Preexisting MEK1^{P124} Mutations Diminish Response to BRAF Inhibitors in Metastatic Melanoma Patients

Matteo S. Carlino^{1,2,3,4}, Carina Fung^{1,4}, Hamideh Shahheydari⁴, Jason R. Todd¹, Suzanah C. Boyd⁴, Mal Irvine⁴, Adnan M. Nagrial², Richard A. Scolyer^{3,6,7}, Richard F. Kefford^{1,4,6}, Georgina V. Long^{3,6}, and Helen Rizos^{1,4,6}

Abstract

Background: MEK1 mutations in melanoma can confer resistance to BRAF inhibitors, although preexisting MEK1^{P124} mutations do not preclude clinical responses. We sought to determine whether recurrent, preexisting MEK1^{P124} mutations affected clinical outcome in BRAF inhibitor–treated patients with melanoma.

Methods: Data from four published datasets were analyzed to determine whether preexisting MEK1^{P124} mutations affect radiologic response or progression-free survival (PFS) in patients with BRAF^{V600}-mutant metastatic melanoma treated with vemurafenib or dabrafenib. The effects of MEK1^{P124} mutations on MAPK pathway activity and response to BRAF inhibition were also investigated in a series of cell models.

Results: In a pooled analysis of 123 patients, the presence of a pretreatment MEK1^{P124} mutation (N = 12, 10%) was associated with a poorer RECIST response (33% vs. 72% in MEK1^{P124}Q/S vs. MEK1^{P124} wild-type, P = 0.018), and a shorter PFS (median 3.1 vs. 4.8 months, P = 0.004). Furthermore, MEK1^{P124Q/S} mutations were shown to have independent kinase activity and introduction of these mutations into a BRAF-mutant melanoma cell line diminished inhibition of ERK phosphorylation by dabrafenib and enhanced clonogenic survival in the presence of dabrafenib compared with cells ectopically expressing wild-type MEK1. Consistent with these data, two BRAF-mutant cell lines with endogenous MEK1^{P124} mutations showed intermediate sensitivity to dabrafenib, but were highly sensitive to downstream inhibition of MEK or ERK.

Conclusion: Taken together, our data indicate that preexisting MEK1^{P124} mutations are associated with a reduced response to BRAF inhibitor therapy and identify a subset of patients with BRAF-mutant melanoma likely to benefit from combination therapies involving MEK or ERK inhibitors. *Clin Cancer Res; 21(1): 98–105. ©2014 AACR.*

Introduction

In patients with BRAF^{V600}-mutant metastatic melanoma, the type I BRAF inhibitors vemurafenib and dabrafenib elicit response rates of 40% to 50% and improve overall survival, when compared with standard chemotherapy (1–4). Despite this activity, 50% of patients treated with BRAF inhibitors develop disease progression within 7 months (1, 3).

Mechanisms of acquired resistance to BRAF inhibitor therapy have been described, and these predominantly reactivate MAPK signaling. Key mechanisms include elevated expression of the kinases CRAF, COT1, or mutant BRAF (5–7), aberrant splicing of BRAF (8), activating mutations in N-RAS (9) and RAC1 (10), loss of NF1 (11), persistent activation of receptor tyrosine kinases (RTK; refs. 9, 12, 13), and amplification of the downstream effector MITF (14). Activation of the PI3K pathway has also been implicated in BRAF inhibitor resistance and acquired mutations activating the AKT (15) and PIK3CA (14) kinases have been detected in BRAF inhibitor–resistant melanomas. Additional somatic variants of unknown significance (PIK3CG, PHLP1, PIK3R1, and HOXD8) have also been identified in progressing melanomas (14, 16).

Genetic alterations identified in pretherapy BRAF^{V600}-mutant tumors can also modulate initial responses to BRAF inhibitors. For instance, loss of the PTEN, deletions encompassing the p16^{INK4a} cyclin-dependent kinase inhibitor gene (CDKN2A) and cyclin D1 gene amplification are each associated with shorter progression-free survival (PFS) in patients with BRAF^{V600}-mutant melanoma treated with BRAF inhibitors (17). These genetic markers do not necessarily confer intrinsic resistance but appear to function as predictive markers of duration of response. Consequently, PTEN-deficient and p16^{INK4}-null BRAF^{V600}-mutant melanoma cells can remain exclusively sensitive to BRAF inhibition (18) and PTEN-null, BRAF^{V600}-mutant tumors can show dramatic responses to BRAF inhibitors (19).
In this report, we explored the potential role of recurrent mutations affecting the MEK1 gene (MAP2K1) for predicting clinical responses. Mutations affecting MEK1 and MEK2 can promote resistance to BRAF and MEK inhibitors (14, 20–22), but preexisting MEK1 mutations, which occur in 5% of melanomas (23), do not preclude objective responses to BRAF inhibition in patients with BRAFV600-mutant melanoma (19, 24). This is despite the fact that MEK1 alterations affecting Proline at codon 124, are recurrent melanoma-associated mutations, have been identified in melanomas progressing on the MEK inhibitor AZD6244 (20), and were selected in a random mutagenesis screen for resistance to AZD6244 (20). MEK1P124 mutations display weakly elevated kinase activity in some studies (20, 24, 25) and have been described in patients with cardiofaciocutaneous syndrome, a genetic disorder caused by germline mutations in MAPK (26). We analyzed the clinical impact of MEK1P124 mutations on responses to BRAF inhibition in patients with BRAFV600-mutant melanoma. We identified that pretherapy MEK1P124 mutations are associated with poorer RECIST response and shorter PFS in patients with BRAFV600-mutant melanomas (23), do not preclude objective responses to BRAF inhibition in patients with BRAFV600-mutant melanoma (19, 24). Our analysis included 123 patients with available clinical response, PFS and MEK1 mutation data (Table 1). The best objective response and PFS were determined using RECIST for patients in cohorts 1, 3, and 4 and those on clinical trials from cohort 2. For patients in cohort 2, not on a clinical trial or patients without measurable disease at treatment commencement (n = 4), the treating physician determined disease progression and categorized the best objective response as “response” (≥30% reduction in tumor burden) or “no response” (<30% reduction; ref. 22).

Statistical analysis

Fisher exact tests were used to compare categorical variables. PFS was calculated from the date of initiation of BRAF inhibitor therapy until progression of disease or last clinical follow-up. Univariate Kaplan–Meier analysis of MEK mutation status compared median survival between groups using the log-rank test. Experimental data are presented as the mean ± SE from at least two independent experiments. Paired t tests were used to compare mean values. A two-tailed P value of <0.05 was considered statistically significant. Statistical analysis was performed using Stata version 13.1 (Stata Corp.) or Prism 6 (GraphPad Software Inc.).

Cell culture and cell screening

SKMEL28 and D28 melanoma cells were obtained from Professors P. Hersey (Kolling Institute of Medical Research, University of Sydney, New South Wales, Australia) and N. Hayward (Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia). The patient from which the short-term culture SMU030P was established, consented to tumor biopsies and the creation of a short-term cultures as previously described (28). Cells were grown in DMEM with 10% FBS and glutamine (Gibco BRL) and cultured in a 37°C
incubator with 5% CO₂. Clonogenic and pharmacologic growth inhibition assays were performed as previously described (22, 29). HEK293T cells were transfected using Lipofectamine 2000 (Life Technologies) according to the manufacturer's instructions. Media were changed 7 hours after transfection to DMEM/10% FBS or serum-free DMEM media. Cells were collected after an additional 24 or 48 hours in culture. Stocks of dabrafenib, trametinib, and VX-11e (supplied by Active Biochem) were made in DMSO. Cell authentication of SKMel28 and SMU030P cells was confirmed using the StemElite ID system from Promega, and the MEK1 mutation profile of the D28 cells was verified by sequencing the complete open reading frame of the MAP2K1 cDNA. Lentiviruses were produced in HEK293T cells as described previously (30). Cells were infected using a multiplicity of infection of 10 to provide an efficiency of infection above 90%. A reverse transcription resistance screen was used to examine the expression of BRAF splice variants, the complete coding sequence of MEK1, MEK2, N-RAS, Pten, and p16INK4a and the 5’half of AKT1 cDNA as previously described (22).

Amplification and sequencing primers for Pten and p16INK4a were PTEN_F 5′-CATTTCCATCCTGCAGAAGA-3′, PTEN_R 5′-CTGA-CACAATGTCTATTG-3′, p16INK4a_F 5′-TGGCTGGTCACCAGAGGCT-3′, and p16INK4a_R 5′-AAAACCTACGAAAGCCGG-3′.

Western blotting
Total cellular proteins were extracted at 4°C using the RIPA lysis buffer containing protease inhibitors (Roche) and phosphatase inhibitors (Roche). Total proteins (30–40 μg) were resolved on a 10% to 12% SDS-PAGE and transferred to Immobilon-P membranes (Millipore). Western blots were probed with the following antibodies: total ERK (137F5; Cell Signaling), p-ERK

![Figure 1](https://example.com/figure1.png)

Figure 1.
A, recurrent MEK1 mutations in human cancer. Schematic diagram of domains and common (identified in at least five tumors) cancer-associated MEK1 mutations. B, the crystallographic model of MEK1 with mapped common mutations (PDB code: 3EQC).
Results
Positive selection of MEK1 Pro124 mutations during melanoma progression

The MAP2K1 gene displays a significant mutation burden in melanoma, with a ratio of nonsynonymous to synonymous mutations of 6.2 (23). Alterations affecting Proline at codon 124 (P124L, P124Q, and P124S) are the most frequent MEK1 mutations (Fig. 1A) with a prevalence of 3.6% in melanomas unexposed to MAPK inhibitors (24/652 melanomas; COSMIC; ref. 31), suggestive of positive selection during melanoma progression. These alterations are caused by C>T (P124S and P124L) or C>A (P124Q) mutations at dipyrimidine sites and are typical of UV-induced mutations (32). In the crystal structure of wild-type MEK1, P124 is located in the interface between the negative regulatory helix A (residues 43–61) and the MEK1 kinase domain (Fig. 1B; ref. 33), and the functional consequences of these mutations are classified as deleterious by the missense substitution algorithms SIFT and Polyphen-2 (Supplementary Table S1).

Preexisting MEK1P124 mutations are associated with a reduced clinical response in patients treated with BRAF inhibitors

We assessed the impact of preexisting MEK1P124 alterations on clinical response of BRAFV600E/mutant metastatic melanoma to BRAF inhibitor therapy. Pretreatment MEK1P124 mutations were found in 12 of 123 (10%) tumor biopsies in four published cohorts (Table 1). Four tumors carried non-P124 MEK1 mutations (Table 1). The presence of a preexisting MEK1P124L/Q/S mutation was associated with fewer RECIST responses (complete response + partial response) and a shorter PFS compared with patients who had MEK1P124L/Q/S–wild-type tumors (response rate 33% vs. 72%, $P = 0.018$; median PFS 3.1 vs. 4.8 months, HR, 2.46 [95% confidence interval (CI), 1.32–4.56; $P = 0.004$, Fig. 2]. Both comparisons for response and PFS remained significant when patients with non-P124 MEK1 tumor mutations ($N = 4$) were excluded (i.e., P124-mutant compared with no detected MEK1 mutation; data not shown).

MEK1P124 status does not correlate with age, gender, M stage, or BRAF mutation genotype

Given the association between MEK1P124 mutations and clinical outcome, we also examined whether MEK1P124 mutation status correlated with additional clinical and genetic variables. On the basis of available data, we were able to examine patient age, gender, BRAF mutation status, and M stage at therapy initiation. As shown in Supplementary Table S2, MEK1P124 mutation status did not correlate with patient age or M stage at commencement of therapy (Supplementary Table S2), and although there was a trend toward an association between MEK1P124 mutations and gender and BRAFV600K/R genotype, these did not reach statistical significance ($P = 0.07$ and $P = 0.09$, respectively; Supplementary Table S2). Importantly age, gender, and BRAF mutation genotype did not correlate with radiologic response or PFS (Supplementary Tables S3 and S4). In this combined cohort, there was a trend toward a longer PFS in those with M1a disease (Supplementary Table S4).

MEK1P124Q and MEK1P124S mutations display RAF-independent kinase activity and modulate dabrafenib sensitivity

To examine the kinase activity of P124 MEK1 mutations, the MEK1P124Q and MEK1P124S mutants were introduced into the BRAF-wild-type HEK293T cells, which show minimal phosphorylation of the MEK1 targets ERK1/2 (Supplementary Fig. S1). The MEK1P124Q and, to a lesser degree, MEK1P124S consistently increased ERK1/2 phosphorylation. The diminished level of MEK1P124Q-mediated ERK phosphorylation at 48 hours (1.2-fold pERK/ERK increase compared with wild-type MEK1, Supplementary Fig. S1) appears to reflect the reduced accumulation of this mutant protein. In comparison, the K57E mutation, which disrupts the negative regulatory region of MEK1 (Fig. 1B; ref. 33) induced strong and persistent ERK1/2 activation (Supplementary Fig. S1). The MEK1 mutants also retained ERK kinase activity in the absence of serum, confirming RAF-independent kinase activity (Supplementary Fig. S1).

We also introduced these MEK1 variants into the BRAFV600E-mutant SKMel28 melanoma cells, which are wild-type for MEK1 and MEK2 (Supplementary Table S5). As expected, dabrafenib induced a dose-dependent decrease in ERK activation in this cell model, and this inhibitory effect was overcome upon low-level expression of the MEK1K57E variant (Fig. 3A). Significant levels of phosphorylated ERK were also retained in the presence of 10 nmol/L dabrafenib when cells expressed the MEK1P124Q or MEK1P124S variants. Importantly, ERK activation was inhibited when cells expressing wild-type MEK1, MEK1P124Q, or MEK1P124S but not MEK1K57E, were exposed to 100 nmol/L of dabrafenib (Fig. 3A). Consistent with these data, SKMel28 cells expressing MEK1K57E were resistant to dabrafenib in clonogenic assays using 10 and 50 nmol/L dabrafenib, whereas cells expressing MEK1P124Q or MEK1P124S showed intermediate resistance (Fig.
To examine the effects of activated MEK1 on alternate signaling pathways, we examined the influence of MEK1^{P124S} and MEK1^{P124Q} on PI3K/AKT signaling and on the accumulation of key molecules involved in BRAF inhibitor resistance. As shown in Supplementary Fig. S3, MEK1 mutants caused a slight increase in the phosphorylation of AKT^{T308}, but not at AKT^{S473}, and this did not result in phosphorylation and activation of the AKT downstream targets rpS6, p70S6K, GSK-3β, or PRAS40. Furthermore, the MEK1 mutants did not alter the accumulation of bcl-2 (Supplementary Fig. S3) and phosphorylation of the proapoptotic protein BAD was not detected (data not shown). Similarly, we did not observe any changes in the expression of PTEN, p16^{INK4a}, or in the accumulation of the RTKs IGF1R, PDGFRβ, or EGFR (Supplementary Fig. S3). As expected in the setting of a BRAF-mutant cell model, MAPK signaling, as determined by the phosphorylation of ERK and p90RSK, was also indistinguishable in the MEK1-transduced BRAF-mutant cells (Supplementary Fig. S3).

We also examined two BRAF-mutant melanoma cell lines with endogenous MEK1^{P124Q} (SMU030P) and MEK1^{P124L} (D28; ref. 34) mutations. The SMU030P cell line was derived, before treatment, from a 27-year-old man with V600K-mutant disease who was treated with combination dabrafenib and trametinib (29). This patient had a best RECIST response of stable disease, with a decrease in the size of his target lesions of 14%. His PFS was 3.1 months, well below the median reported for combined dabrafenib and trametinib (35). Both the pretreatment cell line (SMU030P) and the cell line generated on progression (SMU030R) carried the MEK1^{P124Q} mutation (Supplementary Fig. S4). Intriguingly, when compared with a small panel of BRAF^{V600E}/MEK1 wild-type melanoma cell lines, the SMU030P and D28 cell lines showed intermediate sensitivity to dabrafenib, but were exquisitely sensitive to the downstream MEK and ERK inhibitors, trametinib and VX-11e (Fig. 4A). Importantly,
these cell lines were screened for established mechanisms of resistance, and all were wild-type for N-RAS, MEK2, and AKT, did not overexpress the EGFR, IGF1R, or PDGFRβ RTKs, did not display alternate BRAF splicing and showed variable CRAF expression and PTEN and p16INK4a status that did not correlate with MAPK inhibitor sensitivity (Supplementary Fig. S5 and Supplementary Table S3). These data suggest that SMU030P and D28 were dependent on MAPK activity but that MAPK pathway activity was not solely driven by mutant BRAF. Accordingly, exposure of SMU030P and D28 to trametinib or VX-11e produced substantially diminished levels of the ERK transcription target DUSP6 and diminished phosphorylation of the ERK target p90RSK, whereas in contrast, dabrafenib caused only mild reduction in DUSP6 levels, and minor changes in p-p90RSK accumulation (Fig. 4B). In comparison, the BRAFV600E/MEK1 wild-type SKMel28 control cells showed a consistent reduction in MAPK activation markers in response to dabrafenib and trametinib or VX-11e (Fig. 4B).

Discussion

Treatment with BRAF inhibitors alone or in combination with MEK inhibitors has variable activity in BRAF-mutant melanoma, and a proportion of patients have only minor transient responses, with up to 25% of patients progressing by 12 weeks when treated with single-agent BRAF inhibitors (27, 36). A number of clinical factors are correlated with BRAF inhibition. For instance, early heterogeneity of response, as measured by FDG–PET is associated with a shorter PFS (37). Loss of PTEN expression, deletions involving the p16INK4a gene and amplification of the cyclin D1 gene have all been associated with a shorter PFS in patients treated with BRAF inhibitors (17, 19). Importantly, these genetic changes do not preclude clinical or preclinical responses to BRAF inhibition.

We now show that MEK1 mutations affecting Proline 124 are associated with fewer patient responses and a shorter PFS with BRAF inhibitor therapy compared with patients without P124 mutations. We and others have also confirmed that MEK1P124 mutations have slightly elevated kinase activity (24, 25) and that melanoma cells carrying these mutants show diminished sensitivity to BRAF inhibition (14). It is worth noting that the reported influence of MEK1P124 mutations on BRAF inhibitor sensitivity is not always consistent (24). Collectively, these observations suggest that the background tumor genotype may influence the impact of MEK1P124 mutations and that additional genetic changes may contribute and be required for BRAF inhibitor resistance.

We surmise that the elevated kinase activity of MEK1P124 mutants leads to a slightly diminished BRAF inhibitor response, and this facilitates a greater pool of surviving tumor cells and the acquisition of resistance mechanisms. This is supported by our previously reported analyses of the SMU030R cell line. This short-term cell model is derived from the same patient as the SMU030P pretreatment cell line, but was isolated from a lesion that had progressed on BRAF/MEK inhibitor therapy. Both the matched pretreatment SMU030P and progressing SMU030R cells carry the MEK1P124E mutation, but the resistant SMU030R cells have also acquired an amplification encompassing the BRAF gene, a further progressing lesion was found to carry an NRASQ61K, suggesting that the MEK1P124 mutation is insufficient to confer resistance (29).

We also showed that two BRAFV600E/MEK1P124 double-mutant melanoma cell lines were less sensitive to dabrafenib, but showed similar responses to downstream MEK and ERK inhibition, when compared with six BRAFV600E/MEK wild-type cell lines. Although the two MEK1P124-mutant cell lines were BRAFV600E and dabrafenib shows comparable activity against BRAFV600E and BRAFV600K at the enzyme and cellular levels (36–40). This finding suggests that patients carrying baseline MEK1P124 mutations may gain greater benefit from treatment combinations, which include an MEK or ERK inhibitor. Formal examination of this hypothesis is required in patients treated with combinations involving these inhibitors; particularly given that patient SMU030 had only a minor transient response to combined dabrafenib and trametinib. This disconnect between preclinical and clinical activity in the SMU030 tumor may be attributable to limitations in delivering effective MEK inhibitor concentrations in vivo and/or additional genetic alterations that further diminish response duration.

It is possible that mutations affecting MEK1 at Proline124 are prognostic rather than predictive of BRAF inhibitor response. Our data, however, showing that MEK1P124 mutations show RAF-independent kinase activity and that melanoma cells with these MEK1 mutations retain sensitivity to the downstream MEK and ERK inhibitors, while displaying intermediate sensitivity to BRAF inhibition, support our hypothesis that these MEK1 alterations are predictive of BRAF inhibitor response. We also show that MEK1P124 mutations do not correlate with several significant clinical variables, including M stage, patient age, and BRAF genotype. It is worth noting that our analysis of clinical correlates was limited to the variables available in previous studies.
References

MEK Mutations in BRAF Inhibitor–Treated Melanoma

Preexisting MEK1^{P124} Mutations Diminish Response to BRAF Inhibitors in Metastatic Melanoma Patients

Matteo S. Carlino, Carina Fung, Hamideh Shahheydari, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-0759

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2014/11/05/1078-0432.CCR-14-0759.DC1

Cited articles
This article cites 39 articles, 16 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/21/1/98.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/21/1/98.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.