Mismatch Repair Status and BRAF Mutation Status in Metastatic Colorectal Cancer Patients: A Pooled Analysis of the CAIRO, CAIRO2, COIN, and FOCUS Studies

Sabine Venderbosch1,2, Iris D. Nagtegaal1, Tim S. Maughan3, Christopher G. Smith4, Jeremy P. Cheadle4, David Fisher5, Richard Kaplan5, Philip Quirke6, Matthew T. Seymour7, Susan D. Richman6, Gerrit A. Meijer8, Bauke Ylstra8, Danielle A.M. Heideman8, Anton F.J. de Haan9, Cornelis J.A. Punt2, and Miriam Koopman10

Abstract

Purpose: To determine the prevalence and prognostic value of mismatch repair (MMR) status and its relation to BRAF mutation (BRAFMT) status in metastatic colorectal cancer (mCRC).

Experimental Design: A pooled analysis of four phase III studies in first-line treatment of mCRC (CAIRO, CAIRO2, COIN, and FOCUS) was performed. Primary outcome parameter was the hazard ratio (HR) for median progression-free survival (PFS) and overall survival (OS) in relation to MMR and BRAF. For the pooled analysis, Cox regression analysis was performed on individual patient data.

Results: The primary tumors of 3,063 patients were analyzed, of which 153 (5.0%) exhibited deficient MMR (dMMR) and 250 (8.2%) a BRAFMT. BRAFMT was observed in 53 (34.6%) of patients with dMMR tumors compared with 197 (6.8%) of patients with proficient MMR (pMMR) tumors (P<0.001). In the pooled dataset, median PFS and OS were significantly worse for patients with dMMR compared with pMMR tumors [HR, 1.33; 95% confidence interval (CI), 1.12–1.57 and HR, 1.35; 95% CI, 1.13–1.61, respectively], and for patients with BRAFMT compared with BRAF wild-type (BRAFWT) tumors (HR, 1.34; 95% CI, 1.17–1.54 and HR, 1.91; 95% CI, 1.66–2.19, respectively). PFS and OS were significantly decreased for patients with BRAFMT within the group of patients with pMMR, but not for BRAF status within dMMR, or MMR status within BRAFWT or BRAFMT.

Conclusions: Prevalence of dMMR and BRAFMT in patients with mCRC is low and both biomarkers confer an inferior prognosis. Our data suggest that the poor prognosis of dMMR is driven by the BRAFMT status. Clin Cancer Res; 20(20); 5322–30. ©2014 AACR.

Introduction

Colorectal cancer is a heterogeneous disease arising through different pathways (1, 2). Three molecular pathways are well known to be involved in the multistep process of colorectal carcinogenesis, including the chromosomal instability (CIN) pathway, the mutator pathway [microsatellite instability (MSI)], and the epigenetic instability pathway or CpG island methylator phenotype (CIMP), the latter of which has substantial overlap with the other two.

MSI is the result of a deficient DNA mismatch repair (dMMR) system. A germline mutation in one of the MMR genes, most often MLH1 or MSH2, is the cause of dMMR in patients with Lynch syndrome, which comprises 0.8% to 5% of all colorectal cancers (3). dMMR is also observed in 10% to 20% of patients with sporadic colorectal cancer, of which the majority of dMMR tumors are due to inactivation of MLH1 (~95%), caused by hypermethylation of the gene promoter, with MSH2 and MSH6 accounting for a smaller percentage (3–5). These dMMR tumors have distinct features, such as origin in the proximal colon, prominent lymphocytic infiltrate, poorly differentiated morphology, mucinous or signet ring differentiation (6), and association with a favorable prognosis in early-stage colorectal cancer (7). In metastatic colorectal cancer (mCRC), the prevalence of dMMR is low (3.5%; refs. 8, 9). This supports the hypothesis that dMMR tumors have a reduced metastatic
Translational Relevance

This is the first pooled analysis on individual patient data to assess the role of the mismatch repair (MMR) status in relation to the BRAF mutation (BRAFMT) status in respect to prevalence and outcome in patients with metastatic colorectal cancer (mCRC). These patients participated in four large randomized prospective phase III studies, namely the CAIRO, CAIRO2, COIN, and FOCUS studies. We show that the prevalence of deficient MMR (dMMR) and BRAFMT is low in patients with mCRC. Both biomarkers confer an inferior prognosis. We observed a higher incidence of BRAFMT in dMMR tumors than reported for patients with early-stage dMMR colorectal cancer, and our data suggest that the poor prognosis of dMMR is driven by BRAFMT status.

Materials and Methods

Patients and treatment

Data were derived from patients with mCRC included in four large phase III studies in first-line treatment: CAIRO (ClinicalStudys.gov; NCT00312000), CAIRO2 (ClinicalStudys.gov; NCT00208546), COIN (ISRCTN; 27286448), and FOCUS (ISRCTN; 79877428), of which the results have been published previously (17–21). Collection of formalin-fixed paraffin-embedded material (FFPE) of the primary tumor was part of the initial protocol in all four studies. For samples of both CAIRO studies, immunohistochemistry (IHC) was performed on FFPE tissue with antibodies against MMR proteins hMLH1, hMSH2, hMSH6, and hPMS2. In addition, MSI analysis was performed where there was an absence of MMR protein expression or equivocal IHC results. dMMR status was determined using two microsatellite markers (BAT25 and BAT26). If only one of these markers showed instability, the tumor was defined as dMMR, and as pMMR if no instability was observed. For samples from the FOCUS study, dMMR status was based on loss of MLH1 and MSH2 protein expression, assessed by IHC. If either protein showed loss of expression, the tumor was defined as dMMR, and pMMR if no loss of expression was observed.

Hypermethylation status of the MLH1 gene promoter

Hypermethylation of the MLH1 gene promoter was determined after bisulfite treatment of the DNA using the EZ DNA MethylKit (ZYMO Research), as described previously (8).

BRAFMT status

The BRAF V600E mutation status was assessed in duplicate by high-resolution melting (HRM) sequencing analysis for tumor material in the CAIRO study (22) and by direct sequencing analysis in the CAIRO2 study (23). For samples of the COIN and FOCUS studies, the BRAF V600E mutation status was determined by Pyrosequencing (and Sequenom in COIN), and verified by Sanger sequencing as described previously (19, 24). Non-V600E BRAFMT detected by these assays (n = 19) were not included in the current analyses on outcome.

Statistical methods

Individual patient data were included in the pooled analysis. Progression-free survival (PFS) was defined as the time from the date of randomization to first progression or death, whichever came first. Overall survival (OS) was defined as the time from randomization to the date of death. The primary outcome measure was the hazard ratio (HR) for PFS and OS in relation to MMR and BRAFMT status. For PFS and OS, all studies were included in a Cox regression model (proportional hazard model) by using the study as a factor in the model. In this way, dependence of the hazard on study could be modeled. The HR was corrected for study effect. Survival curves were plotted and log-rank tests were performed to compare survival for the different groups defined. A statistical interaction analysis for survival data of dMMR and BRAF status was performed. All analyses were conducted using the SAS system version 9.2; P < 0.05 was considered statistically significant.

Results

Study population and MMR/BRAFMT status

Tumor and normal samples from 3,063 out of 6,155 randomized mCRC patients were available and suitable
for analysis of both MMR and BRAF MT status. Of these 3,063 patients, 322 patients participated in the CAIRO study, 516 patients in the CAIRO2 study, 1,461 patients in the COIN study, and 764 patients in the FOCUS study.

The prevalence of MMR status and BRAF MT status and their correlation are presented in Tables 1 and 2, respectively. dMMR was found in tumors of 153 (5.0%) patients and 250 (8.2%) patients had a BRAF MT (Table 1). There was no evidence of heterogeneity for the prevalence of dMMR and BRAF MT in the four studies; $P = 0.614$ and $P = 0.943$, respectively (Table 1). A BRAF MT was observed in 53 (34.6%) of patients with dMMR tumors compared with 197 (6.8%) of patients with pMMR tumors ($P < 0.001$; Table 2).

Table 1. Prevalence of MMR and BRAF MT status in patients with mCRC subdivided by study

<table>
<thead>
<tr>
<th>MMR Status</th>
<th>CAIRO</th>
<th>CAIRO2</th>
<th>COIN</th>
<th>FOCUS</th>
<th>Pooled dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>dMMR</td>
<td>18 (5.6%)</td>
<td>29 (5.6%)</td>
<td>65 (4.4%)</td>
<td>41 (5.4%)</td>
<td>153 (5.0%)</td>
</tr>
<tr>
<td>pMMR</td>
<td>304 (94.4%)</td>
<td>487 (94.4%)</td>
<td>1,396 (95.6%)</td>
<td>723 (94.6%)</td>
<td>2,910 (95.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>322</td>
<td>516</td>
<td>1,461</td>
<td>764</td>
<td>3,063</td>
</tr>
<tr>
<td>BRAF MT</td>
<td>25 (7.8%)</td>
<td>45 (8.7%)</td>
<td>120 (8.2%)</td>
<td>60 (7.9%)</td>
<td>250 (8.2%)</td>
</tr>
<tr>
<td>BRAF WT</td>
<td>297 (92.2%)</td>
<td>471 (91.3%)</td>
<td>1,341 (91.8%)</td>
<td>704 (92.1%)</td>
<td>2,813 (91.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>322</td>
<td>516</td>
<td>1,461</td>
<td>764</td>
<td>3,063</td>
</tr>
</tbody>
</table>

Table 2. Prevalence of BRAF MT status stratified for MMR status, and MMR status stratified for BRAF status in mCRC patients subdivided by study

<table>
<thead>
<tr>
<th>MMR Status</th>
<th>BRAF Status</th>
<th>CAIRO</th>
<th>CAIRO2</th>
<th>COIN</th>
<th>FOCUS</th>
<th>Pooled dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>dMMR</td>
<td>pMMR</td>
<td>Total</td>
<td>dMMR</td>
<td>pMMR</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>BRAF MT</td>
<td>BRAF WT</td>
<td></td>
<td>pMMR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>CAIRO</td>
<td>dMMR</td>
<td>12 (48.0%)</td>
<td>33 (73.3%)</td>
<td>45 (64.7%)</td>
<td>32 (96.2%)</td>
<td>25</td>
</tr>
<tr>
<td>pMMR</td>
<td>13 (52.0%)</td>
<td>33 (27.0%)</td>
<td>100 (36.3%)</td>
<td>51 (4.5%)</td>
<td>53 (34.6%)</td>
<td>197 (78.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>66 (26.7%)</td>
<td>143 (47.3%)</td>
<td>62 (15.6%)</td>
<td>153 (60.6%)</td>
<td>197 (78.8%)</td>
</tr>
</tbody>
</table>

NOTE: Statistically significant results are set in bold. P values represent heterogeneity between the four studies.

Venderbosch et al.

Survival data

The survival data of the individual studies, the pooled dataset, and the pooled analysis for patients with dMMR, pMMR, BRAF MT, and BRAF wild-type (BRAF WT) tumors are presented in Table 3. The median PFS and OS were significantly worse for patients with dMMR compared with pMMR tumors [PFS: 6.2 vs. 7.6 months, respectively; HR, 1.33; 95% confidence interval (CI) 1.12–1.57; $P = 0.001$; OS: 13.6 vs. 16.8 months, respectively; HR, 1.35; 95% CI, 1.13–1.61; $P = 0.001$]. Median PFS and OS were also significantly worse for patients with BRAF MT compared with BRAF WT tumors (PFS: 6.2 vs. 7.7 months, respectively; HR, 1.34; 95% CI, 1.17–1.54; $P < 0.001$; OS: 11.4 vs. 17.2 months, respectively; HR, 1.91; 95% CI, 1.66–2.19; $P < 0.001$).

To determine a possible interaction between MMR and BRAF status, with respect to the survival, a Cox regression was performed by using the study as a factor in the model.

Venderbosch et al.

Table 1. Prevalence of MMR and BRAF MT status in patients with mCRC subdivided by study

<table>
<thead>
<tr>
<th>MMR Status</th>
<th>BRAF MT Status</th>
<th>CAIRO</th>
<th>CAIRO2</th>
<th>COIN</th>
<th>FOCUS</th>
<th>Pooled dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>dMMR</td>
<td>BRAF MT</td>
<td>18 (5.6%)</td>
<td>304 (94.4%)</td>
<td>322</td>
<td>25 (7.8%)</td>
<td>297 (92.2%)</td>
</tr>
<tr>
<td>pMMR</td>
<td>BRAF WT</td>
<td>304 (94.4%)</td>
<td>487 (94.4%)</td>
<td>516</td>
<td>45 (8.7%)</td>
<td>471 (91.3%)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>322</td>
<td>516</td>
<td>1,461</td>
<td>764</td>
<td>3,063</td>
</tr>
</tbody>
</table>

NOTE: P values represent heterogeneity between the four studies.

Abbreviations: mt, mutant tumors; wt, wild-type tumors.

Table 2. Prevalence of BRAF MT status stratified for MMR status, and MMR status stratified for BRAF status in mCRC patients subdivided by study

<table>
<thead>
<tr>
<th>MMR Status</th>
<th>BRAF Status</th>
<th>CAIRO</th>
<th>CAIRO2</th>
<th>COIN</th>
<th>FOCUS</th>
<th>Pooled dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>dMMR</td>
<td>pMMR</td>
<td>Total</td>
<td>dMMR</td>
<td>pMMR</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>BRAF MT</td>
<td>BRAF WT</td>
<td></td>
<td>pMMR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>CAIRO</td>
<td>dMMR</td>
<td>12 (48.0%)</td>
<td>33 (73.3%)</td>
<td>45 (64.7%)</td>
<td>32 (96.2%)</td>
<td>25</td>
</tr>
<tr>
<td>pMMR</td>
<td>13 (52.0%)</td>
<td>33 (27.0%)</td>
<td>100 (36.3%)</td>
<td>51 (4.5%)</td>
<td>53 (34.6%)</td>
<td>197 (78.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>66 (26.7%)</td>
<td>143 (47.3%)</td>
<td>62 (15.6%)</td>
<td>153 (60.6%)</td>
<td>197 (78.8%)</td>
</tr>
</tbody>
</table>

NOTE: Statistically significant results are set in bold. P values represent heterogeneity between the four studies.

Abbreviations: mt, mutant tumors; wt, wild-type tumors.
(proportional hazard model) by using the study as a factor in the model. Results are presented for MMR status in a BRAFMT and BRAFWT background, and vice versa for BRAF status in an MMR and pMMR background in Table 4. Survival curves, as estimated by the Cox regression, are presented in Fig. 1. In BRAFMT tumors stratified by MMR status, there was no significant survival difference for patients with dMMR compared with pMMR tumors (PFS: 6.1 vs. 6.2 months, respectively; HR, 0.95; 95% CI, 0.62–1.46; P = 1.000). Also in BRAFWT tumors stratified by MMR status, there was no significant survival difference for patients with dMMR compared with pMMR tumors (PFS: 6.1 vs. 6.2 months, respectively; HR, 0.95; 95% CI, 0.62–1.46; P = 1.000).
Table 4. Individual study data, pooled dataset, and pooled analysis of survival data and association between MMR and *BRAF*^{WT} status

<table>
<thead>
<tr>
<th>CAIRO</th>
<th>Number of patients</th>
<th>BRAF<sup>MT</sup></th>
<th>BRAF<sup>WT</sup></th>
<th>dMMR</th>
<th>pMMR</th>
<th>BRAF<sup>MT</sup></th>
<th>BRAF<sup>WT</sup></th>
<th>dMMR</th>
<th>pMMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS mo. (95% CI)</td>
<td>12 (4.6–12.6)</td>
<td>3.6 (2.0–16.4)</td>
<td>6.6 (4.6–12.6)</td>
<td>12</td>
<td>6</td>
<td>4.1 (2.4–6.4)</td>
<td>13</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>2.38 (0.80–7.09)</td>
<td>3.19 (0.96–10.63)</td>
<td>0.34 (0.08–1.44)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS mo. (95% CI)</td>
<td>13.2 (10.1–28.6)</td>
<td>18.6 (12.4–53.5)</td>
<td>13.2 (10.1–28.6)</td>
<td>12</td>
<td>6</td>
<td>8.3 (5.9–13.6)</td>
<td>13</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>2.14 (0.70–6.54)</td>
<td>0.97 (0.25–3.57)</td>
<td>1.63 (0.34–7.77)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAIRO2</th>
<th>Number of patients</th>
<th>BRAF<sup>MT</sup></th>
<th>BRAF<sup>WT</sup></th>
<th>dMMR</th>
<th>pMMR</th>
<th>BRAF<sup>MT</sup></th>
<th>BRAF<sup>WT</sup></th>
<th>dMMR</th>
<th>pMMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS mo. (95% CI)</td>
<td>12 (4.4–8.5)</td>
<td>9.3 (7.2–14.8)</td>
<td>5.7 (4.4–8.5)</td>
<td>12</td>
<td>17</td>
<td>7.5 (6.4–9.7)</td>
<td>33</td>
<td>454</td>
<td></td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.54 (0.22–1.34)</td>
<td>1.25 (0.62–2.49)</td>
<td>2.65 (0.95–7.41)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS mo. (95% CI)</td>
<td>10.4 (7.8–17.2)</td>
<td>21.0 (15.2–36.4)</td>
<td>10.4 (7.8–17.2)</td>
<td>17</td>
<td>17</td>
<td>14.1 (11.5–19.4)</td>
<td>33</td>
<td>454</td>
<td></td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.61 (0.25–1.52)</td>
<td>1.14 (0.54–2.40)</td>
<td>2.94 (1.02–8.62)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COIN</th>
<th>Number of patients</th>
<th>BRAF<sup>MT</sup></th>
<th>BRAF<sup>WT</sup></th>
<th>dMMR</th>
<th>pMMR</th>
<th>BRAF<sup>MT</sup></th>
<th>BRAF<sup>WT</sup></th>
<th>dMMR</th>
<th>pMMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS mo. (95% CI)</td>
<td>5.7 (5.4–8.5)</td>
<td>5.6 (5.1–6.1)</td>
<td>5.9 (5.4–8.5)</td>
<td>5.9</td>
<td>5.6</td>
<td>7.5 (6.4–9.7)</td>
<td>10.7</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.55 (0.32–1.11)</td>
<td>0.78 (0.37–1.66)</td>
<td>1.04 (0.55–2.34)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS mo. (95% CI)</td>
<td>10.5 (8.2–16.3)</td>
<td>10.8 (9.2–14.0)</td>
<td>10.5 (8.2–16.3)</td>
<td>1.04</td>
<td>1.08</td>
<td>10.2 (8.9–11.8)</td>
<td>1.14</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.52 (2.10)</td>
<td>1.85 (1.19–2.88)</td>
<td>2.07 (1.54–2.79)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOCUS</th>
<th>Number of patients</th>
<th>BRAF<sup>MT</sup></th>
<th>BRAF<sup>WT</sup></th>
<th>dMMR</th>
<th>pMMR</th>
<th>BRAF<sup>MT</sup></th>
<th>BRAF<sup>WT</sup></th>
<th>dMMR</th>
<th>pMMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS mo. (95% CI)</td>
<td>6.8 (4.9–12.0)</td>
<td>8.3 (6.8–9.6)</td>
<td>6.3 (5.8–9.6)</td>
<td>6.8</td>
<td>8.3</td>
<td>8.3 (6.8–9.1)</td>
<td>8.0 (7.4–8.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.75 (0.28–2.00)</td>
<td>0.91 (0.56–1.49)</td>
<td>1.37 (0.49–3.79)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS mo. (95% CI)</td>
<td>13.5 (9.8–28.7)</td>
<td>17.5 (14.0–24.0)</td>
<td>13.8 (9.8–28.7)</td>
<td>1.21</td>
<td>0.85</td>
<td>12.2 (10.2–14.8)</td>
<td>1.55 (1.03–2.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.44 (3.36)</td>
<td>1.05 (0.50–1.44)</td>
<td>1.55 (1.03–2.33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pooled dataset</th>
<th>Number of patients</th>
<th>BRAF<sup>MT</sup></th>
<th>BRAF<sup>WT</sup></th>
<th>dMMR</th>
<th>pMMR</th>
<th>BRAF<sup>MT</sup></th>
<th>BRAF<sup>WT</sup></th>
<th>dMMR</th>
<th>pMMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS mo. (95% CI)</td>
<td>6.1 (5.6–7.7)</td>
<td>6.3 (5.8–7.4)</td>
<td>6.1 (5.6–7.7)</td>
<td>6.2</td>
<td>6.2</td>
<td>7.8 (7.4–8.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.95 (0.62–1.46)</td>
<td>1.32 (1.00–1.75)</td>
<td>1.07 (0.67–1.70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS mo. (95% CI)</td>
<td>11.7 (9.9–14.4)</td>
<td>15.0 (13.1–18.0)</td>
<td>11.7 (9.9–14.4)</td>
<td>1.05</td>
<td>1.22</td>
<td>11.3 (10.3–12.5)</td>
<td>1.94 (1.57–2.40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.68 (1.63)</td>
<td>1.22 (0.91–1.65)</td>
<td>1.51 (0.93–2.46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Statistically significant results are shown in bold.
Abbreviations: mo., median PFS or OS time in months; mt, mutant tumor; wt, wild-type tumor.
In pMMR tumors stratified by BRAF status, there was a significantly decreased median PFS and OS for patients with dMMR/BRAF^{MT} tumors, dMMR/BRAF^{WT} tumors, pMMR/BRAF^{MT} tumors, and pMMR/BRAF^{WT} tumors.

Discussion

This study presents the largest dataset on the role of tumor MMR status and BRAF^{MT} status in respect to prevalence and outcome in a population of patients (n = 3,063) with mCRC who participated in four prospective phase III studies. We found that dMMR and BRAF^{MT} in mCRC each have a low prevalence (5% and 8.2%, respectively), and that both biomarkers indicate a
poor prognosis. Given the absence of a statistically significant interaction between Braf^{MT} and dMMR, our data suggest that the poor prognostic value of dMMR is driven by the Braf^{MT} status.

Several aspects of our study warrant further discussion. In this pooled analysis, different methods for detecting dMMR were applied, which, however, have all been validated for the detection of dMMR in colorectal cancer. In both CAIRO studies, an approach based on test methods described in the Bethesda criteria, used for standard clinical practice for patients suspected for Lynch syndrome, has been applied (25). The COIN study analyzed the BAT125 and BAT26 mononucleotide markers, which have a high sensitivity (94%) and specificity (98%), and the use of these two markers alone identifies 97% of MSI tumors (26). The FOCUS study evaluated MLH1 and MSH2 protein expression by IHC, which is a sensitive (92.3%) and specific (100%) method for screening for dMMR (27).

We acknowledge that the difference in MMR detection methods represents a weakness of our study; however, the comparable prevalence of the dMMR status among the four studies in this pooled analysis, ranging from 4.4% to 5.6%, argues against this. The results from the individual studies show that the patient population with dMMR tumors is heterogeneous. The observed difference in the prevalence of dMMR tumors (27). We observed a higher prevalence of Braf^{MT} in dMMR tumors (34.6%) than reported for early-stage dMMR colorectal cancer tumors (24%; 16). Patients with early-stage dMMR in general have a better prognosis compared with patient with early-stage pMMR; however, within the group of dMMR, patients with Braf^{MT} tumors have a worse prognosis (35). Subsequently, this may lead to a shift in the dMMR/Braf^{MT} ratio in patients with mCRC. There is increasing evidence identifying Braf^{MT} as a significant poor prognostic factor in early stage and mCRC (18, 36–38). Braf is an oncogene and it is known that the mutations constitutively activate the MAPK pathway for cell growth, in the absence of extracellular stimuli. However, by itself Braf is not sufficient for cancer and must cooperate with other processes to induce the fully cancerous state (39). Another explanation for the inferior prognosis of Braf^{MT} tumors might be their distinct pattern of metastatic spread. Previous studies have demonstrated a significantly increased rate of peritoneal and distant lymph node metastases and a decreased rate of lung metastases compared with Braf^{WT} tumors (9, 40).

It has been speculated that the worse prognostic value of dMMR tumors in mCRC may be related to a difference in metastatic spread. Earlier studies showed a reduced rate of liver metastases for dMMR tumors in mCRC (40), and a higher incidence of peritoneal metastases; these factors are known to be related to prognosis (41, 42). This was confirmed by a previous analysis of the COIN study (9), but these data are not available from the other studies of our analysis.

Finally, due to the different treatment regimens among the four studies of this pooled analysis, the predictive role of dMMR and Braf^{MT} in mCRC could not be addressed.

In conclusion, dMMR and Braf^{MT} each have a low prevalence in mCRC, and both biomarkers confer a poor prognosis. Our data suggest that the poor prognosis of dMMR is driven by the Braf^{MT} status. However, we caution against a firm conclusion on this issue because our study was not sufficiently powered to test this interaction.

Disclosure of Potential Conflicts of Interest

J.P. Cheadle reports receiving a commercial research grant from Merck. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: S. Venderbosch, T.S. Maughan, C.J.A. Punt, M. Koopman

Development of methodology: S. Venderbosch, I.D. Nagtegaal, C.J.A. Punt, M. Koopman

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): I.D. Nagtegaal, T.S. Maughan, C.G. Smith, J.P. Cheadle, R. Kaplan, P. Quirke, M.T. Seymour, S.D. Richman, G.A. Meijer, B. Ylstra, D.A.M. Heideman, M. Koopman

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Venderbosch, I.D. Nagtegaal, C.G. Smith, J.P. Cheadle, D. Fisher, P. Quirke, M.T. Seymour, A.F.J. de Haan, C.J.A. Punt, M. Koopman

Writing, review, and/or revision of the manuscript: S. Venderbosch, I.D. Nagtegaal, T.S. Maughan, C.G. Smith, J.P. Cheadle, D. Fisher, R. Kaplan,
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): R. Kaplan, D.A.M. Heideman, M. Koopman
Study supervision: P. Quirke, C.J.A. Punt

Other (laboratory analyses and interpretation of FOCSI data): P. Quirke

Acknowledgments
The authors thank the patients and their families who participated in all the studies and gave their consent for this research, and the investigators and pathologists who submitted samples for assessment. The CAIRO studies were conducted with the support of the network of the Dutch Colorectal Cancer Group (DCCG). The CAIRO2 studies were conducted with the support of Cancer Research UK, the UK Medical Research Council (MRC) and the National Cancer Research Networks.

Grant Support
CAIRO: This study was supported by the Dutch Colorectal Cancer Group (DCCG), a grant support from the Commissie Klinisch Toegepast Onderzoek (CKTO) of the Dutch Cancer Foundation (KWF), unrestricted scientific grants from Roche, Aventis, Sanoﬁ, and Pfizer, the Cornelis Visser Foundation and the framework of CTMM, the Center for Translational Molecular Medicine, DeCoOe project (grant 030-101).
CAIRO2: This study was supported by the DCCG, and grants for data management and analysis from the CKTO of the Dutch Cancer Foundation and unrestricted research grants from Roche, Merck Serono, Sanoﬁ-Aventis, De.S. COIN: This study was supported by the Bobby Moore Fund from Cancer Research UK, Cancer Research Wales, and the NSICHR Genetics Biomedical Research Unit. The COIN trial was funded by Cancer Research UK and the MRC. An unrestricted grant from Merck Serono provided additional support to this work and the trial.
FOCUS: This study was supported by Merck KGaA, Yorkshire Cancer Research, Leeds Experimental Cancer Medicine Center, and the Leeds CRUK Center.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 8, 2014; revised June 28, 2014; accepted August 6, 2014; published OnlineFirst August 19, 2014.

References
24. Richman SD, Seymour MT, Chambers P, Elliott F, Daly CL, Meade AM, et al. KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from

Mismatch Repair Status and BRAF Mutation Status in Metastatic Colorectal Cancer Patients: A Pooled Analysis of the CAIRO, CAIRO2, COIN, and FOCUS Studies

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-0332

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2014/08/21/1078-0432.CCR-14-0332.DC1

Cited articles
This article cites 42 articles, 21 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/20/20/5322.full#ref-list-1

Citing articles
This article has been cited by 17 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/20/20/5322.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pub@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.