Can Circulating Tumor Cells Predict Resistance in Metastatic Breast Cancer?

Aju Mathew, Adam M. Brufsky, and Nancy E. Davidson

Circulating tumor cell (CTC) enumeration provides prognostic but not predictive information for chemotherapy in metastatic breast cancer. Because CTC measurement is reproducible and allows molecular profiling, an assay to assess endocrine resistance was developed. Whether this CTC-based assay can be used to reliably select endocrine therapy must be tested. Clin Cancer Res; 21(11); 2421-3. ©2015 AACR.

See related article by Paoletti et al., p. 2487

In this issue of Clinical Cancer Research, Paoletti and colleagues (1) describe the development of a Circulating Tumor Cell–Endocrine Therapy Index (CTC-ETI), an assay based on both enumeration of CTC and measurement of protein expression using immunofluorescence staining of CTC.

CTCs are malignant cells found in peripheral blood that originate from primary or metastatic cancer tissue (Fig. 1; ref. 2). Because circulating cancer cells are extremely rare, their detection requires enrichment techniques based on biologic properties (e.g., tumor-specific cell-surface antigens or protein secretion) or physical characteristics (e.g., size, density, deformability, or electric charges) of tumor cells (2). Paoletti and colleagues used the CellSearch system, the only FDA-approved CTC enumeration technology for metastatic breast cancer, as the basis for their work. This technology uses epithelial cell-adhesion molecule-based (EpCAM) immunomagnetic beads for enrichment of CTC, followed by positive immunofluorescence staining for a cytokeratin epithelial marker (CK-8, 18, and 19) and a nuclear dye (DAPI) and negative staining for common leukocyte antigen (CD45; ref. 3).

Over the past decade, numerous clinical trials have investigated the prognostic role of CTC detection in metastatic breast cancer (3–5). A recent individual patient data meta-analysis, using 1,944 patients with metastatic breast cancer from 20 studies, confirmed the independent poor prognosis of an elevated CTC count of ≥5/7.5 mL of whole blood in terms of progression-free survival and overall survival compared with a baseline CTC count of <5/7.5 mL (6). When compared with imaging studies, CTC assessment was more reproducible (interobserver variability –0.7%) and was an earlier marker of disease progression (4). In contrast with tumor markers such as CA15-3 and CA27.29, CTC does not reflect tumor bulk (4). The SWOG 0500 trial, investigating the strategy of changing chemotherapy in patients with metastatic breast cancer based on persistently elevated CTC, failed to show improved overall survival for an early CTC-driven switch in therapy compared with continuation of initial therapy (7).

Despite the results of SWOG 0500, CTC technology has the potential to be a significant part of our arsenal against metastatic breast cancer if it can be adapted to serve as a predictive assay to individualize therapy. However, intratumoral heterogeneity and clonal evolution of cancers, especially under the selective pressure of therapy, pose considerable challenges to attaining this goal (8, 9). Tissue biopsy at various stages of progression would be desirable but remains challenging. Investigators are now focused on assessment of CTC and circulating tumor-specific DNA (ctDNA) in blood as a means of performing real-time “liquid biopsies” (2, 10), in the hope that these tests will identify critical tumor characteristics along the disease continuum that will help predict the most effective therapy.

Several well-defined predictive markers, including ERα and progesterone receptor (PR) expression, are routinely assessed in primary or metastatic tumor tissues to predict response to hormone agents. In an attempt to identify endocrine-resistant patients earlier and without tissue biopsy, Paoletti and colleagues (1) developed a new CTC-based assay, CTC-ETI. They empirically chose four endocrine therapy-specific markers, ERα, B-cell lymphoma-2 (BCL-2), HER2, and Ki67, assessable by immunofluorescence on CTC, to provide a numerical Bio-Score. They hypothesized that low ER and BCL-2 expression and high HER2 and Ki67 expression would predict resistance to endocrine therapy. Missing from this panel (for unstated reasons) was another well-established predictive marker, PR.

Using CTC enumeration and analysis of protein expression in human breast cancer cell lines, the group developed a CTC-ETI assay, which is a composite of CTC enumeration and Bio-Score. A CTC-enumeration point reflected the average number of CTC from 4 aliquots of 7.5 mL of whole blood, whereas the Bio-Score is based on the percentage of CTCs that were positive for that specific biomarker. Multiple logical but unproven assumptions allowed definition of CTC-ETI categories. The CTC-ETI was arbitrarily considered low if CTC count was less than 5/7.5 mL of whole blood or if CTC-ETI is 0 to 3, intermediate if CTC-ETI was 4 to 6, and high if the score was 7 to 14. A high CTC-ETI was hypothesized to be suggestive of ER-resistant disease.
Paoletti and colleagues (1) then conducted a two-stage prospective study of 50 patients with metastatic breast cancer to test analytical validity of the CTC-ETI. A CTC-ETI was determined in 88% of patients, and the analytical failure rate was acceptable (12%). The interobserver agreement for CTC-ETI was high with a concordance of >90% for all four biomarkers. Thus, the test was highly reproducible and reliable, especially when the CTC count was higher. Because CTC yield is reduced with prior administration of systemic therapy, and the interobserver variability is higher in patients with low CTC counts, the utility and reliability of CTC-ETI may be suspect in heavily pretreated patients (11). Interestingly, 39% of the study population had a high CTC-ETI, suggesting that the test could identify a significant subset of patients who may have endocrine therapy-resistant disease. Because the ultimate goal of CTC-ETI is to guide the personalized management of hormone receptor–positive metastatic cancer, an even distribution of patients among the three prespecified categories (low, intermediate, and high) potentially enhances the clinical relevance of this assay.

Not surprisingly, the CTC-ETI assay identified significant intra-patient cell-to-cell heterogeneity in the intensity of staining as well as discordance with biomarker expression previously determined in primary or metastatic biopsy. Limitations of this study are the absence of information about treatment and the lack of analysis of paired samples, i.e., a CTC-ETI assay performed at the same time as a metastatic biopsy. It is simply not known whether these discordant results reflect differences in tumor cells evaluated at two different points in time, or in the subset of metastatic cells that circulate versus those found in the metastasis, or in the methodologies used to assess biomarker expression by conventional immunohistochemistry of metastatic lesion versus CTC.

Nonetheless, Paoletti and colleagues (1) successfully established the analytical validity of the CTC-ETI assay in a small cohort of patients and have now embarked on the necessary clinical validation through two randomized clinical trials (COMETI P2 and SWOG S1222). These clinical trials will help determine the correlation of CTC-ETI with clinical outcomes in patients with hormone receptor–positive metastatic breast cancer whose disease has progressed through several lines of endocrine therapy. Once the clinical validity of the assay is confirmed, clinical trials to assess capacity for the early prediction of endocrine therapy resistance will be required to move the assay to the clinic.

It should be noted that the development of CTC-ETI, a putative cell-based assay for endocrine resistance, occurred in parallel with the observation that ESR1 mutations can be detected in up to 30% of metastatic breast cancers that recur in the presence of endocrine therapy, and that these mutations appear to confer hormone resistance (12). This finding has galvanized work to detect ESR1 mutations in ctDNA as a potential marker of endocrine resistance mediated by another mechanism. Efforts to move this finding into the clinic will require the same attention to rigorous methods and standards that are exemplified by this report of Paoletti and colleagues on the analytical validity of CTC-ETI. Given the heterogeneity of potential mechanisms of endocrine resistance, it is conceivable that the optimal test for endocrine resistance in the future will combine CTC- and ctDNA-based assays. This article is a first step in the search for the holy grail of personalized medicine—a noninvasive test that is reproducible, reliable, and predictive for response or resistance to cancer treatment.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: A. Mathew, A.M. Brufsky, N.E. Davidson
Writing, review, and/or revision of the manuscript: A. Mathew, A.M. Brufsky, N.E. Davidson

Grant Support
N.E. Davidson was supported by the Breast Cancer Research Foundation and the NIH under award number P30CA047904.

References
Can Circulating Tumor Cells Predict Resistance in Metastatic Breast Cancer?

Aju Mathew, Adam M. Brufsky and Nancy E. Davidson


Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-2967

Cited articles
This article cites 12 articles, 6 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/21/11/2421.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.