














Figure 4. Combination of sorafenib with CI-
1040 or CCI-779 induces synergistic pro-
apoptotic effects and overcomes sorafenib
resistance. A, the sorafenib-resistant and
parental cells were treated with combinations
of sorafenib with CI-1040 and/or CCI-779 at
indicated ratios for 48 hours.DMSOserved asa
control. Apoptosis induction was determined
as described in Fig. 1B. �, P < 0.05; ��, P < 0.01;
���, P < 0.001; NS, no significance. B,
isobologram and CI analyses were performed
using CalcuSyn software (Biosoft). C, the
modulation of correlative proteins was
determined using immunoblot analysis after
24 hours of single-agent/combination
treatments. Bim-EL, extra-long; L, long; and S,
short.
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even in thepresence of FLT3 ligand at high levels (i.e., 50ng/
mL; Fig. 6B).
We further tested the effects of combining sorafenib with

theMEK inhibitorCI-1040and/or themTOR inhibitorCCI-
779. The results showed that cotargeting FLT3-ITD/MEK
with sorafenib/CI-1040 had a significant synergistic proa-
poptotic effect in the Ba/F3-ITD and Ba/F3-ITDþ842–resis-
tant cells despite presence of FLT3 ligand. In turn, cotarget-
ing FLT3-ITD/mTOR with sorafenib/CCI-779 showed only
limited apoptosis induction in the cells in the presence of
FLT3 ligand at 25 ng/mL concentration (Fig. 6C). Immu-
noblot analysis showed that high phosphorylation levels of
FLT3, ERK, and Stat5, but not AKT, could be retained in the
presence of FL; in turn, the combination of sorafenib with
crenolanib, CI-1040 or CI-1040/CCI-779 profound sup-
pressed phospho-FLT3, its downstream proteins, and
induced caspase-3 cleavage after a 6-hour treatment (Fig.
6D). Our findings suggest that these combinations, using

the type I/type II inhibitors or cotargeting FLT3 and MEK
signaling, could effectively overcome FLT3 ligand–mediat-
ed resistance.

Discussion
The efficacyofAML therapywithFLT3 inhibitors is limited

by the development of resistance even with next-generation
FLT3 inhibitors AC220 (11, 12, 37). Many point mutations
located at either TKD1 (such as N676, F691, and G697) or
TKD2 (such asD835 andY842 in activation loop)have been
reported after treatment with various FLT3 inhibitors
(excluding sorafenib) in vitro and in vivo and were related
to leukemic cell resistance (13, 20, 22, 32). Conversely, no
point mutations were detected in 2 patients with AML who
reportedly relapsed after an initial response to sorafenib
therapy (24), and one study reported that D835Ymutations
were detected in 4 of 7 patients with AML with FLT3-ITD
mutations after sorafenib treatment (38). Although the
mutation sites identified in this study differ from D835Y,
they all are located in the FLT3 TKDand severalmutations of
this type have been observed in patients relapsed during
treatment with other FLT3 inhibitors. This would imply
instability of these TKDs that are invariably under "selective
pressure" by FLT3 inhibition in leukemic cells. Alternatively,
these point mutations are too rare to be detected before
therapy, and after suppressing the FLT3-ITD allele by FLT3
inhibition, the resistant alleles could conceivably become
dominant in the surviving AML clones.

Our engineered cell lines harboring point mutations of
TKDs demonstrated varying degrees of resistance to sora-
fenib, suggesting that mutations of the TKDs are critical for
sorafenib resistance. Furthermore, AML cells with TKD2
mutations (i.e., Y842C) showed more resistance to sorafe-
nib compared with those with TKD1 mutations. Cells
harboring compound TKD mutations demonstrated even
greater resistance to sorafenib implying that conformation-
al changes in the TKD2 might alter sorafenib’s binding
affinity more than those associated with TKD1, and that
mutations of both TKDs might result in further anomalous
conformational changes and increased resistance.

Sorafenib-resistant patients with acquired AML point
mutations also had a longer length of ITD mutations than
those without point mutations (Supplementary Table S1),
suggesting instability of the ITD-mutated gene may be
associated with the length of ITD mutations. Schnittger’s
group reported that the patients with longer FLT3-ITD
mutations had a markedly shorter event-free survival (7.4
vs. 12.6 months; ref. 39). This would suggest the possibility
that the patients with longer ITD mutations might easily
acquire additional pointmutations and become resistant to
therapy. Because this investigation examined relatively few
patient samples, further studies are required to validate this
hypothesis.

It was highly likely that sorafenib-resistant cells may
display resistance to other type II TKIs. Indeed, our results
demonstrate that sorafenib-resistant cells have very similar
resistance patterns compared with other type II inhibitors
such as C220 andMLN518. However, they retain sensitivity

Figure 5. Combination of crenolanib with sorafenib demonstrates
synergistic/additive proapoptotic effects in primary human AML cells
with FLT3 ITDmutations in vitro. A, primary AMLmononuclear cells were
exposed to the indicated agents for 48 hours and apoptosis induction
was determined as described in Fig. 1B after gating on CD34 or CD33
positive populations. B, relevant proteins were analyzed by immunoblot
analysis after treating the primary AML cells with indicated agents for
16 hours. The ratios of semiquantitative analyses indicated the
expression levels of phosphorylated proteins to their respective total
proteins or housekeeping protein GAPDH.
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to type I inhibitors such as PKC412 and crenolanib. Fur-
thermore, a combination of 2 type I inhibitors (i.e., creno-
lanib and PKC412), but not of 2 type II inhibitors (i.e.,
sorafenib and MLN518) showed impressive synergistic
proapoptotic effects in sorafenib-resistant cells Ba/F3-
ITDþ676/842. Because our in vitro screening for resistant
mutations was performed in cells exposed to the type II
inhibitor sorafenib, it is reasonable to assume that the
mutation-mediated conformational change in FLT3 might
impair the accessibility of other type II inhibitors, but retains
binding ability with type I inhibitors. Albers and his collea-
gues also reported an patient with AML with acquired point
mutationat F691Lwhodeveloped resistance to type II kinase
inhibitor AC220, but retained sensitivity to type I inhibitor
PKC412 (32). This result supports our findings, that is, the
cells resistant to type II kinase inhibitormay remain sensitive
to type I kinase inhibitors. However, Weisberg and collea-
gues reported that thepointmutationsofD835Y (orN676K)
which developed after therapywith type I inhibitor PKC412,
retained sensitivity tohighly selective secondgeneration type
II inhibitor NVP-AST487 (40), although these mutant cells
exhibited resistance to less-specific type II inhibitor sorafenib
(41). Altogether, these findings strongly suggest that resis-
tance developed by one type kinase inhibitor could be
overcome by another type of kinase inhibitor.

The combination of the type I inhibitor crenolanib
with a type II inhibitor (i.e., either sorafenib or MLN518)
triggered a profound proapoptotic effect in the sorafenib-
resistant cell line Ba/F3-ITDþ676/842, and showed syn-
ergistic/additive proapoptotic effects in relapsed AML
patient samples with FLT3-ITD and/or D835 mutations,
although some of these patients showed relapsed or refrac-
tory to other single TKI therapy (such as PKC412or AC220).
Mechanistically, this seemingly occurred by the suppression
of phosphorylation levels of FLT3 and its downstream
signaling intermediates. During the revision of this manu-
script, Zimmerman and her colleagues also reported a
synergistic antileukemia effect by combining type I inhib-
itor crenolanib with type II inhibitor sorafenib in their
murine leukemia model, which was engrafted with FLT3-
ITD–mutated cells MV4–11 (42). Taken together, these
findings suggest that combination of type I and type II
tyrosine kinase may provide a promising strategy for target-
ing relapsed/refractory patient with AML and also be ben-
eficial for preventing resistance of FLT3-targeted therapy by
reducing doses and enhancing therapeutic efficacy.

Our data also demonstrate that the suppression of FLT3
activation was not sufficient for inducing apoptosis of leu-
kemia cells, at least in our sorafenib-resistant cells Ba/F3-
ITDþ842 and Ba/F3-ITDþ676/842, which demonstrated a

Figure6. ThepresenceofFLT3 ligandprotectsFLT3 inhibitors–inducedcell
apoptosis, which can be overcome by combinatorial treatment of
crenolanib and sorafenib in submicromolar concentrations. Ba/F3-ITD
cells were treated with indicated concentrations of crenolanib or/and
sorafenib in thepresence/absenceof (A) 25ng/mLor (B) 50ng/mLFL for 48
hours and apoptosis induction was measured as described in Fig 1B. C,
Ba/F3-ITD and Ba/F3-ITDþ842 cells were treated with combinations of
sorafenib with CI-1040 and/or CCI-779 in the presence/absence of FL (25
ng/mL) for 48 hours. DMSO served as a negative control. Apoptosis

induction was determined by flow cytometry after staining with annexin V.
�, P < 0.05; ��, P < 0.01. D, Ba/F3-ITD cells were pretreated with FL (50 ng/
mL) for 30minutes and treatedwith combinationof sorafenib (0.01mmol/L)
and crenolanib (0.1 mmol/L), CI-1040 (2.5 mmol/L), or CCI-779 (5 mmol/L),
respectively, for additional 6 hours. DMSO served as a control. The cells
were lysed and phosphorylation levels of FLT3 and its downstream
proteins were determined using immunoblot analysis. FL, FLT3-ligand;
Sora, sorafenib; creno, crenolanib; CI, CI-1040; and CCI, CCI-779.
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FLT3-independent high activation of ERK and/or AKT (Fig.
1C). This would suggest that these downstream proteins
themselves could also be modulated by other signaling
pathways and play a pivotal role in maintaining the leuke-
mia cell survival. In fact, aberrant activation of ERK or AKT
could be frequently observed in co-culture with bone mar-
row stromal cells (43) or in hypoxia environment in our
resistant cells (Supplementary Fig. S8). Therefore, a strategy
for cotargeting FLT3 andMEK/ERK or AKT/mTOR signaling
pathways simultaneously could enhance antileukemic
effects. However, the combination of sorafenib with MEK
inhibitor CI-1040 showed more impressive antileukemic
effect than that of sorafenib withmTOR antagonist CCI-779
in all tested sorafenib-resistant cells, even in the presence of
high concentrations of FLT3 ligand, suggesting that concom-
itant inhibition of FLT3 and ERK activation might be a
potent strategy for overcoming FLT3-inhibition resistance.
In summary, our findings provide an improved under-

standing of the development of resistance of FLT3-ITD–
mutated AML cells. They also extend our knowledge of the
role of acquired pointmutations in TKDs that are associated
with resistance to FLT3 inhibition. The use of combinatorial
strategies in this scenario produced effective antileukemia
effects in most types of sorafenib-resistant cells, which may
benefit the design of future clinical trials for the therapy of
AML.
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