, the proapoptotic effects of HCI2509 may be due to as yet undescribed off-target effects. However, we feel this is unlikely, as the only off-target for HCI2509 known to us is mild inhibition of CYP3A4 with a biochemical IC50 of 2.61 μmol/L (33).
Figure 5. HCI2509 activity in vivo. A and B, in vivo subcutaneous hind-flank xenograft studies measuring tumor volume for animals bearing tumors grown from (A) A673 cells and (B) SK-N-MC cells. N = 10 for all groups, with the exception of SK-N-MC HCI2509–treated group as noted. For tumor volumes, P values were determined by two-way ANOVA comparing the treatment curve to the vehicle curve. Individual tumor growth curves are shown for the vehicle-treated (blue) and HCI2509-treated (red) groups. (Continued on the following page.)
Given its known capability to demethylate both H3K4 and H3K9 mono- and dimethyl marks, and its dual role in modulating activated and repressed genes, we were surprised to observe the only significant changes in global histone methylation occurring at the H3K9 residue. Methylation at H3K9 is typically associated with gene repression so this may be linked to the apparent role of LSD1 in EWS/ETS-mediated gene activation. LSD1-mediated demethylation of MTA1 causes a switch in the associated complex from the repressive NuRD complex to the activated NURF complex (62). In turn, NURF directs the demethylase activity of LSD1 toward H3K9 (62). This presents a plausible mechanism by which EWS/FLI recruits LSD1 as a member of the NuRD complex and is then able to enact both transcriptional activation and repression. Alternatively, LSD1 was recently described to mediate a global reduction in H3K9me2 during the epithelial-to-mesenchymal transition (EMT; ref. 63). Inhibition of LSD1 in this model impaired the cellular migration and chemoresistance resulting from EMT. It is possible that the observed increase in H3K9me2 in Ewing sarcoma cells may be due to a similar phenomenon. Additional studies are required to elucidate the molecular mechanisms choreographing whether LSD1 facilitates EWS/FLI-mediated transcriptional activation or repression and the genome-wide positioning of LSD1 histone substrates in the presence and absence of both EWS/FLI and HCl2509. The absence of significant changes at the H3K4 mark may be due to limitations of our study design to assay global histone marks at the same time point as the transcriptional profiling. In embryonic stem cells, LSD1 was shown to mediate short-term changes at H3K4 important for cell-cycle progression and these changes may not have been observed in global methylation analyses at 48 hours (58).

Ewing sarcoma is an aggressive cancer for which few agents show single-agent efficacy in vivo. We assessed HMOX1 induction in the A673 study and while most animals in the treatment group had delayed tumorigenesis, the endpoint study design did not allow us to assay HMOX1 levels during earlier time points of treatment. Importantly, we were able to observe induction of HMOX1 in a subset of tumors from the treated group as compared with the vehicle group. On the basis of our in vitro results we expected to see a more robust HMOX1 induction in the context of antitumor efficacy. While the presence of an EWS/ETS fusion may predict a favorable response to an LSD1 inhibitor, these results underscore the difficulty in identifying appropriate treatment response biomarkers in Ewing sarcoma.

On the basis of the dramatic transcriptional effects of HCl2509 described in vitro, we predict improved dosing will result in enhanced tumor regression in future studies with this class of LSD1 inhibitors. This is a critical hurdle for translation of this strategy to the clinic for Ewing sarcoma. Even with a preliminary preclinical formulation we were
able to observe significant delay in tumor growth and improved survival out to 60 days. Optimization of formulation, salt forms, and synthesis of more soluble derivatives will allow fine tuning of drug exposure. Future studies are required to optimize dosing and determine whether or not LSD1 inhibition with HCI2509 is safe, tolerated, and synergistic with other clinically relevant treatment strategies for Ewing sarcoma, like irinotecan and temozolomide. Taken together, the dramatic effects of HCI2509 on the transcriptional activity of EWS/ETS fusions and its observed single-targeted efficacy in vivo validate this class of LSD1 inhibitors as a potential targeted strategy to treat Ewing sarcoma.

Disclosure of Potential Conflicts of Interest

S. Sharma is an employee of and holds ownership interest (including patents) in Salarius Pharmaceuticals. S.L. Lessnick is a consultant/advisory board member for Salarius Pharmaceuticals. No potential conflicts of interest were disclosed by the other authors.

Authors' Contributions

Conception and design: S. Sankar, E.R. Theisen, M. Beckerle, S. Sharma, S.L. Lessnick
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Sankar, E.R. Theisen, J. Bearss, T. Mulvihill, L.M. Hoffman
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Sankar, E.R. Theisen, S.L. Lessnick
Writing, review, and/or revision of the manuscript: S. Sankar, E.R. Theisen, L.M. Hoffman, V. Sorna, M. Beckerle, S. Sharma, S.L. Lessnick
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Sankar

Study funding: M. Beckerle, S.L. Lessnick

Other (design and synthesis of the novel molecule used for this manuscript): V. Sorna

Grant Support

S.L. Lessnick was supported by NIH/NCI grant R01 CA140394. S.L. Lessnick and S. Sharma were supported by a Developmental Research Program subaward from the SARC Sarcoma SPORE (U10 CA165512). The Sunshine Project from the Pediatric Cancer Foundation, the Make Some Noise: Cure Kids Cancer Foundation, and the Alan B. Slifka Foundation. S. Sankar was supported by the HHMI Med into Grad program at the University of Utah (U23MDG). E.R. Theisen was supported by the American Foundation for Pharmaceutical Education 2013 Pre-Doctoral Fellowship (AFPE), and T. Mulvihill was supported by the University of Utah MD/PhD Program, L.M. Hoffman and M. Beckerle were supported by NIH grant R01 CA60877. The authors also acknowledge support of funds in conjunction with NCI grant P30 CA042041 awarded to the Huntsman Cancer Institute, as well as funds from the Experimental Therapeutics Program at Huntsman Cancer Institute. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received January 10, 2014; revised May 15, 2014; accepted June 10, 2014; published OnlineFirst June 24, 2014.

References

23. Bennan-Baitt I-M, Machado I, Llombart-Bosch A, Kover H. Lysine-specific demethylase 1 (LSD1/KDM1A/AF02/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing’s...
LSD1 Inhibitor Blocks Oncogenic EWS/ETS Function

www.aacjournals.org
Clin Cancer Res; 20(17) September 1, 2014 4597

Downloaded from clincancerres.aacrjournals.org on October 31, 2017. © 2014 American Association for Cancer Research.
Reversible LSD1 Inhibition Interferes with Global EWS/ETS Transcriptional Activity and Impedes Ewing Sarcoma Tumor Growth

Savita Sankar, Emily R. Theisen, Jared Bearss, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-0072

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2014/06/28/1078-0432.CCR-14-0072.DC1

Cited articles
This article cites 63 articles, 21 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/20/17/4584.full#ref-list-1

Citing articles
This article has been cited by 8 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/20/17/4584.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.