Significance of Circulating Tumor Cells in Metastatic Triple-Negative Breast Cancer Patients within a Randomized, Phase II Trial: TBCRC 019

Costanza Paoletti1, Yufeng Li2, Maria C. Muñiz1, Kelley M. Kidwell1,3, Kimberly Aung1, Dafydd G. Thomas1, Martha E. Brown1, Vandana G. Abramson4, William J. Irvin Jr5,6, Nancy U. Lin7, Minetta C. Liu8, Rita Nanda9, Julie R. Nangia10, Anna M. Storniolo11, Tiffany A. Trains12, Christos Vaklavas2, Catherine H. Van Poznak1, Antonio C. Wolff13, Andres Forero-Torres2, and Daniel F. Hayes1 on behalf of the Translational Breast Cancer Research Consortium (TBCRC)

Abstract

Purpose: Circulating tumor cells (CTC) are prognostic in metastatic breast cancer (MBC). We tested whether EpCAM-based capture system (CellSearch) is effective in patients with triple-negative (TN) MBC, and whether CTC apoptosis and clustering enhances the prognostic role of CTC.

Experimental Design: CTC enumeration and apoptosis were determined using the CXC CellSearch kit at baseline and days 15 and 29 in blood drawn from TN MBC patients who participated in a prospective randomized phase II trial of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) with or without tigatuzumab. Association between levels of CTC and patient outcomes was assessed using logistic regression, Kaplan–Meier curves, and Cox proportional hazards modeling.

Results: Nineteen of 52 (36.5%), 14 of 52 (26.9%), and 13 of 49 (26.5%) patients who were evaluable had elevated CTC (≥5 CTC/7.5 mL whole blood) at baseline and at days 15 and 29, respectively. Patients with elevated versus not elevated CTC at each time point had worse progression-free survival (PFS; \(P = 0.005, 0.0003, 0.0002 \), respectively). The odds of clinical benefit response for those who had elevated versus low CTC at baseline and days 15 and 29 were 0.25 (95% CI: 0.08–0.84; \(P = 0.024 \)), 0.19 (95% CI: 0.05–0.17; \(P = 0.014 \)), and 0.06 (95% CI: 0.01–0.33; \(P = 0.001 \)), respectively. There was no apparent prognostic effect comparing CTC apoptosis versus non-apoptosis. Presence of CTC cluster at day 15 and day 29 was associated with shorter PFS.

Conclusions: CTC were detected using CellSearch assay in approximately one-third of TN MBC patients. Elevated CTC at baseline and days 15 and 29 were prognostic, and reductions in CTC levels reflected response. Clin Cancer Res; 21(12); 2771–9. ©2015 AACR. See related article by Forero-Torres et al., p. 2722.

Introduction

Approximately 20% of all breast cancers fail to express either estrogen or progesterone receptors (ER, PgR) or the HER2 (1). While chemotherapy is effective for these so-called ‘triple negative’ breast cancers, no targeted therapies are available for this subtype. Preclinical studies have demonstrated activity of tigatuzumab, a humanized antideath receptor agonist monoclonal antibody, which triggers apoptosis within basal-like breast cancer subtype. Preclinical studies have demonstrated activity of tigatuzumab, a humanized antideath receptor agonist monoclonal antibody, which triggers apoptosis within basal-like breast cancer (2). The Translational Breast Cancer Research Consortium (TBCRC) conducted a randomized phase II trial comparing nanoparticle albumin-bound paclitaxel with or without tigatuzumab to determine whether the latter has evidence of activity in patients with triple-negative (TN) metastatic breast cancer (MBC), reported as a separate companion manuscript (see related article by Forero-Torres et al. on p. 2722).

Circulating tumor cells (CTC) are prognostic at baseline and follow-up in patients with MBC (3–5). The CellSearch system (Janssen Diagnostics, LLC) is based on a capture strategy using ferromagnetic particles coated with an antibody to epithelial cell adhesion molecule (anti-EpCAM; refs. 4, 6). Overall, approximately one-half of patients with MBC have ≥5 CTC/7.5 mL whole blood (WB), when evaluated using CellSearch, at baseline before starting a new therapy, whether first-line or later in their clinical course (4, 6). Subset analyses of prior studies have failed to consistently identify a clinical or biologic subgroup of patients with MBC for whom CTC, as enumerated by CellSearch, are not prognostic (3, 4). However, there has been concern regarding the performance of the CellSearch assay in detecting CTC in patients
Translational Relevance

Circulating tumor cells (CTC) are associated with worse prognosis in metastatic breast cancer (MBC) patients. However, the role of CTC is unclear in triple-negative (TN) breast cancer due to low expression of epithelial cell adhesion molecule (EpCAM) compared with other subtypes of breast cancers. Using CellSearch, we have demonstrated that CTC are prognostic in the subgroup of patients with TN breast cancer, further substantiating the clinical role of monitoring CTC. Exploratory analyses suggest that evaluation of CTC clusters may provide further clinical and biologic insights into the mechanisms of the metastatic process.

with triple-negative breast cancer, as these cancers tend to fall into the “basal” intrinsic subtype that appears to express lower levels of EpCAM than luminal or HER2-positive breast cancers (7).

In addition to enumeration, CTC genotyping and phenotyping might provide additional clinical and biologic information. In this regard, early apoptosis, as might be induced by tigatuzumab, can be detected with the monoclonal antibody M-30, which is directed against a neoepitope of cytokeratin 18 disclosed by caspase cleavage (8). We have previously reported detection and semiquantification of apoptotic CTC in patients with MBC using the CellSearch platform (9, 10).

We investigated whether CTC are elevated in patients with TN MBC and hypothesized that CTC enumeration, CTC apoptosis, and CTC clusters might be prognostic, predict response to tigatuzumab, or provide a surrogate indication of response to either nab-paclitaxel alone or the combination of nab-paclitaxel and tigatuzumab. Therefore, we studied CTC in patients with TN MBC who participated in the TBCRC randomized phase II trial (overall results reported in a related article by Forero-Torres et al. on p. 2722).

Materials and Methods

Study design and objectives

This study was a correlative study of an open label, randomized 2:1 phase II trial of nab-paclitaxel, with or without tigatuzumab in patients with measurable TN MBC (overall results reported separately in the companion manuscript by Forero-Torres et al. on p. 2722).

The study was approved by the Institutional Review Board (IRB) of each participating center, and all the enrolled subjects provided written consent prior to entry. Eligibility was limited to patients with TN MBC who were either chemotherapy naive or who had progressed on prior chemotherapy. Patients were stratified for randomization by three categories: no prior chemotherapy for MBC, prior taxane therapy in the metastatic setting, or no prior taxane therapy in the metastatic setting. Sixty-four patients were accrued into the clinical trial and 60 patients received at least one cycle of therapy.

The primary objective of this correlative study was to determine the feasibility of detecting CTC before initiating therapy (baseline) and their prognostic role in TN MBC. Secondary objectives were designed to investigate the prognostic, predictive, and monitoring roles of CTC levels, CTC apoptosis, and CTC clusters at baseline, day 15, and day 29 after initiation of therapy.

Patient staging and follow-up

Details of eligibility, accrual, and conduct of the clinical trial are reported in the companion manuscript (Forero-Torres et al., p. 2722). Relevant to this report, before being enrolled into the study, all patients had measurable disease at baseline, and the primary endpoint of the trial was response as determined according to the Response Evaluation Criteria in Solid Tumor (RECIST version 1.1). Throughout the manuscript, the term clinical response refers either to overall response rate (ORR) defined as complete response (CR) and partial response (PR) or clinical benefit rate (CBR) defined as stable disease (SD), PR, and CR disease for > 4 cycles. Assessment of tumor response was performed every two cycles (every 8 weeks).

Blood draw, CTC enumeration, and characterization

Blood draws for CTC enumeration and characterization were scheduled at baseline, day 15, and first follow-up at day 29. At each time point, approximately 10 mL of WB was collected into a 10 cc vacutainer tube that contained a cellular fixative (CellSave Preservative Tubes, Janssen Diagnostics, LLC). Blood specimens were maintained and shipped at room temperature, and processed within a maximum of 96 hours after blood drawing. Once the samples were received and blinded at the processing laboratory, they were resuspended into 7.5 mL aliquots. CTC enumeration and M-30 (apoptosis) determination was performed using CellSearch CTC kits (Janssen Diagnostics, LLC) as previously described (9).

Enumeration of CTC was determined after staining with DAPI (double stranded DNA), and fluoresceinated anti-cytokeratin and anti-CD45 antibodies, using criteria previously described for CellSearch. The fourth “empty” channel of CellSearch was used to measure M-30 expression using monoclonal antibody M-30 (Peviva) conjugated to phycoerythrin (PE). CTC apoptosis was further determined by visual inspection for nucleic condensation and/or fragmentation, as well as granular cytokeratin. As previously reported (9), as a positive control for the apoptosis marker for each run, cultured human breast cancer apoptotic MCF-7 cells, were generated by culturing for 7 days in RPMI1640 media and therefore inducing overgrowth and apoptosis. The supernatant containing floating and loosely adherent cells was then fixed in 0.3% paraformaldehyde and spiked into 7.5 mL human WB from healthy donors, processed and analyzed with CellSearch. MCF-7 cell line was purchased through ATCC.

CTC apoptosis was defined as any M-30 staining and/or visual evidence of apoptosis (Supplementary Table S1). A specimen was considered to be positive for CTC apoptosis if 25% or more of the CTC met these criteria.

CTC clusters were defined as a group of CTC containing three or more distinct nuclei, and with contiguous cytoplasm membranes, as previously described (Supplementary Fig. S1; ref. 11).

CTC enumeration, CTC clusters, and CTC-M-30 were determined by two reviewers (C. Paoletti and M.C. Muniz). CTC visual apoptosis was determined independently by two reviewers (C. Paoletti and K. Aung). The results generated by each operator were then compared, and discordant results were reconciled by joint readings.
Healthy donors and sample collection
Blood for CTC apoptosis–positive controls was drawn from healthy volunteers who gave their informed consent approved by the University of Michigan IRB.

Statistical analysis
As per the convention used by Smerage and colleagues (4), we designated 3 patient subgroups according to baseline and subsequent CTC level: group A = patients with <5 CTC/7.5 mL WB at baseline; group B day 15 (B15) and group B day 29 (B29) = patients with ≥5 CTC/7.5 mL WB at baseline, which were reduced to <5 CTC/7.5 mL WB at day 15 (B15) or day 29 (B29), respectively; group C day 15 (B15) and group C day 29 (C29) = patients with ≥5 CTC/7.5 mL at baseline, which persisted as ≥5 CTC/7.5 mL at day 15 (C15) or day 29 (C29), respectively. The analysis primarily consisted of comparing group A to groups B and C. CTC enumeration was tabulated for all patients and by treatment arm at baseline, day 15, and day 29. Comparison of the proportion of those in group A versus groups B and C between treatment arms was assessed using χ² tests of independence or Fisher’s exact tests. Associations between levels of CTC, CTC apoptosis, and CTC clusters at baseline, day 15, and day 29 and ORR and CBR were assessed using χ² or Fisher’s exact tests. Odds ratios (OR) were computed with 95% confidence intervals (CI) and corresponding P values for ORR and CBR. Associations between level of CTC, CTC apoptosis, and CTC clusters at baseline, day 15 and day 29 and progression-free survival (PFS) were assessed with Kaplan–Meier curves and log-rank tests. PFS was defined from the time of Patients accrued to the main trial (N = 64)
first treatment to the time of disease recurrence or the last follow-up. Patients who had no recurrence were considered as right censored. For associations at day 29, benchmark analysis was used for the patients who had not yet progressed by that time and had CTC information. Hazard ratios (HR), 95% CIs, and the corresponding \(P \) values were computed with Cox proportional hazards models. No covariates were entered into any of the models due to the sample size. Multiple comparisons were not explicitly controlled for due to the small sample size and exploratory nature of the analysis.

We report this study according to the REMARK guidelines (ref. 12; see Fig. 1).

Results

Patient enrollment

Only 60 of the 64 enrolled patients received any treatment. Of these 60, blood specimens were not drawn in one patient, and thus 59 patients were enrolled in this correlative study and had at least one blood draw within the trial (Fig. 1). Overall, demographic details are provided in a separate report of the main therapeutic trial results (see related article by Forero-Torres et al. on p. 2722). However, demographics are briefly outlined as follows: the median age was 51 (range, 32–72), and 51 (range. 34–75) years, 33% and 32% had no prior chemotherapy in the metastatic setting, median number of prior therapy regimens was 2 (range, 0–5) and 1 (range, 0–4), respectively.

CTC enumeration

Incidence. Other investigators have suggested that basal-like, TN breast cancer cells do not express sufficient EpCAM to be captured and enumerated with anti-EpCAM–based systems, such as CellSearch (7). In this trial that specifically addressed TN MBC, CTC were drawn in 52, 52, and 49 patients at baseline, day 15, and day 29, respectively. Seven patients did not have a blood draw at baseline (Fig. 1, group D). However, they had blood drawn at least at one other time point. At baseline, CTC were \(\geq 5 \) CTC/7.5 mL WB in 19 (36.5%) patients (Table 1A; Fig. 1). Thus, 63.5% of patients did not have elevated CTC by the criteria of the study at baseline (group A), while 36.5% had \(\geq 5 \) CTC/7.5 mL (Fig. 1; group B/C).

A cross-sectional analysis at each time point was performed. For each separate time point, all patients who had a blood draw were included, regardless of whether they had prior blood draws. At day 15 and day 29, 14 of 52 (26.9%) and 13 of 49 (26.5%) patients had elevated (\(\geq 5 \) CTC/7.5 mL WB), respectively. Note that while these patient groups overlap considerably, they are not identical, as 5 patients who had blood draws at baseline did not have them at day 15, while a separate 5 patients who did not have baseline specimens, did have them drawn at day 15. Likewise, 5 patients who had blood drawn at baseline, and 3 patients who did not have blood drawn at baseline did not have specimens drawn at day 29. Furthermore, 3 patients who had blood drawn at day 29 and baseline did not have blood drawn at day 15 and 2 patients who did not have blood drawn at baseline did have blood drawn at day 29.

The patients that had \(< 5 \) CTC at baseline (group A) were scheduled to have further blood draws at day 15 and day 29. In particular, at baseline, 33 patients had low CTC level (<5 CTC). At day 15, 3 of these patients did not have blood draw. The remaining 30 patients continued to have low CTC level at day 15. Two of the three patients that did not have blood draw at day 15 had blood drawn at day 29 with low CTC levels (<5 CTC). Only one patient converted CTC levels from low (<5 CTC) at baseline to high (\(\geq 5 \) CTC) at day 29. The rest of the patients who had blood draw at subsequent time points continued to have low CTC level (<5) throughout (Fig. 1).

For serial analyses for "CTC response," 19 patients had elevated CTC (group B/C) at baseline. At day 15, blood specimens were not drawn on two patients. Of the remaining 17 patients, CTC levels declined to <5 CTC/7.5 mL in 5 (29%) (B13), while CTC remained elevated (\(> 5 \) CTC) at day 29.

Table 1. Incidence of CTC, CTC apoptosis, and CTC clusters

<p>| Table 1. Incidence of CTC, CTC apoptosis, and CTC clusters |
|-------------------------------|-------------------------------|</p>
<table>
<thead>
<tr>
<th>A. Incidence of CTC</th>
<th>(\geq 1)</th>
<th>(\geq 5)</th>
<th>(\geq 5) CTC/7.5 mL WB by randomized arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>61.5% (32/52)</td>
<td>50.0% (26/52)</td>
<td>56.5% (19/32)</td>
</tr>
<tr>
<td>Day 15</td>
<td>42.3% (22/52)</td>
<td>32.7% (17/52)</td>
<td>69.0% (19/29)</td>
</tr>
<tr>
<td>Day 29</td>
<td>38.8% (19/49)</td>
<td>28.6 (14/49)</td>
<td>65.0% (13/19)</td>
</tr>
</tbody>
</table>

B. Incidence of CTC apoptosis and CTC clusters

<table>
<thead>
<tr>
<th>CTC apoptosisa</th>
<th>CTC clustersb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Day 15</td>
</tr>
<tr>
<td>(\leq 5)</td>
<td>7/14 (50.0%)</td>
</tr>
<tr>
<td>(> 5)</td>
<td>8/32 (25.0%)</td>
</tr>
<tr>
<td></td>
<td>7/19 (56.8%)</td>
</tr>
</tbody>
</table>

C. Apoptosis according to single versus clustered CTC at any time during the trial

<table>
<thead>
<tr>
<th>Single CTC</th>
<th>% single cell positive for apoptosis</th>
<th># of CTC in the cluster</th>
<th>% CTC cluster with 1 cell positive for apoptosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/593</td>
<td>20%</td>
<td>943</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

D. Apoptosis according to single versus clustered CTC at baseline, day 15, and day 29

<table>
<thead>
<tr>
<th>Single cell Cluster</th>
<th>Baseline</th>
<th>Day 15</th>
<th>Day 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 5) CTC/7.5 mL WB</td>
<td>3/6 (50.0% (19%))</td>
<td>363/1355 (24%)</td>
<td>159/520 (19%)</td>
</tr>
<tr>
<td>(< 5) CTC/7.5 mL WB</td>
<td>1/16 (0.6%)</td>
<td>0/283 (0%)</td>
<td>3/499 (0.6%)</td>
</tr>
</tbody>
</table>

aOf those \(\geq 5 \) CTC/7.5 mL WB.

bOf those with \(\geq 1 \) CTC/7.5 mL WB.
elevated in the other 12 (C15) (Supplementary Fig. S2). At day 29, blood was not obtained from 4 patients who had elevated CTC at baseline. Of the remaining 15 patients who had elevated CTC at baseline and had a blood specimen at day 29, 10 (67%) continued to have elevated CTC (C29; Supplementary Fig. S2). Thus, approximately one-third of patients experienced a "CTC response" to therapy.

The incidence of elevated CTC (≥5 CTC/7.5 mL WB) at baseline was similar for patients in the nab-paclitaxel and nab-paclitaxel + tigatuzumab arms (31.6% vs. 39.4%, P = 0.57). There was no significant difference in CTC enumeration between the arms at day 15 or day 29 (Table 1).

Prognosis based on CTC enumeration. In the overall clinical trial, tigatuzumab had no beneficial effect (see related article by Forero-Torres et al. on p. 2722). However, 5 patients in the combination arm had long PFS (11.1, 15.3, 22.4, 26.0, and 34.2 months). All of these patients began the trial with <5 CTC and their CTC levels remained low through day 15 and 29. Additionally, there was one patient with long-term PFS in the forero-torres et al. on p. 2722) (36.4%) who did not have elevated CTC experienced a response (36.8%) who had objective responses (P = 0.34, 0.043, respectively). Although not statistically different, the odds of overall response for those who had elevated CTC at baseline and days 15 and 29 were 0.47 (95% CI, 0.13–1.73; P = 0.25), 0.47 (95% CI, 0.11–1.97; P = 0.30), and 0.13 (95% CI, 0.02–1.12; P = 0.064).

As most TN MBCs are rapidly growing, one would expect stable disease to be a function of therapeutic benefit rather than indolent disease. To increase the power of our exploratory analysis, we correlated CTC response with CBR (Fig. 3). Of the patients with elevated CTC at baseline, only 7 of 19 (36.8%) had clinical benefit, while 23 of 33 (69.7%) who did not have elevated CTC experienced clinical benefit. Likewise, at day 15, clinical benefit was observed in 4 of 14 (28.6%) compared with 26 of
38 (68.4%) patients without elevated CTC. The results at day 29 were similar [clinical benefit = 2/13 (15.4%) vs. 27/36 (75.0%) for elevated vs. non-elevated CTC]. The odds of clinical benefit response for those who had elevated versus low CTC at baseline and days 15 and 29 were 0.25 (95% CI, 0.08–0.84; \(P = 0.024 \)), 0.19 (95% CI, 0.05–0.71; \(P = 0.014 \)), and 0.06 (95% CI, 0.01–0.33; \(P = 0.001 \)), respectively. These results were statistically significant.

Correlation of CTC response with clinical response. For those patients with elevated CTC at baseline (Supplementary Fig. S2), we have designated reduction of CTC to \(<5/7.5\) mL WB as a "CTC response." We performed an exploratory analysis to determine whether CTC response correlated with ORR and CBR (Supplementary Fig. S4). Of the 19 patients in groups B/C at baseline, 5 had a decline to \(<5\) CTC/7.5 mL WB (B\(^5\)), whereas 12 did not (C\(^5\)); blood was not obtained at day 15 and 29 in 1 patient and at day 15 for another patient; Supplementary Fig. S2). The ORR at day 15 in B\(^5\) was 40% (2/5 patients) compared with 17% (2/12 patients) in C\(^5\) (Supplementary Fig. S4; \(P = 0.54 \)). CBR was 80% (4/5 patients) for group B, but only 25% (3/12 patients) in group C (\(P = 0.10 \)). Power was quite limited to effectively determine whether this difference in response rates between those in groups B and C was statistically significant or due to play of chance. However, there was a trend for higher response rates for those who cleared their CTC by day 15. Similar results were observed at day 29 (Supplementary Fig. S4).

Taken together, these data regarding CTC and ORR and CBR suggest that patients with elevated CTC at baseline or early follow-up are less likely to respond to chemotherapy.

CTC apoptosis

Incidence of CTC apoptosis. At baseline, 5 of the 19 (26.3%) patients who had \(\geq 5\) CTC/7.5 mL WB were considered to be positive for CTC apoptosis (defined as having \(\geq 25\)% of the CTC positive for apoptosis; Table 1B). At day 15 and 29, 7 of 14 (50.0%) and 8 of 13 (61.5%) patients were considered to have CTC apoptosis.

Prognostic role of CTC apoptosis. Median PFS was not significantly different for those with or without CTC apoptosis at baseline (1.9 vs. 2.1 months, respectively). Although power was limited, there was no suggestion that the presence or absence of CTC apoptosis at any time point predicted PFS (Table 2).

CTC apoptosis and response. The ORR and CBR were explored according to CTC apoptosis. ORR was 20% (1/5 patients), 14% (1/7 patients), and 13% (1/8 patients) at baseline, day 15, and day 29, respectively for patients who had CTC apoptosis compared with 21% (3/14 patients), 29% (2/7 patients), and 0% (0/5 patients) for those who had CTC but did not meet the criteria for CTC apoptosis (Table 2 and Supplementary Fig. S5).

Likewise, CBR was 20% (1/5), 29% (2/7), and 13% (1/8) for patients with CTC apoptosis at baseline, day 15, and day 29, respectively, compared with 43% (6/14), 29% (2/7), and 20% (1/5) for patients who had elevated CTC but did not have CTC apoptosis.

CTC clusters

Incidence of CTC clusters. We hypothesized that CTC in a cluster might have prognostic implications that differ from a single cell, even though both are counted only as one CTC by the CellSearch clinical algorithm. At baseline, 8 (25.0%) of the 32 patients with any CTC had one or more clusters (Table 1B). Of the 19 patients who had \(\geq 5\) CTC/7.5 mL WB, 7 (36.8%) had CTC clusters. In contrast of the 13 patients with 1–4 CTC as per CellSearch criteria, 1 (7.7%) had CTC clusters (\(P = 0.10 \)).

Prognostic role of CTC clusters. At baseline, median PFS was around 2.0 months for those with or without CTC clusters.
Table 2. Association of CTC enumeration, apoptosis, and clusters with outcomes

<table>
<thead>
<tr>
<th>CTC clusters</th>
<th>Baseline</th>
<th>Day 15</th>
<th>Day 29</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ORR P CBR P PFS P</td>
<td>ORR P CBR P PFS P</td>
<td>ORR P CBR P PFS P</td>
</tr>
<tr>
<td>No</td>
<td>12/33 (36.4) 0.25</td>
<td>3/14 (21.4) 0.021</td>
<td>1/5 (20.0) 0.47</td>
</tr>
<tr>
<td>Yes</td>
<td>4/19 (21.1) 7/19 (36.8) 1.9</td>
<td>1/5 (20.0) 0.60</td>
<td>5/24 (20.8) 1.0</td>
</tr>
<tr>
<td></td>
<td>0/7 (0) 0/7 (0) 1.8</td>
<td>2/7 (28.6) 2.1</td>
<td>3/8 (37.5) 2.0</td>
</tr>
</tbody>
</table>

Note: Values in parentheses are numbers expressed in %.

PFS is median time to progression in months.

these data are similar to those previously reported for patients with MBC regardless of biologic, or intrinsic, subtype (3, 4, 6). In this regard, a recently published pooled analysis of CTC results from 54 European centers demonstrated that 44% of 746 patients with TN MBC had ≥5 CTC/7.5 mL WB (3). Our prospective study further confirms that the performance characteristics of the CellSearch assay are similar in patients with triple-negative MBC to those in patients with hormone receptor or HER2-positive breast cancer. Taken together, although the sensitivity of CellSearch may be slightly lower in TN versus non-TN MBC, these data refute the claim of other authors who have suggested that an EpCAM-based assay might not be applicable to patients with TN or “basal”-like breast cancers due to low expression of this marker (7).

Our results are also consistent with those of a prospective, randomized clinical trial conducted by SWOG (S0500), which demonstrated that patients who have elevated CTC at baseline before starting a new, first-line chemotherapy for MBC, and who fail to reduce them to <5/7.5 mL WB by first follow-up (group C), appear to be relatively, if not absolutely, resistant to the chemotherapy regimen they received. Furthermore, in S0500, the very short overall survival of patients in group C (median OS 13 months) suggested that their cancers are more likely to be resistant to most other types of chemotherapy that might be applied subsequently (4). In TBCRC 019, all patients had TN MBC and were stratified to first or later line of chemotherapy. Therefore, their prognosis is even worse than the more general population who enrolled in SWOG S0500 or those in the pooled analysis. Indeed, PFS for those with elevated CTC at baseline, or at 2 or 4 weeks after starting therapy, was <2 months. Overall survival was not a measured endpoint in this trial, and is unavailable.

In addition, the secondary objectives were to determine the prognostic, predictive, and monitoring roles of CTC levels, CTC apoptosis, and CTC clusters at baseline, day 15, and day 29 after initiation of therapy. In particular, we investigated whether CTC apoptosis was predictive of benefit of the addition of the antiedath receptor agent, tigatuzumab. Unfortunately, in the parent trial, there was no discernable difference in any endpoint between those who did or did not receive tigatuzumab. Although CTC levels were prognostic overall, there was no evidence in an
exploratory analysis that patients who either did or did not have elevated CTC received any benefit from tigatuzumab.

We did not detect a statistically significant association between CTC enumeration and ORR at baseline or day 15. However, the statistical power to do so was quite poor due to a very low number of true responses. Taken together, these data suggest that patients with elevated CTC at baseline or early follow-up are less likely to respond to chemotherapy and that CTC response could serve as a surrogate for clinical response in future phase II trials of new agents.

There was an association between CTC at baseline and CBR, but again power was limited to determine if the visual observation of this association at subsequent time points was statistically significant or due to play of chance. Likewise, there was a visual, but not statistically significant association between CTC response and clinical response (ORR and CBR) at days 15 and 29.

Taken together, these data suggest that patients with elevated CTC at baseline or early follow-up are less likely to respond to chemotherapy and that CTC response could serve as a surrogate for clinical response in future phase II trials of new agents.

As tigatuzumab appears to function by activation of the death receptor, we hypothesized that the early appearance of CTC apoptosis might serve as an early indication of tigatuzumab activity. In this study, we failed to show that the presence or absence of CTC apoptosis at any time point predicted PFS, ORR, or CBR, either in association with tigatuzumab or overall.

Published data regarding CTC apoptosis are conflicting. Hou and colleagues (13) reported that CTC apoptosis (assigned by nuclear morphology) at baseline in patients with metastatic SCLC was associated with worse PFS an OS compared with their absence, finding similar to that of Smerage and colleagues (9) in MBC patients. In contrast, Rossi and colleagues (10) have suggested that appearance of CTC apoptosis in 8 patients with MBC was associated with response to chemotherapy. The issue of CTC apoptosis and therapy response requires further investigation. The failure to show that the presence or absence of CTC apoptosis at any time point predicted PFS, ORR, or CBR, either in association with tigatuzumab or overall in our trial is not surprising, as tigatuzumab was inactive in the overall trial.

CTC clusters have been previously reported in the blood of patients with lung, renal, prostate cancer, and recently breast cancer (11, 13–16). In our study, at baseline, 25% of patients of the 32 patients with ≥1 CTC/7.5 mL had one or more clusters. Although there was no difference in PFS between those who had CTC clusters at baseline and those who did not, we detected a significant difference in PFS between those with residual clusters at day 15 and day 29 compared with those with CTC but without clusters. Hou and colleagues have shown that the presence of CTC clusters was significantly associated with worse prognosis in SCLC (13). Likewise, Aceto and colleagues (16) have recently reported that the presence of CTC clusters isolated by a novel microfluidic device in blood from patients with MBC and prostate cancer was associated with shorter PFS (16).

Of interest, Hou and colleagues reported that in their study of CTC in patients with SCLC, no CTC within a cluster exhibited apoptotic morphology. Although the incidence of CTC clusters in our population of TN MBC was lower than that observed by Hou and colleagues in SCLC, we similarly observed few apoptotic CTC (by M-30 expression and visual inspection) within clusters (0.4%), whereas single CTC were much more likely to appear apoptotic (20%). Furthermore, during treatment with nab-paclitaxel, although the relative percent of patients with elevated CTC declined (reflecting a CTC response), approximately one-fifth of the single-cell CTC remained apoptotic, whereas the incidence of observed apoptosis in CTC clusters remained less than 1%. The numbers of patients in these categories were too small to perform meaningful evaluation of outcomes according to these evaluations, but these data suggest that clustering of CTC may confer relative resistance to cytotoxic drugs.

A strength of this correlative study is that all patients were prospectively enrolled into a phase II clinical trial with controlled eligibility criteria, prescribed treatments, and high quality outcomes assessment. However, a weakness of this study is the small sample size, which limits our CTC-based subgroup analyses, and the lack of activity of the investigational agent, tigatuzumab.

In summary, the results of this correlative trial validate that CTC are indeed elevated and are prognostic in TN MBC patients receiving chemotherapy. CTC apoptosis needs further investigation with a larger sample size. In addition, quantification of CTC clusters might add additional prognostic information to simple CTC enumeration.

Disclosure of Potential Conflicts of Interest

N.U. Lin reports receiving commercial research grants from Incyte and Novartis and is a consultant/advisory board member for Novartis. T.A. Traina is a consultant/advisory board member for Celgene. D.F. Hayes reports receiving commercial research grants from Janssen and other research grants from Janssen and Pfizer; has ownership interest (including patents) in InBiosmotion and Onchimmune; is a consultant/advisory board member for Eli Lilly; and is listed as a co-inventor on a patent regarding circulating tumor cells (CTC) that is owned by Janssen Diagnostics. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: C. Paoletti, A. Forero-Torres, D.F. Hayes

Development of methodology: C. Paoletti, D.G. Thomas, D.F. Hayes

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): C. Paoletti, M.C. Muñiz, K. Aung, M.E. Brown, N.U. Lin

Acknowledgments

The authors thank all the patients who generously volunteered to participate in the study. The authors also thank the TBCRC investigators, research nurses, and study coordinators for their efforts on the behalf of the patients.

Grant Support

This work was supported with funds provided to the TBCRC by its three foundation partners: The AVON Foundation, the Breast Cancer Research Foundation, and Susan G. Komen for the Cure. In addition, this work was supported by VenideX/Janssen, LLC, Fashion Footwear Charitable Foundation of New York/QVC Presents Shoes on Sale (to D.F. Hayes), and by a studentship from the Italian Foundation for Cancer Research (FIRC) – Milan, Italy, and the

Clinical Cancer Research

2778 Clin Cancer Res; 21(12) June 15, 2015

Paoletti et al.

Published OnlineFirst March 16, 2015; DOI: 10.1158/1078-0432.CCR-14-2781

Downloaded from clincancerres.aacrjournals.org on April 14, 2017. © 2015 American Association for Cancer Research.
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 3, 2014; revised January 29, 2015; accepted February 21, 2015; published OnlineFirst March 16, 2015.

References

Clinical Cancer Research

Significance of Circulating Tumor Cells in Metastatic Triple-Negative Breast Cancer Patients within a Randomized, Phase II Trial: TBCRC 019

Costanza Paoletti, Yufeng Li, Maria C. Muñiz, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-2781

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2015/03/18/1078-0432.CCR-14-2781.DC1

Cited articles
This article cites 16 articles, 7 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/21/12/2771.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.