Combination of YM155, a Survivin Suppressant, with Bendamustine and Rituximab: A New Combination Therapy to Treat Relapsed/Refractory Diffuse Large B-cell Lymphoma

Naoki Kaneko, Keisuke Mitsuoka, Nobuaki Amino, Kentaro Yamanaka, Aya Kita, Masamichi Mori, Sosuke Miyoshi, and Sadao Kuromitsu

Abstract

Purpose: There remains an unmet therapeutic need for patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). The purpose of this study was to evaluate the therapeutic potential of sepantronium bromide (YM155), a survivin suppressant, in combination with either bendamustine or both bendamustine and rituximab using DLBCL models.

Experimental Design: Human DLBCL cell lines, DB, SU-DHL-8, and WSU-DLCL2, were treated with YM155 in combination with bendamustine. Cell viability, apoptosis induction, protein expression, and cell-cycle distribution were evaluated. Furthermore, antitumor activities of YM155, in combination with bendamustine or both bendamustine and rituximab, were evaluated in mice bearing human DLBCL xenografts.

Results: The combination of YM155 with bendamustine showed greater cell growth inhibition and sub-G1 population than either agent alone. YM155 inhibited bendamustine-induced activation of the ATM pathway and accumulation of survivin at G2–M phase, with greater DNA damage and apoptosis than either single agent alone. In a DLBCL DB murine xenograft model, YM155 enhanced the antitumor activity of bendamustine, resulting in complete tumor regression without affecting body weight. Furthermore, YM155 combined with bendamustine and rituximab, decreased FLT-PET signals in lymph nodes and prolonged overall survival of mice bearing disseminated SU-DHL-8, an activated B-cell–like (ABC)-DLBCL xenografts when compared with the combination of either rituximab and bendamustine or YM155 with rituximab.

Conclusions: These results support a clinical trial of the combination of YM155 with bendamustine and rituximab in relapsed/refractory DLBCL. *Clin Cancer Res; 20(7); 1814–22. ©2014 AACR.*

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). It accounts for approximately 30% to 40% of cases in adults (1). The anti-CD20 antibody rituximab (Rituxan) is commonly used to treat many types of CD20-positive NHL, including DLBCL (2), and combination therapy of rituximab with standard cytotoxic chemotherapy regimens, such as R-CHOP (rituximab plus cyclophosphamide, hydroxydoxorubicin, vincristine, and prednisone), is the current standard of care for B-cell NHL (3–5). However, approximately 30% of the patients either do not respond to or develop resistance to further treatment, and approximately half of relapsed patients are not eligible for high-dose chemotherapy, following autologous stem cell transplantation (6). Therefore, the development of effective and well-tolerated therapies for elderly, frail, relapsed, or refractory DLBCL patients represents an unmet clinical need.

Bendamustine, a bifunctional alkylating agent containing a nitrogen mustard moiety chemically linked to a purine analogue, is approved treating multiple hematologic tumors, including indolent and rituximab-resistant NHL (7). In large-scale screenings, such as the National Cancer Institute (Bethesda, MD) In Vitro Cell Line Screening Project and gene microarrays, bendamustine showed a unique mechanistic profile, which included activation of DNA damage stress responses and apoptosis, inhibition of mitotic checkpoints, and induction of mitotic catastrophe, when compared with most other conventional alkylators such as cyclophosphamide and melphalan (8). Furthermore,
bendamustine exhibited limited cross-resistance to other alkylating agents and showed prolonged effects toward DNA damage (9). In vitro, CD20-positive DLBCL and primary chronic lymphocytic leukemia cell lines showed a synergistic effect toward the combination use of bendamustine with rituximab (10). Furthermore, the combination of bendamustine with rituximab is reported to have superior efficacy and tolerability in indolent B-cell NHL patients as compared with R-CHOP (11) and showed clinical activity [overall response rate, 62.7%; complete response (CR), 37.3%, partial response (PR): 25.4%] in patients with relapsed/refractory DLBCL in a phase II study (12). As such, this combination was suggested as a second-line therapy for DLBCL according to the National Comprehensive Cancer Network guidelines (version 1, 2013; ref. 13). Together, the findings suggest that the combination of bendamustine with rituximab would be an effective therapy for relapsed/refractory DLBCL.

Survivin is a member of the inhibitor of apoptosis protein family and has been implicated in both cell survival and regulation of mitosis in cancer (14). Its overexpression has been associated with chemoresistance and a poor clinical outcome in patients with cancer, including DLBCL (15–17). As well, survivin inhibition has been demonstrated to sensitize tumors to cytotoxic drugs, including taxanes, etoposide, mitomycin C, and cisplatin in vitro and in vivo (18–20). Although cancer cells can acquire resistance to apoptosis through various mechanisms, it is suggested that tumor cells may acquire a cytoprotective phenotype by mitigating apoptosis induction through overexpression of survivin.

Sepantronium bromide (YM155) is a selective survivin suppressant, which demonstrates potent antitumor activities against a wide range of cancers in various mouse models of tumor xenografts, including NHL (21–23). The combination of YM155 with rituximab also showed greater antitumor activity, and resulted in longer survival than each single agent alone (24). In a phase I study, three of five patients with NHL, including one with DLBCL refractory to R-CHOP, showed an objective response to single-agent YM155 (25). A phase II trial confirmed the safety and tolerability of YM155 in patients with refractory DLBCL (26). In another phase II trial, the combination of YM155 with rituximab also showed clinical activity [interim data: overall response rate 9/16 (56.3%), with 2/16 (12.5%) CR, 7/16 (43.8%) PR, and 4/16 (25%) stable disease; ref. 27]. These findings suggested that YM155 was clinically active against DLBCL, when combined with rituximab.

Given the above, we hypothesized that a triple combination of YM155 with bendamustine and rituximab would show enhanced antitumor activity when compared with the combination of these two agents alone against DLBCL. Here, we examined the antitumor activity of YM155 in combination with bendamustine against DLBCL models both in vitro and in vivo. We also investigated the life-prolonging effect of YM155 in combination with bendamustine and rituximab in a disseminated DLBCL xenograft model.

Materials and Methods

Cell culture

The human DLBCL cell line DB was purchased from the American Type Culture Collection. The human DLBCL cell lines, WSU-DLCL2 and SU-DHL-8, were purchased from the German Resource Center for Biological Material (DSMZ). Cells were cultured at 37°C in a 5% CO2 atmosphere in RPMI-1640 medium supplemented with 10% heat-inactivated FBS (Sigma-Aldrich). All cell lines were authenticated by short tandem repeat profiling (Promega).

Reagents and antibodies

Sepantronium bromide (YM155) was synthesized at Astellas Pharma Inc., dissolved in dimethyl sulfoxide (DMSO), and diluted with culture medium. Rituximab and bendamustine were purchased from Genentech Inc. and Sigma-Aldrich, respectively, and dissolved in PBS. For in vitro studies, bendamustine hydrochloride (Levact), hereafter referred to as “bendamustine,” was purchased from Mundipharma. The doses of YM155 and bendamustine were expressed in terms of free base of each drug substance. All drugs were dissolved and diluted in saline just before administration. Anti-survivin antibody was purchased from R&D Systems Inc.; phosho-ATM (S1981), phosho-p53 (S15), phosho-chk2 (T68), phosho-histone H2AX (S139), and phosho-cdc2 (Y15) from Cell Signaling Technology Inc.; and β-actin from Sigma-Aldrich.

In vitro assay for cell viability

Cell viability was determined using a CellTiter-Fluor Cell Viability Assay (Promega). The fluorescence of each sample was measured using an Infinite 200 PRO (Tecan Group Ltd.). Assays were performed in triplicate, and mean values
were obtained on the basis of the results of three independent assays.

Western blot analysis
Protein was extracted using lysis buffer (RIPA Buffer, Thermo Fisher Scientific; 1 × Halt phosphatase inhibitor cocktail, Thermo Fisher Scientific; and protease inhibitor cocktail, Sigma-Aldrich). Protein concentrations of the lysates were determined using a BCA protein assay reagent kit (Thermo Fisher Scientific). Equal amounts of total protein were resolved by SDS-PAGE and transferred to a polyvinylidene fluoride membrane. After blocking at room temperature with Blocking One (Nacalai Tesque), each membrane was incubated overnight at 4°C with the primary antibodies. After washing with TBS-T, membranes were incubated with horseradish peroxidase-conjugated secondary antibody for 1 hour at room temperature. Proteins of interest were visualized by enhanced chemiluminescence using ECL-Prime (GE Healthcare).

Cell-cycle analysis
Cell-cycle distribution was determined using a Guava PCA microcytometer (Guava Technologies). Cells were fixed with ice-cold 70% ethanol and incubated at 4°C. Ethanol-fixed cells were washed with PBS and resuspended in Guava Cell Cycle Reagent (Guava Technologies). For data collection, 5,000 events were acquired per sample and analyzed using CytoSoft software (Guava Technologies). Mean values were obtained from three independent assays.

Subcutaneous xenograft model
All animal experimental procedures were approved by the Institutional Animal Care and Use Committee of Astellas Pharma Inc., and the Tsukuba Research Center of Astellas Pharma Inc., is accredited by Association for Assessment and Accreditation of Laboratory Animal Care International. Four-week-old male nude mice [CAnN.Cg-Foxn1nu/CrlCrlj (nu/nu)] were obtained from Charles River Japan. SU-DHL-8 cells were injected i.v. (1 × 106 cells/0.1 mL/mouse), and dissemination and tumor growth were allowed to proceed for 14 days. The mice were then divided into five comparable groups of 10 animals each based on body weight using SAS software (SAS Institute). YM155 (1 mg/kg continuous s.c. infusion for 7 days starting on day 0 and 19), rituximab (50 mg/kg i.v. on day 0, 2, 19, and 22), and bendamustine (25 mg/kg i.v. on day 0, 1, 19, and 20) were administered as double combination (YM155 plus rituximab) or triple combination (YM155 plus rituximab plus bendamustine), and the condition of animals was monitored daily. Mice were scored as dead if any of the following signs of suffering were observed: cachexia, weakening, and difficulty moving or eating. Mice scored as dead were euthanized while under diethyl ether anesthesia.

18F-3'-fluoro-3' deoxythymidine positron emission tomography imaging
18F-3'-fluoro-3' deoxythymidine (18F-FLT) was synthesized in-house from its precursors as described previously (24). The specific activity of 18F-FLT exceeded 45.1 MBq/nmol (1.22 Ci/µmol) at the end of synthesis. For imaging studies, we used 5 mice per group for each independent experiment. Treatment regimens were the same as described above. 18F-FLT uptake was evaluated using an Inveon docked PET/CT system (Siemens) on day 16 of treatment. Mice were fasted for over 18 hours before imaging. For imaging, 9.8–11.8 MBq aliquots of 18F-FLT were administered via tail vein injection to conscious animals that were subsequently maintained in cages for 1 hour to allow for 18F-FLT uptake into tumors. Mice were anesthetized with 2.0%–2.5% isoflurane/O2 gas and placed in a mouse imaging chamber (m2m Imaging Corp). A 5-minute emission scan was performed using the PET scanner followed by CT imaging (500 µA, 80 kV). Regions of interest (ROI) were drawn around the boundaries of tumors in lymph nodes on coronal slices, and the observed maximum pixel value was normalized to the injected dose and body weight to give the maximum standardized uptake value.

Analysis for synergy
The Bliss additivism model (28, 29) was used to classify the effect of combining two agents as additive, synergistic, or antagonistic. A theoretical curve was calculated for combined inhibition using the equation E bliss = E A + E B - E A × E B, where Ea and Eb are the fractional inhibitions obtained by drug A alone and drug B alone at specific concentrations. The combined effect of the two drugs was
judged as follows, $E_{A+B} > E_{\text{bliss}}$: synergistic, $E_{A+B} = E_{\text{bliss}}$: additive, and $E_{A+B} < E_{\text{bliss}}$: antagonistic.

Statistical analysis

Values were expressed as mean ± SEM. Tumor volume and body weight on day 21 were compared between each single compound group and the combination group by using the Student t test with SAS software (SAS Institute). For PET study, quantitative ROI analysis was conducted by applying the Student t test with GraphPad Prism (GraphPad Software). For survival analysis, Kaplan–Meier curves were generated, and differences were assessed using the log-rank test with GraphPad Prism. P values less than 0.05 were considered significant.

Results

Effect of YM155 in combination with bendamustine in DLBCL cell lines in vitro

We first evaluated the in vitro combined effect of YM155 with bendamustine in DLBCL cell lines. YM155 at 10 nmol/L combined with bendamustine (250 µmol/L for DB cells, 100 µmol/L for SU-DHL-8 cells, and 150 µmol/L for WSU-DLCL2 cells) were treated for 24 or 48 hours and assessed for cell viability and apoptosis induction, respectively. The combination of YM155 with bendamustine induced a greater decrease in cell viability than either agent alone. The percentages of cell growth inhibition, induced by YM155, bendamustine, combination of both agents, and bliss index were 14%, 54%, 86%, and 61% in DB cells; 39%, 39%, 82%, and 70% in SU-DHL-8 cells; and 46%, 54%, 93%, and 86% in WSU-DLCL2 cells, respectively (Fig. 1A). The combination induced a greater sub-G1 population, indicative of apoptosis, than either agent alone. The percentages of sub-G1 population induced by YM155, bendamustine, and combination of both were 5.9%, 6.5%, and 27% in DB cells; 19%, 32%, and 58% in SU-DHL-8 cells; and 46%, 30%, and 71% in WSU-DLCL2 cells, respectively (Fig. 1B).

Antitumor effect of YM155 combined with bendamustine in a DB xenograft model

The efficacy of YM155 in combination with bendamustine was examined in a DB human DLBCL xenograft model. YM155 treatment alone via continuous s.c. infusion at 1 mg/kg/d for 7 days inhibited tumor growth by 97% with complete regression in 1 out of 8 mice with DB xenografts. Bendamustine treatment alone, via single intravenous bolus injection at 50 mg/kg, induced tumor regression by 24%, with complete regression in 2 out of 8 mice (Fig. 2A). The

Figure 1. Effect of combined treatment with YM155 and bendamustine on cell proliferation and apoptosis induction in DLBCL cell lines. DB, SU-DHL-8, and WSU-DLCL2 cells were treated with YM155, in combination with bendamustine (BEN) at indicated concentrations. A, after treatment for 24 hours, cell viability was determined using a CellTiter-Fluor Cell Viability Assay. The fluorescent value of treated cells was normalized to that of DMSO control and is shown as % of vehicle control. Each point represents the mean ± SEM from three independent assays. The mean of bliss index (representing the theoretical expectation if the combined effects of YM155 with bendamustine was exactly additive) from three independent assay was also showed as dashed line. B, after treatment for 48 hours, cells were harvested and sub-G1 populations were determined by flow cytometry. Each bar represents the mean ± SEM of the sub-G1 population from three separate experiments.
combination of YM155 with bendamustine induced tumor regression by 99%. As well, the combination treatment led to complete regression in 6 out of 8 mice. No significant decrease in body weight was observed in the combination treatment group as compared with each single-treatment group (Fig. 2B).

Mechanisms of action for combination of YM155 with bendamustine

Bendamustine is reported to induce DNA damage, which activated the ataxia telangiectasia mutated Protein (ATM) pathway and G2–M arrest in multiple myeloma cells (30). To investigate the mechanisms of action for the combination of YM155 with bendamustine, we examined the status of the ATM pathway as well as changes in cell-cycle status. Treatment with bendamustine induced DNA damage indicated by phospho-histone H2AX (γ-H2AX), a marker of DNA double-strand breaks (DNA-DSB). In response to DNA damage, bendamustine induced phosphorylation of ATM and its substrates, including p53 and checkpoint kinase-2 (chkl2), which leads to phosphorylation of cdk2 in DB cells. Bendamustine also increased the G2–M phase population and accumulated survivin in DB cells (Fig. 3). The combined treatment of YM155/bendamustine decreased bendamustine-induced phosphorylation of ATM, p53, chkl2, and cdk2, and accumulated survivin, resulting in a greater amount of γ-H2AX and cleaved PARP and a larger sub-G1 population than can be achieved with either single agent alone (Fig. 3).

Life-prolonging effect of YM155 in combination with bendamustine and rituximab in a SU-DHL-8 disseminated xenograft model

The combination of bendamustine with rituximab is reported to be effective against relapsed/refractory DLBCL. To evaluate whether YM155 can enhance the efficacy of bendamustine in combination with rituximab, we examined the survival benefit of YM155 in combination with bendamustine and rituximab in a SU-DHL-8 disseminated xenograft model. 18F-FLT-PET images visualized lymph node infiltration (submandibular, axillary, and inguinal lymph nodes), which was found in 100% of nontreated mice on 30 days after cancer cell inoculation. All mice bearing lymphoma showed multiple infiltrated lymphatic regions, being ≥4. No bone marrow infiltration was detected (Supplementary Fig. S2A). In the triple combination group, PET signals in lymph nodes were decreased. Quantitative ROI analysis indicated that, in submandibular and inguinal lymph nodes of animals in the triple treatment group, the signals were significantly smaller than those found in the nontreatment group (Supplementary Fig. S2B). The administration of YM155 alone, bendamustine combined with rituximab, or YM155 combined with rituximab extended the median survival from 45.5 to 68, 57.5, and 78 days, respectively. Furthermore, the triple treatment combination, YM155/bendamustine/rituximab, significantly prolonged survival as compared with respective YM155 alone, bendamustine combined with rituximab, or YM155 combined with rituximab treatments (Fig. 4). The median survival in the triple combination treatment group was 86 days.

Discussion

Here, we examined the therapeutic potential of YM155 in combination with bendamustine or bendamustine/rituximab against DLBCL both in vitro and in vivo. The intrinsic survivin in tested DBCL cell lines is highly expressed (Supplementary Fig. S1). We found that the combination of YM155 with bendamustine decreased cell viability to a greater extent than either single agent alone. Bliss additivity analysis revealed that the combined effect...
was synergistic (Fig. 1A). The combination of YM155 with bendamustine induced greater apoptosis in DLBCL cell lines than either single agent alone (Fig. 1B). Similar results were obtained in multiple drug concentrations (data not shown). Furthermore, this combination induced greater antitumor activity, including complete regression, than either single agent in a DB DLBCL xenograft model without affecting body weight (Fig. 2). Together, the results suggest that YM155 combined with bendamustine is effective for treating of DLBCL.

Figure 3. Mechanisms of action for combination of YM155 with bendamustine in DB cells. DB cells were treated with YM155 at 10 nmol/L, bendamustine (BEN) at 250 μmol/L, or both compounds (YM155 + BEN). A, after treatment for 16 hours, whole-cell lysates were subjected to Western blotting using indicated antibodies. B, after treatment for 48 hours, cells were harvested, and cell-cycle distribution was determined via flow cytometry.

Figure 4. Life-prolonging effect of combined treatment with YM155, bendamustine, and rituximab (Y+B+R) in a SU-DHL-8 disseminated xenograft model. Animals (n = 10/group) were monitored daily for survival. Statistical differences were determined by using the log-rank test. **, P < 0.05 versus YM155-rituximab (Y+R) combination group; ###, P < 0.001 versus YM155 alone (Y) or bendamustine-rituximab (B+R) combination group; NT, no treatment.
Bendamustine is reported to have multiple modes of action. Primarily, bendamustine has been shown to form DNA cross-links, that induces DNA damage and results in activating the ATM pathway (8, 30). The ATM pathway is a central pathway to repair of DNA-DSBs in DNA, thereby influencing genome stability and cell survival. ATM is a major regulator of the DNA damage response by activation of chk2 and p53 and leads to induction of response genes involved in cell-cycle arrest, DNA repair, and/or apoptosis (31). Secondly, bendamustine also inhibits mitotic checkpoints and induces G2–M arrest (8, 30). The expression of survivin is regulated in a cell-cycle–dependent manner and peaks at mitosis (32). We showed that bendamustine induced DNA damage, activated the ATM pathway, and phosphorylated cdc2, resulting in G2–M arrest accompanied by accumulating survivin protein in DLBCL cells. In addition, the combined treatment of YM155 and bendamustine inhibited the bendamustine-induced activation of the ATM pathway and increased survivin expression, consequently promoting DNA damage and apoptosis than either single agent alone (Fig. 3A). Survivin is known to be radiation resistance factor in tumor cells (33). The expression of survivin was increased by ionizing radiation through chk2 activation in breast and colon cancer cells (34). Furthermore, survivin is reported to be linked to DNA-DSB repair by interaction with members of the DNA-DSB repair machinery (35). Survivin siRNA impaired irradiation-induced DNA-DSB repair, as demonstrated by an increase of γ-H2AX, and resulted in increased apoptosis (35, 36). YM155 is known to sensitize NSCLC cells to radiation and platinum agents both in vitro and in vivo, through the inhibition of DNA damage repair (37, 38). As well, we demonstrated that survivin suppression by YM155 enhances the antitumor activity of docetaxel through the inhibition of survivin accumulation at G2–M in NSCLC (39) and melanoma cells (40). Taken together, these results suggest that survivin suppression by YM155 enhances the antitumor activity of bendamustine through the inhibition of DNA damage repair responses as well as survivin-mediated cytoreduction at the G2–M phase.

In our previous studies, the combination of YM155 with rituximab exhibited a synergistic effect against B-cell NHL, including DLBCL (24), and STAT3 inhibition by rituximab contributed to the synergistic effect seen in WSU-DLCL2 and SU-DHL-4 DLBCL cell lines (41), which suggested the possibility that YM155 would enhance the antitumor effect of bendamustine when combined with rituximab through different mechanisms in DLBCL. In the present study, we examined the life-prolonging effect of YM155 in combination with bendamustine and rituximab in a SU-DHL-8 disseminated xenograft model. DLBCL commonly develops clinically as disseminated disease (42), and in this model, dissemination of tumors in lymph nodes was detected using 18F-FLT-PET (Supplementary Fig. S2A). Activated B-cell–like DLBCL has been reported to be more resistant to CHOP or R-CHOP than germinal center B-cell–like DLBCL (GCB-DLBCL; refs. 43, 44). In preliminary studies, we confirmed that R-CHOP did not show antitumor activity against SU-DHL-8, an ABC-DLBCL xenografts (45), but did show antitumor activity against DB, GCB-DLBCL xenografts (data not shown). These facts indicate that this model recapitulates many features found in refractory DLBCL patients. In this model, the triple combination treatment resulted in decreased 18F-FLT-PET signals in lymph nodes (Supplementary Fig. S2S) and in significantly longer overall survival than either YM155 alone, or the combination of bendamustine with rituximab, or the combination of YM155 with rituximab (Fig. 4). In addition, the concentration of YM155 used here (1 mg/kg/day) can be clinical achieved concentration (21, 46). The results suggest that the triple combination of YM155 with bendamustine and rituximab is expected to exert greater clinical benefits in patients with relapsed/refractory DLBCL than the sole combination of these two agents. In clinical settings, the combination of bendamustine with rituximab is a promising salvage regimen for patients with relapsed/refractory DLBCL after rituximab-containing chemotherapy. Despite its clinical benefits, the high-dose bendamustine treatment was often limited because of the development of hematologic toxicity, primarily lymphopenia, neutropenia, leukopenia, and thrombocytopenia (12). YM155 monotherapy demonstrated modest anticancer activity with no serious hematologic events in patients with refractory DLBCL (26). These data suggest that the combination of YM155 with bendamustine and rituximab may be beneficial. However, further clinical investigation will be required to verify the tolerability and therapeutic potential of this triple combination regimen against relapsed/refractory DLBCL.

In conclusion, here we have shown that YM155 enhances the antitumor activity of bendamustine against DLBCL models through inhibition of DNA damage responses as well as survivin-mediated cytoreduction at the G2–M phase. Furthermore, the triple combination of YM155 with bendamustine and rituximab showed superior survival benefit as compared with double treatments. These data prompt further clinical investigations of YM155 in combination with bendamustine and rituximab for the treatment of relapsed/refractory DLBCL.

Disclosure of Potential Conflicts of Interest

No conflicts of interest were disclosed.

Authors' Contributions

Conception and design: N. Kaneko, K. Mitsuoka, N. Amino, K. Yamanaka, M. Mori, S. Miyoshi, Su Kuromitsu

Development of methodology: K. Mitsuoka, A. Kita, S. Miyoshi

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): N. Kaneko, K. Mitsuoka, N. Amino

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): N. Kaneko, K. Mitsuoka, N. Amino, K. Yamanaka, M. Mori, S. Miyoshi

Writing, review, and/or revision of the manuscript: N. Kaneko, K. Mitsuoka, N. Amino, K. Yamanaka, A. Kita, M. Mori, S. Miyoshi, Su Kuromitsu

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): K. Mitsuoka, N. Amino, S. Miyoshi

Study supervision: K. Mitsuoka, K. Yamanaka, M. Mori, S. Miyoshi, Su Kuromitsu
The Efficacy of YM155/Bendamustine/Rituximab against DLBCL

Acknowledgments

The authors thank Y. Sawabe (KAC Co., Ltd.) for help with the survival study, T. Kimura (Axellas Research Technology, Inc.) and J. Mintzawa (KAC Co., Ltd.) for help with PEI imaging studies, and Dr. J. Gniesser (University of Washington, Seattle, WA) for critical reading of the manuscript.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked

References

