FDA Approval Summary: Vemurafenib for Treatment of Unresectable or Metastatic Melanoma with the BRAF^{V600E} Mutation

Geoffrey Kim1, Amy E. McKee1, Yang-Min Ning1, Maitreyee Hazarika1, Marc Theoret1, John R. Johnson1†, Qiang Casey Xu2, Shenghui Tang2, Rajeshwari Sridhara2, Xiaoping Jiang2, Kun He3, Donna Roscoe3, W. David McGuinn3, Whitney S. Helms1, Anne Marie Russell4, Sarah Pope Miksinski4, Jeanne Fourie Zirkelbach5, Justin Earp5, Qi Liu5, Amna Ibrahim1, Robert Justice1, and Richard Pazdur1

Qiang Casey Xu2, Shenghui Tang2, Rajeshwari Sridhara2, Xiaoping Jiang2, Kun He3, Donna Roscoe3, and Radiologic Health, U.S. Food and Drug Administration, Silver Spring, Maryland.2 Of Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland.5 Of Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland.1

Abstract
On August 17, 2011, the U.S. Food and Drug Administration (FDA) approved vemurafenib tablets (Zelboraf, Hoffman-LaRoche Inc.) for the treatment of patients with unresectable or metastatic melanoma with the BRAF^{V600E} mutation as detected by an FDA-approved test. The cobas 4800 BRAF V600 Mutation Test (Roche Molecular Systems, Inc.) was approved concurrently. An international, multicenter, randomized, open-label trial in 673 previously untreated patients with BRAF^{V600E} mutation—positive unresectable or metastatic melanoma allocated 337 patients to receive vemurafenib, 960 mg orally twice daily, and 338 patients to receive dacarbazine, 1,000 mg/m^2 intravenously every 3 weeks. Overall survival was significantly improved in patients receiving vemurafenib [HR, 0.44; 95% confidence interval (CI), 0.33–0.59; P < 0.0001]. Progression-free survival was also significantly improved in patients receiving vemurafenib (HR, 0.26; 95% CI, 0.20–0.33; P < 0.0001). Overall response rates were 48.4% and 5.5% in the vemurafenib and dacarbazine arms, respectively. The most common adverse reactions (≥30%) in patients treated with vemurafenib were arthralgia, rash, alopecia, fatigue, photosensitivity reaction, and nausea. Cutaneous squamous cell carcinomas or keratoacanthomas were detected in approximately 24% of patients treated with vemurafenib. Other adverse reactions included hypersensitivity, Stevens–Johnson syndrome, toxic epidermal necrolysis, uveitis, QT prolongation, and liver enzyme laboratory abnormalities. Clin Cancer Res; 20(19); 4994–5000. ©2014 AACR.

Introduction
Melanoma is the fifth leading cancer type in men and the seventh leading cancer type in women, with an estimated total of 76,100 new cases and 9,700 deaths due to melanoma in 2014 (1). The prognosis of metastatic melanoma is grim, with a median survival of approximately 6 months (2). Most somatic mutations in BRAF result in increased activity of BRAF kinase, leading to ERK activation and aberrant and uncontrolled cell proliferation and survival (3). In a prospective series of 308 patients with metastatic melanoma, 46% had a BRAF mutation—73% were V600E, 19% were V600K, and 6% were other (4).

At the time of approval of vemurafenib, three drugs were approved by the FDA for the treatment of advanced melanoma. Dacarbazine was approved over 30 years ago but no survival benefit has been demonstrated. In randomized trials, the response rates with single-agent dacarbazine ranged from 7% to 32% and the median overall survival (OS) ranged from 5.6 to 11 months (5). The ipilimumab approval in 1998 was based on 8 single-arm trials involving 270 patients with metastatic melanoma (6). The overall response rate (ORR; complete and overall responses) was 16% with a complete response rate of 6% and a median duration of complete response greater than 5 years. A meta-analysis of chemoimmunotherapy versus chemotherapy found increased response rates and toxicity with chemoinmunotherapy but no improvement in survival (7). Ipilimumab, a monoclonal antibody targeting CTLA-4, was approved in 2011 on the basis of a double-blind, randomized trial comparing ipilimumab to ipilimumab in combination with the peptide gp100 to gp100 alone (8). On FDA

1 Office of Hematology and Oncology Products (OHOP), Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland. 2 Office of Biostatistics, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland. 3 Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiologic Health, U.S. Food and Drug Administration, Silver Spring, Maryland. 4 Office of New Drug Assessment, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland. 5 Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland.

†Deceased

Corresponding Author: Geoffrey Kim, Food and Drug Administration, 10903 New Hampshire Avenue, Building 22, Room 2137, Silver Spring, Maryland. Phone: 301-796-2330; Fax: 301-796-9845; E-mail: Geoffrey.Kim@fda.hhs.gov
doi: 10.1158/1078-0432.CCR-14-0776
©2014 American Association for Cancer Research.
Vemurafenib for Advanced Melanoma with \(BRAF^{V600E}\) Mutation

review, the HRs for death were 0.66 [95% confidence interval (CI), 0.51–0.87] for the comparison of ipilimumab to gp100 and 0.68 (95% CI, 0.55–0.85) for the comparison of ipilimumab plus gp100 to gp100. Median OS was 10 months in the ipilimumab and ipilimumab plus gp100 arms and 6 months in the gp100 alone arm. In another trial, ipilimumab in combination with dacarbazine was compared with dacarbazine alone (9). Median OS in the ipilimumab–dacarbazine group was reported to be 11.2 months compared with 9.1 months in the dacarbazine group (HR, 0.72; 95% CI, 0.59–0.87).

Chemistry

The chemical name of vemurafenib is propane-1-sulfonic acid \{3-[5-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridine-3-carbonyl]-2,4-difluoro-phenyl\}-amide. Vemurafenib is supplied as 240 mg tablets for oral administration.

Nonclinical Pharmacology and Toxicology

Vemurafenib is a kinase inhibitor with activity against some BRAF kinases with activating mutations, particularly \(BRAF^{V600E}\), wild-type BRAF, and other kinases. Antitumor activity was demonstrated in cellular and xenograft melanoma models with the \(BRAF^{V600E}\) mutation. Paradoxically, a dose-dependent acceleration of implanted human cutaneous squamous cell carcinomas (cuSCC) cell growth occurred in vemurafenib-treated mice.

The liver was the major target organ for toxicity in both rats and dogs with increases in cholesterol and liver enzymes observed. QTc prolongation occurred in cardiovascular safety pharmacology studies and long-term dog studies. Dogs also showed significant elevations in eosinophils, neutrophils, and monocytes. Although vemurafenib was negative for embryo-fetal toxicity in rat and rabbit reproductive toxicity studies, alterations in the BRAF signaling cascade have been associated with serious embryofetal toxicity, including embryolethality, severe growth retardation, and postnatal death. Also, congenital mutations of BRAF in humans have been associated with serious genetic disorders. Therefore, vemurafenib was designated Pregnancy Category D.

Clinical Pharmacology

In a population pharmacokinetic analysis, plasma concentration-time profile of vemurafenib was described by a one-compartment pharmacokinetic model with first-order absorption and first-order elimination. The pharmacokinetics at steady state was linear between 240 and 960 mg.

Bioavailability of vemurafenib had not been determined. Following oral administration of 960 mg twice daily for 15 days, the median \(t_{\text{max}}\) was approximately 3 hours, the mean (±SD) \(C_{\text{max}}\) was 62 μg/mL ± 17, and the AUC(0–12) was 601 ± 170 μg h/mL. A food effect study had not been conducted and vemurafenib was administered without regard to food in the clinical trial.

Vemurafenib is highly bound (>99%) to human albumin and alpha-1 acid glycoprotein, and the volume of distribution \(V_d\) was estimated to be 106 L. Vemurafenib is mainly excreted in feces (94%), plasma clearance was 31 L/day, and the median elimination half-life was 57 hours. Vemurafenib clearance was similar in patients with normal, mild, and moderate hepatic impairment, but the effect of severe hepatic impairment on vemurafenib exposure was unknown. In vitro, vemurafenib is a substrate of CYP3A4 and both a substrate and inhibitor of P-glycoprotein. In vivo, vemurafenib is an inducer of human CYP3A4, a moderate inhibitor of CYP1A2 and a weak inhibitor of CYP2D6.

There was a statistically significant exposure–response relationship between progression-free survival (PFS) and vemurafenib exposure \(\left(C_{\text{min}}\right)\) but a conclusive relationship between exposure and OS could not be demonstrated. There was also a significant exposure–response relationship between the risk of cuSCC development and vemurafenib exposure \(\left(C_{\text{min}}\right)\). An exposure–QTc response analysis using data from the phase II trial showed that following treatment with vemurafenib 960 mg twice daily, the QTc interval was prolonged in a concentration-dependent manner but no large changes (i.e., >20 ms) in the mean QTc interval were detected.

Clinical Trials

The approval of vemurafenib was primarily based on a randomized, controlled, open-label, international, multicenter trial (BRIM-3) comparing vemurafenib with dacarbazine in 675 previously untreated patients with \(BRAF^{V600E}\) mutation–positive unresectable or metastatic melanoma as detected by the cobas 4800 BRAF V600 Mutation Test (10). Patients were randomly allocated to receive vemurafenib, 960 mg orally twice daily \((N = 337)\), or dacarbazine, 1,000 mg/m² intravenously every 3 weeks \((N = 338)\). Treatment was continued until disease progression, unacceptable toxicity, and/or consent withdrawal. Randomization was stratified according to disease stage, lactate dehydrogenase, ECOG performance status, and geographic region. The final co-primary endpoints were OS and investigator-assessed PFS. Key secondary endpoints included confirmed investigator-assessed best ORRs, time to response, duration of response, and safety.

The trial was originally designed with OS as the primary endpoint and a planned accrual of 680 patients to detect a difference in median OS of 10.7 versus 8 months and a HR of 0.75 with 80% power and two-sided 2.5% level of significance. However, in August 2010, the FDA became aware of the unprecedented activity of vemurafenib via publication of the phase I trial results reporting an unconfirmed ORR of 81% \((26/32)\) in the extension phase \((11)\). In addition, preliminary results of the phase II trial provided by the sponsor suggested a confirmed ORR of approximately 50%; final results were reported in 2012 \((12)\). In addition to other recommendations, the sponsor was encouraged to modify the statistical analysis plan (SAP) of the ongoing BRIM-3 trial to increase overall study alpha level to two-sided 5%, set up an alpha spending rule with higher probability to cross at the interim analysis, use a less conservative
target HR of 0.65, and add PFS as a co-primary endpoint (13, 14). The sponsor agreed and revised the SAP to conduct a final PFS analysis at the time of an interim OS analysis. The unstratified log-rank test was to be used in the analyses of both endpoints. Patients on dacarbazine were also allowed to crossover to vemurafenib after disclosure of positive study results.

Baseline characteristics were balanced between treatment groups. Fifty-six percent of patients were male, 99% were Caucasian, median age was 54 years, all patients had an ECOG performance status of 0 or 1, and 95% had metastatic disease. The median time from diagnosis of metastatic disease to enrollment on trial was 3 months.

Efficacy results

Efficacy results are summarized in Table 1. At the interim analysis of OS, the HR was 0.37 (95% CI, 0.26–0.55; P < 0.001) in favor of the vemurafenib arm. In an updated OS analysis before approval, the HR was 0.44 (95% CI, 0.33–0.59; P < 0.0001). The median OS had not been reached (NR) in the vemurafenib arm (95% CI, 9.6–NR) but was 7.9 months in the dacarbazine arm (95% CI, 7.3–9.6). The Kaplan–Meier curves for OS and PFS are shown in Figs. 1 and 2, respectively. In the final analysis of investigator-assessed PFS, the HR was 0.26 (95% CI, 0.20–0.33; P < 0.0001). The confirmed, investigator-assessed best ORR rate was 48.4% (95% CI, 41.6%–55.2%) in the vemurafenib arm compared with 5.5% (95% CI, 2.8%–9.3%) in the dacarbazine arm. There were 2 complete responses (0.9%) and 54 partial responses (10.5%) in the vemurafenib arm and 12 responses (5.5%), all partial, in the dacarbazine arm.

Updated results from the BRIM-3 trial were recently published (15). At 478 deaths and with a median follow-up on the vemurafenib arm of 13.4 months, the median OS without censoring at crossover from dacarbazine to vemurafenib was 13.4 months, the median OS had not been reached (95% CI, 7.3–9.6). The Kaplan–Meier estimate of both endpoints. Patients on dacarbazine were also allowed to crossover to vemurafenib after disclosure of positive study results.

Table 1. Efficacy of vemurafenib in previously untreated patients with BRAF\(^{V600E}\) **mutation–positive melanoma**

	Vemurafenib (N = 337)	Dacarbazine (N = 338)	P
OS			
Number of deaths	78 (23%)	121 (36%)	
HR (95% CI)\(^b\)	0.44 (0.33–0.59)	0.26 (0.20–0.33)	<0.0001
Median survival, mo (95% CI)\(^c\)	Not reached (9.6–not reached)	7.9 (7.3–9.6)	—
Median follow-up, mo (range)	6.2 (0.4–13.9)	4.5 (<0.1–11.7)	—
PFS			
HR (95% CI)\(^b\)	0.26 (0.20–0.33)	0.26 (0.20–0.33)	<0.0001
Median PFS, mo (95% CI)\(^c\)	5.3 (4.9–6.6)	1.6 (1.6–1.7)	—

\(^a\)As detected by the cobas 4800 BRAF V600 Mutation Test.
\(^b\)HR estimated using Cox model; a HR of <1 favors Zelboraf.
\(^c\)Kaplan–Meier estimate.
\(^d\)Unstratified log-rank test.
Keratoacanthomas or cuSCCs occurred in approximately 24% of patients receiving vemurafenib. There were also 8 new primary melanoma lesions in 7 patients in the vemurafenib group. The cuSCCs and melanomas were excised, and patients continued vemurafenib without dose interruption or reduction.

Figure 1. Kaplan–Meier curves of overall survival.

Figure 2. Kaplan–Meier curves of PFS.
The cobas 4800 BRAF V600 Mutation Test is real-time PCR-based in vitro diagnostic using DNA extracted from formalin-fixed, paraffin-embedded human melanoma tissue. It is intended for the selection of patients with BRAF V600E-mutated melanoma for treatment with vemurafenib. The cobas and bidirectional Sanger sequencing results were compared in 449 evaluable cases (16). By the cobas test, there were 216 “mutation detected” cases. However, 35 of these were not V600E mutations by sequencing: 8 were wild-type, 25 were V600K, 1 was V600E2, and 1 was V600D. Six specimens were identified as “mutation not detected” by cobas but were V600E by sequencing. The positive percent agreement was 97.3%, the negative percent agreement was 84.6%, and the overall percent agreement was 90.9%.

Table 2. Adverse reactions reported in ≥10% of patients treated with vemurafenib

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>Vemurafenib (N = 336)</th>
<th>Dacarbazine (N = 287)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1–4 (%)</td>
<td>Grade 3–4 (%)</td>
</tr>
<tr>
<td></td>
<td>Grade 1–4 (%)</td>
<td>Grade 3–4 (%)</td>
</tr>
<tr>
<td>Any adverse event</td>
<td>331 (98.5)</td>
<td>197 (58.6)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>116 (34.5)</td>
<td>7 (2.1)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>95 (28.3)</td>
<td>3 (1)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>60 (17.9)</td>
<td>4 (1.2)</td>
</tr>
<tr>
<td>Constipation</td>
<td>40 (11.9)</td>
<td>1 (-1)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>127 (37.8)</td>
<td>7 (2.1)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>64 (19)</td>
<td>2 (-1)</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>56 (16.7)</td>
<td>3 (-1)</td>
</tr>
<tr>
<td>Ache</td>
<td>36 (10.7)</td>
<td>2 (-1)</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased LDH</td>
<td>219 (65.2)</td>
<td>9 (2.7)</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>184 (54.8)</td>
<td>7 (2.1)</td>
</tr>
<tr>
<td>Increased alkaline phosphatase</td>
<td>168 (50)</td>
<td>10 (3)</td>
</tr>
<tr>
<td>Increased ALT</td>
<td>145 (43.2)</td>
<td>9 (2.7)</td>
</tr>
<tr>
<td>Increased GGT</td>
<td>136 (40.5)</td>
<td>38 (11.3)</td>
</tr>
<tr>
<td>Increased AST</td>
<td>129 (38.4)</td>
<td>3 (-1)</td>
</tr>
<tr>
<td>Increased bilirubin</td>
<td>119 (35.4)</td>
<td>6 (1.8)</td>
</tr>
<tr>
<td>Increased creatinine</td>
<td>100 (29.8)</td>
<td>5 (1.5)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>60 (17.9)</td>
<td>0</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthralgia</td>
<td>180 (53.6)</td>
<td>15 (4.5)</td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>60 (17.9)</td>
<td>2 (-1)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>42 (12.5)</td>
<td>1 (-1)</td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (including cysts and polyps)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin papilloma</td>
<td>72 (21.4)</td>
<td>1 (-1)</td>
</tr>
<tr>
<td>cuSCCa</td>
<td>81 (24)</td>
<td>74 (22)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>78 (23.2)</td>
<td>3 (-1)</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>48 (14.3)</td>
<td>0</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>124 (36.9)</td>
<td>28 (8.3)</td>
</tr>
<tr>
<td>Alopecia</td>
<td>150 (44.6)</td>
<td>2 (-1)</td>
</tr>
<tr>
<td>Photosensitivity reaction</td>
<td>110 (32.7)</td>
<td>9 (2.7)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>77 (22.9)</td>
<td>5 (1.5)</td>
</tr>
<tr>
<td>Hyperkeratosis</td>
<td>82 (24.4)</td>
<td>4 (1.2)</td>
</tr>
<tr>
<td>Dry skin</td>
<td>63 (18.8)</td>
<td>0</td>
</tr>
<tr>
<td>Erythema</td>
<td>48 (14.3)</td>
<td>0</td>
</tr>
</tbody>
</table>

a Includes both squamous cell carcinoma of the skin and keratoacanthoma.
Vemurafenib for Advanced Melanoma with \textit{BRAF}^{\text{V600E}} Mutation

Seven of 16 (44\%) patients with tumors positive for the V600E mutation by the cobas test but V600K by sequencing received vemurafenib and had a confirmed response, a response rate similar to that seen in the V600E population. The applicant agreed to a postmarketing commitment to develop an Investigational Use Only Companion Diagnostic (IUO CoDx) that reliably detects the \textit{BRAF}^{\text{V600K}} mutation in tumors of patients with unresectable or metastatic melanoma and to conduct an open-label, single-arm trial in a population identified by this test with ORR and duration of response as the primary endpoints.

Discussion

Until 2011, there were no approved agents that had demonstrated a survival benefit in advanced malignant melanoma. Vemurafenib represents an important new treatment option for patients with \textit{BRAF}^{\text{V600E}} mutation–positive unresectable or metastatic melanoma and is the first personalized therapy for melanoma in which patients are selected using an analytically and clinically validated test. The new drug application was approved less than 4 months after submission.

Except for 5 patients in the dose-escalation portion of the phase I trial, vemurafenib had not been studied in patients whose melanomas were negative by the cobas test for the \textit{BRAF}^{\text{V600K}} mutation. No responses were seen and vemurafenib was not recommended for use in patients with wild-type (\textit{wt})\textit{BRAF} or other \textit{BRAF} mutations in addition, there are data from xenograft models that Raf inhibitors can activate the Raf–MEK–ERK pathway in \textit{wt}BRAF tumors and enhance growth (17).

This application provides an example of the need for sponsors and the FDA to communicate and respond rapidly to important new information. With publication of the unprecedented results from the phase I trial, followed shortly thereafter by preliminary confirmation of activity of vemurafenib in the phase II trial, it became clear that the assumptions used to design the BRIM-3 trial were overly conservative. The FDA and the sponsor worked together quickly to amend the rapidly accruing BRIM-3 trial and to open an expanded access program.

The risk of developing cuSCCs was identified early in clinical trials, and dermatologic monitoring plans were implemented in all subsequent trials. cuSCCs have also been seen in patients receiving sorafenib, and the mechanism may be related to activating RAS mutations (18). New primary malignant melanomas were identified as a risk in the BRIM-3 trial. Although the risk:benefit ratio for vemurafenib was clearly favorable for the indicated population, secondary malignancies in the adjuvant setting or in other patient populations are more of a concern. This led to two postmarketing requirements for annual reporting to FDA of secondary malignancies occurring in ongoing phase III adjuvant melanoma and phase II papillary thyroid cancer trials.

Potential mechanisms of drug resistance reported include promotion of RAF dimerization by elevation of \textit{wt}RAF expression or RAS activity, a variant form of \textit{BRAF}^{\text{V600E}} (p61BRAF V600E) with enhanced dimerization in cells with low levels of RAF activation, \textit{BRAF}^{\text{V600E}} splicing variants lacking the RAS-binding domain, receptor tyrosine kinase-mediated activation of alternative survival pathways, activated RAS-mediated reactivation of the MAPK pathway, PDGFR\textbf{B} upregulation, NRAS mutations, or COT activation of ERK (19–22).

Other postmarketing requirements included an in \textit{vitro} screen to determine whether vemurafenib inhibits CYP2C8 or CYPB9, drug interaction trials to evaluate the effects of strong CYP3A inducers and inhibitors on the pharmacokinetics of vemurafenib, a trial to assess the effects of severe hepatic impairment on the pharmacokinetics of vemurafenib, and a final analysis of safety in BRIM-3. Other postmarketing commitments included submission of updated survival results from the BRIM-3 trial and an assessment of changes from baseline in NRAS mutation status at disease progression in patients with advanced melanoma positive for the V600E mutation who have been treated with vemurafenib.

After approval, information about non-cuSCCs of the head and neck and the potential for promotion of \textit{wt}BRAF melanomas and malignancies associated with activation of RAS was added to the labeling as Warnings and Precautions. Other new warnings and precautions included increases in transaminases and bilirubin in patients receiving concomitant ipilimumab and vemurafenib and drug reaction with eosinophilic systemic symptoms syndrome (23).

Disclosure of Potential Conflicts of Interest

Q.C. Xu was an employee of the FDA at the time of article submission; she is now an employee of Celgene. No potential conflicts of interest were disclosed by the other authors.

Disclaimer

This is a U.S. government work. There are no restrictions on its use.

Authors’ Contributions

- **Conception and design:** G. Kim, A.E. McKee, Y.-M. Ning, J.R. Johnson, R. Justice, R. Pazdur
- **Development of methodology:** R. Sridhara
- **Writing, review, and/or revision of the manuscript:** G. Kim, A.E. McKee, Y.-M. Ning, M. Hazanika, M. Theoret, J.R. Johnson, S. Tang, R. Sridhara, X. Jiang, K. He, W.S. Helms, S.P. Mikinski, J.F. Zirkelbach, Q. Liu, R. Justice, R. Pazdur, W.D. McGuinn
- **Administrative, technical, or material support [i.e., reporting or organizing data, constructing databases]:** G. Kim, R. Pazdur
- **Study supervision:** J.R. Johnson, R. Justice, R. Pazdur
- **Other [diagnostic reviewer]:** D. Roscoe
- **Other [chemistry, manufacturing, and controls]:** A.M. Russell
- **Other [helped supervise the review of the NDA that led to the approval of this drug]:** A. Ibrahim

Received May 13, 2014; revised July 10, 2014; accepted July 20, 2014; published OnlineFirst August 5, 2014.
References

FDA Approval Summary: Vemurafenib for Treatment of Unresectable or Metastatic Melanoma with the BRAF V600E Mutation

Geoffrey Kim, Amy E. McKee, Yang-Min Ning, et al.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-14-0776

Cited articles This article cites 19 articles, 4 of which you can access for free at: http://clincancerres.aacrjournals.org/content/20/19/4994.full.html#ref-list-1

Citing articles This article has been cited by 3 HighWire-hosted articles. Access the articles at: /content/20/19/4994.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.