Review

Whole-Body Low-Dose Computed Tomography and Advanced Imaging Techniques for Multiple Myeloma Bone Disease

Abstract

Detection of lytic bone lesions is crucial in the workup for multiple myeloma and very often dictates the decision to start treatment. Conventional radiography, despite decades of use, is often insufficient for detection of bone disease in multiple myeloma. Modern imaging techniques such as MRI, PET, and CT offer superior detection of myeloma bone disease and extramedullary manifestations of plasma cell dyscrasias. Novel whole-body low-dose computed tomography (WBLDCT) protocols allow for collection of superior image detail of the skeleton at doses of radiation similar to those used for conventional planar radiography. Several studies have shown that WBLDCT has a superior detection rate for lytic bone lesions compared with whole-body X-ray (WBXR), potentially leading to restaging and changes in therapy. MRI and PET provide imaging data important for assessing disease activity and prognostication. Because of several advantages over WBXR, WBLDCT is already the standard imaging technique for use in patients with multiple myeloma in many European institutions. However, the radiographic skeletal survey or WBXR is still the initial study of choice used to screen for myeloma bone disease in many institutions. In this review, we aim to explore the changing landscape of imaging for myeloma bone disease through use of modern imaging techniques.

Introduction

Multiple myeloma is a plasma cell neoplasm characterized by bone marrow infiltration and excessive production of monoclonal immunoglobulin. Multiple myeloma represents 1.3% of all new cancer diagnoses and approximately 15% of all new hematologic malignancies annually in the United States. The osteolytic destruction of the bony skeleton in multiple myeloma distinguishes it from precursor entities such as monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma. The CRAB criteria (hypercalcemia, renal insufficiency, anemia, bone lesions) proposed by the International Myeloma Working Group that define symptomatic multiple myeloma requiring therapy include an imaging evaluation of the skeleton. Therefore, imaging that can accurately define the presence and extent of osteolytic lesions in multiple myeloma is a critical part of the initial workup, staging, and evaluation of multiple myeloma, as the presence of end-organ damage is an indication to initiate treatment. The initial imaging evaluation in patients with suspected multiple myeloma for approximately the last 40 years has been the radiographic skeletal survey (SS) or whole-body X-ray (WBXR; ref. 3). Since the 1980s, advanced imaging technologies such as CT, MRI, and PET have improved the quantity of information available to clinicians treating patients with myeloma. WBXR, the “gold standard” imaging test, has a poor detection rate that potentially delays diagnosis and therapy until late findings are present. Although it is currently not known whether early therapy would improve outcome, a delay in therapy can at least lead to clinically significant bone disease associated with complications such as hypercalcemia and fracture. Therefore, an imaging method with a high sensitivity should be used as an initial imaging test. Modern imaging techniques such as whole-body MRI and PET have been
included in the Durie/Salmon PLUS staging system (3), but use of these tests can be limited by several logistical factors at many centers. In addition, the Durie/Salmon PLUS staging system has not been prospectively validated. Two comparative studies have noted only 30% to 45% concordance between the Durie/Salmon and Durie/Salmon PLUS staging systems (4, 5) reflecting the difficulties of incorporation of a new imaging technique with very high sensitivity with an old staging system. CT has a better detection rate compared with conventional radiography for lytic bone disease (5) and could change the management of patients with multiple myeloma, preventing or delaying significant morbidity and mortality related to skeletal-related events.

In this review, we aim to compare and contrast traditional and modern imaging techniques used in multiple myeloma and discuss opportunities to improve the quality of care for patients with myeloma using advanced imaging techniques.

Radiologic skeletal survey

Despite advantages, which include decades of experience and validation with staging systems, low cost, and wide availability, WBXR is quite limited in its technical capacity to evaluate bony structures, fractures, and osteolytic foci. Lytic lesions are only apparent on conventional radiography when 30% to 50% of bone mineral density is already lost from cortical bone destruction (6–8). Patients with early myeloma who have very small lytic lesions may escape detection and delay treatment. Detection of focal lesions in the axial skeleton using conventional radiography is further confounded by overlying tissue and complex anatomy (Fig. 1). In the pelvis, bowel loops overlying bone may mimic lytic lesions where none exist. In addition, a diffuse pattern of cortical bone loss may not be detected by WBXR. Surgical intervention for bony disease in the spine, biopsy planning, identification of impending fracture, and investigation of suspected cord compression demands use of additional cross-sectional imaging such as CT or MRI. The consistent shortcomings of WBXR in the detection of lytic lesions can lead to pervasive understaging (9). In addition, the use of WBXR in patients with early myeloma may delay diagnosis, as bony lesions must be significant before they are detected.

In evaluating modern imaging techniques and comparing the sensitivity and specificity of these tests to that of WBXR as the current gold standard reference test, it is important to note that the lower lesion detection rate of WBXR as a reference test may suggest that newer techniques have less specificity when lesions are found (Table 1). For example, does detection of a 3- to 4-mm lytic lesion, which would not have been detected by WBXR, reflect multiple...
myeloma bone disease? In a statistical direct comparison, the low specificity of newer imaging techniques reflects their superior detection rates over that of WBXR, and ignores that the high number of lesions observed by newer techniques, although not biopsy proven, do likely reflect myeloma bone disease (10, 11).

Computed tomography

CT has promising characteristics that may lead to its replacement of conventional radiography as a screening test for lytic lesions in multiple myeloma (Table 2). According to a systematic review, CT has a 4% to 33% higher detection rate of lytic lesions compared with X-ray, although in some studies, there was inferior detection of lesions in the skull and ribs, whereas others suggested better detection in those regions (Table 3; ref. 10). In 1985, Schreiman and colleagues (12) published the first study demonstrating improved detection rates of CT over WBXR. Advances in CT technology, such as development of low radiation dose protocols, have made it a useful technique for use in patients with multiple myeloma. Horger and colleagues were the first group to use the advantage of the intrinsic high contrast of bone in whole-body low-dose computed tomography (WBLDCT) to explore protocols that lower the dose of radiation necessary to image the skeletal system while preserving sensitivity and image detail (13). Following their pioneering work, use of WBLDCT in multiple myeloma has become standard of care in many European institutions. Several useful attributes have contributed to the expanding use of WBLDCT, such as rapid acquisition time (75 seconds), superior image quality without need for i.v. contrast agents due to the intrinsic contrast of bone, comparable radiation exposure to WBXR, and utility in planning for image-guided biopsy and surgical interventions.

In a prospective head-to-head study at a single center in Germany, results of WBLDCT and WBXR in 29 patients were compared. The included patients (13 female, 16 male) had DS stage I–III multiple myeloma and were of average age of 57 years (44–73). The authors presented data comparing the number and size of lesions detected, diagnostic confidence, the number and nature of lesions seen on WBLDCT and missed on WBXR, extra osseous findings, radiation dose, and examination time. Lesions were counted, graded according to diagnostic confidence in whether or not they constituted osteolytic lesions, and categorized according to anatomic location in one of the five bony regions. The levels of confidence in 48 uncertain WBXR findings were raised by evaluation using WBLDCT (14). The most significant differences in lesion detection between the two methods by body region were in single lesions in the thoracic cage (5-fold increase), and in several lesions in the vertebral column (3.75-fold increase). Using WBLDCT, the detection of osteolytic lesions increased 7-fold in the spine. There were 97 lesions in 18 patients that were exclusively identified by WBLDCT and only 11 lesions noted with WBXR that were not seen on WBLDCT. In the limbs and the calvarium, more lesions were detected by WBXR. Lesions of the spine, pelvis, and thoracic skeleton were significantly more frequent (P < 0.001), and diagnostic confidence was increased by WBLDCT compared with WBXR (P ≤ 0.02). A greater number of uncertain findings in WBXR (n = 49) versus WBLDCT (n = 26) were found in the vertebral spine and pelvis (14), which correlate with known limitations of WBXR in imaging these anatomic regions. As a consequence of these findings, therapy was changed in 18.2% of patients in the study. A representative series of images of a patient whose vertebral and pelvic lesions detected by WBLDCT are in regions of the axial skeleton poorly imaged by WBXR are presented in Fig. 2.

In another study that compared WBXR with WBLDCT, 39 patients were followed over 18 months in a prospective randomized European single-center trial with two WBLDCT protocols and were compared with WB-MRI as the index imaging test. In this study, imaging findings obtained through the use of WBLDCT lead to restaging of 18 patients (16 upstaged, 2 down-staged). Overall reader impression of stage on WBLDCT significantly correlated with WB-MRI (k = 0.454, P < 0.05). WBLDCT detected 89.7% of myeloma lesions compared with 69.2% of lesions detected by the WBXR when correlated with WB-MRI as the index imaging test (15). In comparison with WBXR, WBLDCT

Table 1. Characteristics of advanced imaging studies in multiple myeloma

<table>
<thead>
<tr>
<th>Index test</th>
<th>Reference test</th>
<th>Sensitivity index test</th>
<th>Specificity index test</th>
<th>Detection rate</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>WBXR</td>
<td>0.947–1.00</td>
<td>0.467–0.500</td>
<td>1.10–1.33</td>
<td>(12, 15)</td>
</tr>
<tr>
<td>MRI</td>
<td>WBXR</td>
<td>0.916 (0.883–0.940)</td>
<td>0.412 (0.261–0.582)</td>
<td>1.12–1.80</td>
<td>(15, 40–48)</td>
</tr>
<tr>
<td>PET-CT</td>
<td>WBXR</td>
<td>0.667–1.00</td>
<td>0.286–0.500</td>
<td>1.27–1.45</td>
<td>(40)</td>
</tr>
<tr>
<td>PET</td>
<td>WBXR</td>
<td>0.953 (0.369–0.999)</td>
<td>0.217 (0.178–0.679)</td>
<td>1.16–1.50</td>
<td>(49)</td>
</tr>
<tr>
<td>PET</td>
<td>CT</td>
<td>0.824</td>
<td>1.00</td>
<td>1.00</td>
<td>(50)</td>
</tr>
<tr>
<td>MRI</td>
<td>CT</td>
<td>0.800–1.00</td>
<td>0.782–0.789</td>
<td>1.15–1.25</td>
<td>(9)</td>
</tr>
</tbody>
</table>

NOTE: Studies included above were not preselected on the basis of bone disease. Detection rate is a ratio of the number of patients/regions with lesions detected by the index test divided by the number of patients/regions with lesions detected by the reference test. Adapted from Regelink et al. (10) by permission of John Wiley & Sons.
Table 2. Included studies examining WBLDCT for detection of multiple myeloma bone disease

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study</th>
<th>Patients</th>
<th>N</th>
<th>Exam</th>
<th>Tube energy (kilo volt peak, kVp)</th>
<th>Current tube time product (milliamp-seconds, mAs)</th>
<th>WBLDCT radiation dose (mSv)</th>
<th>Reference</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleeson et al.</td>
<td>Prospective</td>
<td>Suspected multiple myeloma or known multiple myeloma</td>
<td>39</td>
<td>WBLDCT</td>
<td>140</td>
<td>14</td>
<td>3.3 (1.5–4.6)</td>
<td>WB-MRI, WBXR, bone marrow biopsy</td>
<td>WBLDCT correlates with WB-MRI, superior detection over WBXR</td>
</tr>
<tr>
<td>Horger et al.</td>
<td>Prospective</td>
<td>Proven multiple myeloma or MGUS</td>
<td>100</td>
<td>WBLDCT</td>
<td>120</td>
<td>40</td>
<td>4.1</td>
<td>None</td>
<td>Pioneering study determined optimal settings for WBLDCT that preserve image quality and reduce radiation exposure</td>
</tr>
<tr>
<td>Horger et al.</td>
<td>Prospective</td>
<td>Proven multiple myeloma</td>
<td>131</td>
<td>WBLDCT</td>
<td>120</td>
<td>70</td>
<td>Not calculated</td>
<td>None</td>
<td>Response to treatment can be monitored with WBLDCT</td>
</tr>
<tr>
<td>Horger et al. BJR</td>
<td>Prospective</td>
<td>Proven multiple myeloma</td>
<td>50</td>
<td>WBLDCT</td>
<td>120</td>
<td>70</td>
<td>7.5</td>
<td>None</td>
<td>WBLDCT shows bone marrow abnormalities that correlate with hematologic parameters</td>
</tr>
<tr>
<td>Ippolito et al.</td>
<td>Prospective</td>
<td>Proven multiple myeloma</td>
<td>138</td>
<td>WBLDCT</td>
<td>120</td>
<td>40</td>
<td>4.2</td>
<td>None</td>
<td>WBLDCT demonstrates high detection rates of bone lesions, extrasosseous findings</td>
</tr>
<tr>
<td>Kropil et al.</td>
<td>Prospective</td>
<td>Proven multiple myeloma</td>
<td>29</td>
<td>WBLDCT</td>
<td>100</td>
<td>75.9 (73.5–77.8)</td>
<td>4.8</td>
<td>WBXR</td>
<td>Compared detection rates by region, WBLDCT superior to WBXR</td>
</tr>
<tr>
<td>Princewill et al.</td>
<td>Retrospective</td>
<td>Proven multiple myeloma</td>
<td>51</td>
<td>WBLDCT</td>
<td>120</td>
<td>100</td>
<td>4.1 (2.2–4.9)</td>
<td>WBXR</td>
<td>Superior detection of lesions by WBLDCT in ultrasound-based referral center</td>
</tr>
<tr>
<td>Spiria et al.</td>
<td>Retrospective</td>
<td>confirmed MGUS</td>
<td>71</td>
<td>WBLDCT</td>
<td>120</td>
<td>70</td>
<td>7.2</td>
<td>WBXR</td>
<td>WBLDCT correlates with hematologic parameters during ongoing treatment</td>
</tr>
<tr>
<td>Wolf et al.</td>
<td>Prospective</td>
<td>multiple myeloma, MGUS, or solitary plasmacytoma</td>
<td>171</td>
<td>Not reported</td>
<td>Not reported</td>
<td>90</td>
<td>9.4–11.3</td>
<td>WBXR, WB-MRI</td>
<td>Found only 30% correlation between Durie/Salmon and Durie/ Salmon PLUS staging systems</td>
</tr>
</tbody>
</table>

Modern Imaging for Detection of Myeloma Bone Disease
more accurately assessed the extent of bone destruction (9, 15), and was found to correlate more significantly with WB-MRI in the staging workup.

Princewill and colleagues conducted a recent retrospective study to evaluate WBLDCT compared with WBXR during the initial staging or restaging of patients with multiple myeloma at a U.S.-based myeloma referral center (16). In their cohort, 61% of patients with normal WBXR warranted a higher disease stage based on abnormal WBLDCT. The total quantity of lesions detected with CT was 968 versus 248 for radiographs (P < 0.001). Nine patients (18%) had no detectable findings on either WBXR or WBLDCT, and the remaining 39 of 42 patients had more lesions on CT. On the basis of these findings, 31 cases (61%) could have resulted in higher stages at initial evaluation based on WBLDCT use rather than the WBXR (16).

In a prospective study of 117 patients of all stages of multiple myeloma, MGUS, or smoldering multiple myeloma, Wolf and colleagues compared WB-MRI and WB-CT with conventional radiography and found that both advanced imaging techniques had higher detection rates. WB-CT imaging demonstrated relevant additional findings in 33 of 52 (63%) patients (5). WB-MRI and WB-CT were each found to be superior to conventional radiography.

Magnetic resonance imaging

Overall survival improves as therapeutic options expand for patients with myeloma and MRI may allow for repeat imaging and follow-up without repeat exposure to radiation. MRI can provide distinct information compared with WBXR and CT, such as bone marrow infiltration and distinct patterns of marrow infiltrates that have been found to correlate with findings on bone marrow biopsy (17). A systematic review indicated that MRI has a superior focal lesion detection rate (as much as 82% higher) compared with WBXR (10). The higher detection rate of MRI may be due to the fact that lesions detected by MRI in bone may also reflect bone marrow infiltrates rather than frank osteolytic disease. A main advantage of MRI cited in the literature is the improved detection of diffuse bone marrow infiltration by myeloma cells (18). MRI allows for imaging of the bone cavity content and can detect changes in marrow density and identify marrow infiltration patterns before development of any bone destruction in patients with MGUS (19, 20). Diffuse involvement of the bone marrow by multiple myeloma is better detected by WB-MRI, leading to upstaging in cases where diffuse bone loss could be misinterpreted as senile osteoporosis by WBLDCT (9). However, MRI has lower sensitivity in detecting osteolytic bone disease, which in many cases is the criterion for which patients initiate treatment for multiple myeloma (21).

Detection of lesions in the skull, clavicles, and ribs is limited by respiratory movements and by small lesions missed by MRI slices (11, 21). WB-MRI sequences use multiplanar cuts that improve detection of small bony lesions over axial MRI. MRI also detects infiltrative lesions without destruction of cancellous bone, which overestimate the prevalence of bony disease in multiple myeloma. Intra-venous contrast agents are necessary for obtaining optimal MRI images but are contraindicated in patients with renal insufficiency due to the risk of nephrogenic systemic fibrosis. Routine use of contrast-enhanced MRI is often

| Table 3. Detection rate of osteolytic bone lesion number by body region (WBLDCT vs. WBXR) |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Kropil et al. (14) | Princewill et al. (16) |
| | WBLDCT (# detected) | WBXR (# detected) | Ratio of detection (WBLDCT/WBXR)# | P | WBLDCT (# detected) | WBXR (# detected) | Ratio of detection (WBLDCT/WBXR)# | P |
| Total skeleton | 247 | 120 | 2.06 | Not reported | 968 | 248 | 3.90 | <0.001 |
| Skull | 7 | 1 | 7.00 | Not reported | 94 | 86 | 1.09 | 0.02 |
| Spine | 69 | 15 | 4.60 | <0.001 | 241 | 49 | 4.92 | <0.001 |
| Thoracic cage (ribs and sternum) | 60 | 29 | 2.07 | <0.001 | 222 | 3 | 74.00 | <0.001 |
| Pelvis and flat bones | 61 | 24 | 2.54 | <0.001 | 240 | 36 | 6.67 | <0.001 |
| Long bones and extremities | 46 | 47 | 0.98 | Not reported | 171 | 74 | 2.31 | <0.001 |

NOTE: Two studies examining number of lytic lesions by body region as detected by WBLDCT and WBXR are compared above. Study protocols differed slightly in that Kropil et al. (14) protocol examined skull only from skull base.
precluded in a population with high incidence of renal insufficiency from cast nephropathy and hypercalcemia. In addition, prolonged acquisition time in patients with significant bony pain, high cost, presence of indwelling metal objects, and patient claustrophobia are known limitations of MRI. Although MRI is a useful imaging technique for multiple myeloma, a lack of suitable MRI scanners in some centers is a limitation to its widespread use (9).

PET and functional imaging

Several modern imaging techniques allow for quantification of disease activity. PET allows for imaging of metabolic activity through detection of radiolabeled tracers that provide information about disease activity and can be used to follow patients for response to therapy. PET has been shown to be sensitive in detecting multiple myeloma in areas not imaged by MRI. The most significant advantage in the use of PET/CT is through detection of active and inactive disease (22). PET results correlate with clinical and hematologic parameters in patients with multiple myeloma (23), and can predict survival (24). Limitations of PET imaging include poor specificity to small lytic lesions less than 0.5 cm in size and false-positive results. False-positive results in FDG-PET for detection of multiple myeloma may result from detection of metabolically active areas of inflammation or infection, brown fat, postsurgical changes, or other malignancies (25). During follow-up examinations, PET/CT imaging can distinguish persistent metabolically active lesions of clinical significance just after therapy (26), whereas lesions detected by MRI persist for a longer period of time (9–12 month lag) following therapy (11, 27). Novel radiotracers such as 11C-methionine and 18F-fluorodeoxyglucose have been used to image bone marrow metabolic activity and bone turnover but have not yet been brought forth for clinical use (28, 29). Hybrid techniques such as PET/MRI and PET/WBLDCT may add functional data but are also not yet in routine clinical practice. Comparison of FDG-avid lesions before and after induction therapy may predict survival in patients with multiple myeloma and suggests that serial functional disease assessments using FDG-PET/CT could alter therapy and affect survival (30).

Imaging for surveillance and prognostication

Prognosis in multiple myeloma has been determined according to the use of WBXR and the Durie/Salmon staging system for decades. There are a number of studies evaluating FDG-PET/CT and MRI as tools to assess response to ongoing therapy, and both have recently been incorporated into the updated Durie/Salmon PLUS staging system (3). An excellent correlation has been reported between the number and pattern of lesions detected by MRI and treatment outcomes and survival (3). WBXR and CT are morphologic imaging modalities that neither provide functional information about disease response in the face of ongoing treatment nor are they very sensitive to early changes in
bone marrow during treatment (3). Heterogeneous osteoporosis in a population at risk may be misinterpreted as osteolytic lesions representative of multiple myeloma (15). Conversely, WBLDCT may not detect diffuse marrow involvement with homogenous-appearing cortical bone destruction that could be mistaken for osteoporosis or osteopenia (31, 32).

In addition, data are sparse for the use of CT to prognosticate in multiple myeloma. A systematic review of 32 studies examining the role of modern imaging techniques compared with conventional imaging for patients with multiple myeloma noted multiple studies establishing the prognostic value of MRI and FDG-PET/CT (10). Use of MRI to document the number of lesions has prognostic significance in MGUS, smoldering myeloma, and multiple myeloma (11, 19, 33). PET/CT has the highest detection rates for extramedullary disease (EMD; ref. 34) compared with other imaging techniques, which is critical, since EMD has been found to confer a poor prognosis (24, 27, 35, 36). Only one study examined the prognostic value of lesions found on CT, and showed no correlation between the number of lesions and prognosis (30). These findings stand in contrast with studies using MRI and FDG-PET/CT, in which the number of lesions correlated with prognosis, which reflects the detection of active disease infiltration in the bone or bone marrow (37). Further studies are indicated to replicate these findings for CT.

For initial diagnosis of patients with multiple myeloma bone disease, use of an imaging test with a superior detection rate such as WBLDCT would find more lesions and
presumably upstage patients, but definitive studies have yet to be completed defining the prognostic value of WBLDCT. WBLDCT can reliably exclude bone disease to confirm MGUS and complement laboratory monitoring (38). It remains unproven whether clinical benefit could be obtained by treating patients earlier or more aggressively based on WBLDCT findings. Nevertheless, recent data showing that early treatment of smoldering multiple myeloma leads to improved overall survival suggest that a more sensitive imaging method might help to detect lytic lesions and provide earlier treatment and thus improve survival (39).

Conclusions and Future Perspectives

Although conventional radiography has been in use for decades in patients with multiple myeloma and remains in the guidelines for workup of multiple myeloma, there are significant limitations and drawbacks to its continued use that may be addressed by adoption of novel imaging technology in clinical practice. MRI and FDG-PET/CT have demonstrated clinical utility and prognostic value for patients with multiple myeloma, but widespread use is limited by several factors such as cost, availability, and logistics of use in patients who commonly have severe bone pain and renal insufficiency. As a modern imaging technique, WBLDCT offers superior image quality without need for contrast agents, 3D detail important for planning biopsies as well as orthopedic and radiotherapy interventions, ease of completion, and rapid acquisition time in patients who poorly tolerate lengthy imaging tests (Table 4).

Novel WBLDCT protocols offer these benefits at comparable levels of radiation exposure to conventional radiography. WBLDCT protocols can be implemented with existing CT technology, which would make it widely available as an alternative to conventional radiography in the initial workup and continued follow-up of patients with multiple myeloma undergoing therapy. MRI and PET imaging are useful adjunctive imaging techniques that provide information about disease activity, intramedullary disease, and EMD (Table 5).

Other important unanswered questions may arise with adoption of WBLDCT. Does a patient with MGUS and a small lytic lesion in the absence of other CRAB criteria need to initiate therapy? Will the 5-mm lytic lesion minimum size threshold suggested by experts to be included in the CRAB criteria be validated as having prognostic significance in prospective studies? Does earlier initiation of treatment based on WBLDCT findings afford patients better survival or prevent onset of skeletal-related events? Future studies are warranted to address these important questions as the experience with use of WBLDCT grows. As a whole, the data supporting the superior detection rate of WBLDCT, FDG-PET, and MRI over WBXR are convincing. Further studies are warranted to explore prognosis and survival with WBLDCT as an initial screening test for bone disease in multiple myeloma in place of WBXR.

Disclosure of Potential Conflicts of Interest

G.D. Roodman reports receiving a commercial research grant from Eli Lilly and is a consultant/advisory board member for Amgen. No potential conflicts of interest were disclosed by the other authors.

Acknowledgments

The authors thank David K. Leung of the Columbia University PET Center for assistance with images submitted in Figs. 1 and 2 and Dr. Josien Regelink for granting permission to adapt her data for Table 1.
References

5896 Clin Cancer Res; 20(23) December 1, 2014 Clinical Cancer Research

Whole-Body Low-Dose Computed Tomography and Advanced Imaging Techniques for Multiple Myeloma Bone Disease

Clin Cancer Res 2014;20:5888-5897. Published OnlineFirst October 7, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-1692

Cited articles
This article cites 52 articles, 10 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/20/23/5888.full#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/20/23/5888.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.