Pharmacoethnicity in Paclitaxel-Induced Sensory Peripheral Neuropathy

Masaaki Komatsu1, Heather E. Wheeler1, Suyoun Chung1,2, Siew-Kee Low3,4, Claudia Wing1, Shannon M. Delaney1, Lidija K. Gorsic1, Atsushi Takahashi3, Michiaki Kubo5, Deanna L. Kroetz6, Wei Zhang7, Yusuke Nakamura1,4, and M. Eileen Dolan1

Abstract

Purpose: Paclitaxel is used worldwide in the treatment of breast, lung, ovarian, and other cancers. Sensory peripheral neuropathy is an associated adverse effect that cannot be predicted, prevented, or mitigated. To better understand the contribution of germline genetic variation to paclitaxel-induced peripheral neuropathy, we undertook an integrative approach that combines genome-wide association study (GWAS) data generated from HapMap lymphoblastoid cell lines (LCL) and Asian patients.

Methods: GWAS was performed with paclitaxel-induced cytotoxicity generated in 363 LCLs and with paclitaxel-induced neuropathy from 145 Asian patients. A gene-based approach was used to identify overlapping genes and compare with a European clinical cohort of paclitaxel-induced neuropathy. Neurons derived from human-induced pluripotent stem cells were used for functional validation of candidate genes.

Results: SNPs near AIPL1 were significantly associated with paclitaxel-induced cytotoxicity in Asian LCLs (P < 10^{-6}). Decreased expression of AIPL1 resulted in decreased sensitivity of neurons to paclitaxel by inducing neurite morphologic changes as measured by increased relative total outgrowth, number of processes and mean process length. Using a gene-based analysis, there were 32 genes that overlapped between Asian LCL cytotoxicity and Asian patient neuropathy (P < 0.05), including BCR. Upon BCR knockdown, there was an increase in neuronal sensitivity to paclitaxel as measured by neurite morphologic characteristics.

Conclusions: We identified genetic variants associated with Asian paclitaxel-induced cytotoxicity and functionally validated the AIPL1 and BCR in a neuronal cell model. Furthermore, the integrative pharmacogenomics approach of LCL/patient GWAS may help prioritize target genes associated with chemotherapeutic-induced peripheral neuropathy.

Clin Cancer Res; 21(19); 4337-46. ©2015 AACR.

Introduction

Paclitaxel, a microtubule-stabilizing agent that binds tubulin and disrupts cell division, represents standard of care for common cancers, including breast, lung, and ovarian cancer (1). Unfortunately, about 20% to 30% of patients treated with paclitaxel experience clinically relevant sensory peripheral neuropathy (2, 3). Furthermore, there is substantial interpatient variability in time to symptom onset, time to peak symptoms, severity of peak symptoms, and reversibility (4, 5). Patients experiencing moderate to severe chemotherapy-induced peripheral neuropathy (CIPN) report a reduced quality of life, chronic discomfort, and disruption of physical abilities for general life activities that can be temporary or permanent (6). CIPN causes a significant symptom burden because many patients that undergo adjuvant treatment are long-term survivors. Moreover, CIPN can lead to dose reduction of the chemotherapeutic agent or possible cessation of treatment (7). This may have an adverse impact on cancer treatment and disease outcomes, particularly in the adjuvant setting.

There are few effective methods in clinical practice for managing peripheral neuropathy. ASCO recommendations, recently published (7) and based on a systematic evaluation of 48 randomized controlled trials, concluded that there are no agents recommended for the prevention of CIPN and supported a moderate recommendation of duloxetine for pain associated with CIPN (8). Physical therapy, acupuncture, massage, and medications such as steroids, antiepileptics, antidepressants, and opioids for pain management are often attempted. Unfortunately, the extent to which these interventions improve symptoms is limited and some of these interventions carry side effects of their own (7). An improved understanding of the genetic variants and genes contributing to paclitaxel induced...
However, pharmacoethnicity has been recognized as an important aspect in the study of paclitaxel-induced sensory peripheral neuropathy. Associations have been performed primarily in European patients (9, 10, 14, 16). Mean area under the paclitaxel concentration-cell survival percentage curve (AUC) was determined by at least six replicates from two independent experiments and used as the phenotype in the GWAS. AUC values for each cell line were log_{10}-transformed before statistical analysis to form an approximately normal distribution. Paclitaxel cytotoxicity data of CEU (n = 87), YRI (n = 87), and ASW (n = 83) are previously published (19). For each population, a linear regression was calculated to determine the correlation between the AUC for each replicate; the correlation for CEU, YRI, ASW, CHB, and JPT was 0.83, 0.86, 0.81, 0.83, and 0.82, respectively.

Authentication of cell lines
The PAAR Cell Core routinely checks the identity of LCLs by genotyping 47 informative SNPs included in the Sequenom iPLEX Sample ID Plus Panel. Using the Deknay Blood and Tissue Kit (Qiagen), DNA was extracted from each sample. Genotyping was performed following the iPLEX Pro application guide. The iPLEX Pro reaction products were dispensed onto a 384-sample SpectroCHIP and run on a Sequenom MassARRAY system at The University of Chicago DNA Sequencing and Genotyping Facility. Genotypes passed quality control (formed clear genotype clusters) for 46 of 47 SNPs and all 46 genotypes matched the known HapMap (http://hapmap.ncbi.nlm.nih.gov/) genotypes for all samples. Twenty-four of 116 LCLs were randomly chosen from this study and all passed quality control.

LCL genome-wide association studies
A GWAS of paclitaxel-induced cytotoxicity was conducted by combining the JPT and CHB (Han Chinese population: ASN) phased genotype data of the 186 ASN cell lines sequenced in the 1000 Genomes Project phase I version 3 (20) were downloaded from the BEAGLE website (http://faculty.washington.edu/browning/beagle/beagle.html). An additional 15 ASN samples genotyped in HapMap r28 were imputed to 1000 Genomes using BEAGLE version 3.3.2 (21). Phased genotype data were also downloaded for the 85 CEU and 88 YRI sequenced in the 1000 Genomes Project and used to impute the additional 93 CEU and 90 YRI samples genotyped in HapMap r28 with BEAGLE, which considers the relatedness of the trios in the imputation. Within each population, approximately 4.6 million SNPs (imputation R^2 > 0.8, population minor allele frequency (MAF) > 0.05, and in Hardy-Weinberg equilibrium (P > 1 x 10^-3)) were tested for association with paclitaxel cytotoxicity using the linear mixed model Wald test, which accounts for the genetic relatedness of individuals, implemented in GEMMA version 0.94 (22).

Patient samples and GWAS
Germline DNA of 183 cancer patients treated with monotherapy paclitaxel stored in Biobank Japan (University of Tokyo, Tokyo, Japan) were genotyped using Illumina OmniExpress BeadChip that contained 733,202 SNPs (23). Of them, 24 patients experienced either grade 2 or higher neuropathy will assist in the development of future neuroprotective agents and in the design of novel therapies with improved toxicity profiles. Furthermore, finding predictive genetic biomarkers could enable identification of patients who should be treated with neuroprotective agents (when they are available) and/or be treated with reduced paclitaxel doses or switched to nonneuropathic treatments.

In attempts to identify genes relevant to CIPN, several genome-wide association studies (GWAS) have been conducted with the identification of SNP in FGD4 (9), EPHA5, and XKR4 (10) associated with the risk of paclitaxel-induced sensory peripheral neuropathy. Because it is challenging to replicate large, well-controlled clinical trials to evaluate pharmacogenomics markers of toxicity (11, 12), we developed an integrative approach combining clinical studies and cell-based models enabling variant identification and followed with functional validation of the findings to help elucidate underlying mechanisms and pathways (13). This method has found utility for paclitaxel-induced peripheral neuropathy in individuals of European descent and caucasian populations will assist in the development of future neuroprotective agents and in the design of novel therapies with improved toxicity profiles.

Translational Relevance
Chemotherapy-induced peripheral neuropathy (CIPN) causes a significant symptom burden because many patients that undergo adjuvant treatment are long-term survivors. Moreover, CIPN can lead to dose reduction of the chemotherapeutic agent or possible cessation of treatment. This may have an adverse impact on cancer treatment and disease outcomes. In this study, we have used a genome-wide approach in a clinical and preclinical setting to identify genetic variants associated with peripheral neuropathy in Asian populations residing in Tokyo, Japan (HAPMAPPT02/05, JPT, CHB, n = 59), purchased from the Coriell Cell Repositories (Camden), were treated with increasing concentrations (0, 6.25, 12.5, 25, 50, and 100nM) of paclitaxel (Sigma-Aldrich, St. Louis, MO, USA). Cytotoxicity was determined using an AlamarBlue (Invitrogen, Life Technologies Inc.) cellular growth inhibition assay as described previously (19). Mean area under the paclitaxel concentration-cell survival percentage curve (AUC) was determined by at least six replicates from two independent experiments and used as the phenotype in the GWAS. AUC values for each cell line were log_{10}-transformed before statistical analysis to form an approximately normal distribution. Paclitaxel cytotoxicity data of CEU (n = 87), YRI (n = 87), and ASW (n = 83) are previously published (19).

Materials and Methods
Cytotoxicity assays
HapMap lymphoblastoid cell lines (LCL) derived from Japanese individuals residing in Tokyo, Japan (HAPMAPPT02/05, JPT, n = 57) and a set derived from Han Chinese residing in Beijing, China (HAPMAPPT02/05, CHB, n = 59), purchased from the Coriell Cell Repositories (Camden), were treated with increasing concentrations (0, 6.25, 12.5, 25, 50, and 100nM) of paclitaxel (Sigma-Aldrich, St. Louis, MO, USA). Cytotoxicity was determined using an AlamarBlue (Invitrogen, Life Technologies Inc.) cellular growth inhibition assay as described previously (19).

Authentication of cell lines
The PAAR Cell Core routinely checks the identity of LCLs by genotyping 47 informative SNPs included in the Sequenom iPLEX Sample ID Plus Panel. Using the DNase Blood and Tissue Kit (Qiagen), DNA was extracted from each sample. Genotyping was performed following the iPLEX Pro application guide. The iPLEX Pro reaction products were dispensed onto a 384-sample SpectroCHIP and run on a Sequenom MassARRAY system at The University of Chicago DNA Sequencing and Genotyping Facility. Genotypes passed quality control (formed clear genotype clusters) for 46 of 47 SNPs and all 46 genotypes matched the known HapMap (http://hapmap.ncbi.nlm.nih.gov/) genotypes for all samples. Twenty-four of 116 LCLs were randomly chosen from this study and all passed quality control.

LCL genome-wide association studies
A GWAS of paclitaxel-induced cytotoxicity was conducted by combining the JPT and CHB (Han Chinese population: ASN). Phased genotype data of the 186 ASN cell lines sequenced in the 1000 Genomes Project phase I version 3 (20) were downloaded from the BEAGLE website (http://faculty.washington.edu/browning/beagle/beagle.html). An additional 15 ASN samples genotyped in HapMap r28 were imputed to 1000 Genomes using BEAGLE version 3.3.2 (21). Phased genotype data were also downloaded for the 85 CEU and 88 YRI sequenced in the 1000 Genomes Project and used to impute the additional 93 CEU and 90 YRI samples genotyped in HapMap r28 with BEAGLE, which considers the relatedness of the trios in the imputation. Within each population, approximately 4.6 million SNPs (imputation R^2 > 0.8, population minor allele frequency (MAF) > 0.05, and in Hardy-Weinberg equilibrium (P > 1 x 10^-3)) were tested for association with paclitaxel cytotoxicity using the linear mixed model Wald test, which accounts for the genetic relatedness of individuals, implemented in GEMMA version 0.94 (22).

Patient samples and GWAS
Germline DNA of 183 cancer patients treated with monotherapy paclitaxel stored in Biobank Japan (University of Tokyo, Tokyo, Japan) were genotyped using Illumina OmniExpress BeadChip that contained 733,202 SNPs (23). Of them, 24 patients experienced either grade 2 or higher...
paclitaxel-induced sensory peripheral neuropathy (PIPN), 121 patients revealed no neuropathy, and the remaining 38 individuals had grade 1 neuropathy. For GWAS, we used 24 patients who developed ≥ grade 2 PIPN (cases), and compared them with 121 patients who did not show neuropathy (controls). The patient characteristics are described in Supplementary Table S1. The grade of toxicity was classified in accordance with the US National Cancer Institute’s Common Toxicity Criteria version 2.0. All participants provided written informed consent. This project was approved by the Institutional Review Board in the Institute of Medical Science, the University of Tokyo, and RIKEN Center for Genomic Medicine. Sample quality control was carried out by methods, including identity-by-state to evaluate cryptic relatedness for each sample, and population stratification by the use of principal component (PC) analysis to exclude genetically heterogeneous samples from further analysis. Then, our standard SNP quality control (QC) analysis to exclude genetically heterogeneous samples was carried out by excluding SNPs deviating from the Hardy–Weinberg equilibrium ($P < 10^{-6}$), nonpolymorphic SNPs, SNPs with a call rate of <0.99, and those on the X chromosome. We performed a genome-wide case/control allelic association study using the Fisher exact test.

LCL/patient comparison
We used the SCAN database to determine which of the top SNPs significantly associated with paclitaxel-induced cytotoxicity in ASN ($P < 10^{-6}$) were located in or near (within 2 kb) gene transcripts (24, 25). We also used the eQTL Browser (http://eql.uchicago.edu/Home.html) and GTEx Portal (http://www.gtexportal.org/home/) to detect whether SNPs genotyped in 1000 Genomes were eQTLs in LCLs and other tissues. The previous genomic studies using LCLs showed that Japanese and Han Chinese have similar genetic structure, but cluster separately from European and African-American individuals in PCs analysis (26). We used Sherlock, the computational algorithm that matches patterns of GWAS results with independent eQTL data to detect significant genes associated with the cytotoxicity and neuropathy phenotypes (18). We used the public HapMap CEU eQTL dataset (27) contained in Sherlock for gene association testing. Among the genes associated with each phenotype ($P < 0.05$) through Sherlock (18), the LCL/patient overlap genes were prioritized for functional analysis. Results were also compared with the published clinical GWAS of 855 genetic Europeans with breast cancer from CALGB40101, in which a dose-to-event analysis was conducted with an event defined as paclitaxel-induced sensory peripheral neuropathy ≥ grade 2 (9).

Functional studies in iPSC-derived neurons
Human iPSC-derived cortical neurons, termed iCell Neurons (Cellular Dynamics International), were used for functional validation of the candidate genes. These cells have previously been used to model chemotherapy-induced neuropathy (28, 29).

RNA-Seq. RNA isolation from iPSC-derived cortical neurons was performed after removal of media and addition of 50 μL Qiazol per well plate for 5 minutes at room temperature to lyse cells. After vigorously pipetting each well several times, samples were collected and stored for further processing at –70°C. RNA was purified using the Ambion RNA protocol (15596026.PPS), only substituting Qiazol as the lysing dye for RNA kits (Molecular Probes, Life Technologies), as per the manufacturer’s specifications. RNA (1 μg) from each time point was submitted to the University of Chicago Genomics Core. RNA quality was checked on the Agilent Bio-analyzer 2100. RNA-SEQ libraries were generated in the core using Illumina RS-122-2101 TruSeq Stranded mRNA LT Libraries and the final libraries checked again on the Agilent bio-analyzer 2100, which was followed by sequencing on the Illumina HiSeq2500. The raw sequencing reads were processed and analyzed using the RNA-Seq pipeline in the Galaxy Project (30). Briefly, the raw reads were mapped to the human genome reference (hg19) using TopHat2 (version 2.06; ref. 31), which aligns RNA-Seq reads to the human genomes using the ultra high-throughput short read aligner Bowtie2 (32). Cufflinks (version 0.0.7; ref. 33) was then used to quantify and quantile normalize the expression levels of the assembled transcripts.

siRNA knockdown studies. iCell Neurons (1.33 × 10^6) were seeded with 3.3 μg/mL laminin (Sigma-Aldrich) in iCell Neuron complete maintenance media onto poly-D-lysine coated 96-well Greiner Bio-One plates (Monroe) according to the manufacturer’s recommendations. Dharmacon Accell technology (GE Dharmacon) was applied at 4 hours after plating using 1 μmol/L of each human siAPL1, siPTPMT1, siBCR, or siDDX54 SMARTpool or the nontargeting control (NTC). Twenty-four hours later cells were either collected for real-time reverse transcription PCR (RT-PCR) or an exchange of transfection media with paclitaxel at a dose range of 0.001 to 10 μmol/L or 0.17% DMSO vehicle control. After 24 or 48 hours, the drug was removed and cells were stained with 1 μg/mL Hoechst 33342 (Sigma-Aldrich) and 2 μg/mL Calcein AM in dPBS (Molecular Probes, Life Technologies Inc.). Image analysis was performed on the ImageXpress Micro imaging system (Molecular Devices, LLC) at the University of Chicago Cellular Screening Center. Individual cell measurements of neurite outgrowth, including mean/median/maximum process length, total neurite outgrowth (sum of the length of all processes), number of processes, number of branches, cell body area, mean outgrowth intensity and straightforwardness were analyzed using the MetaXpress software Neurite Outgrowth Application Module. Each experiment was replicated three times and the difference in the relative neurite outgrowth for each siRNA treatment was compared with NTC and tested for significance by two-way ANOVA analysis.

Cells for RT-PCR from 2 wells for each experiment were collected at 24 and 48 hours posttransfection using Cells to CT (Life Technologies) as recommended by the manufacturer. Two independent reverse transcription reactions were performed, and the efficiency of knockdown for APL1 (Hs04185077_m1), PTPMT1 (Hs00378514_m1), BCR (Hs01036352_m1), or DDX54 (Hs_00225320_m1; Life Technologies) for triplicate wells was determined using TaqMan fast chemistry on the Viaa7 PCR machine (Life Technologies). A comparative ΔΔCt analysis was used to determine the percentage knockdown of each gene by comparing the CΔt difference relative with the beta-2-microglobulin control (NM_004048.2) and normalizing to NTC.
The paclitaxel-induced log2-transformed cytotoxicity phenotype populations (CEU, JPT, CHB, YRI, ASW, n = 87; CHB, n = 57; YRI, n = 88; ASW, n = 89) were phenotyped for the cellular growth inhibitory effects of paclitaxel. The cytotoxicity phenotype is log2-transformed mean area under the survival curve (AUC). There were no statistically significant differences among the 5 populations.

Results
Paclitaxel-induced cytotoxicity in LCLs
HapMap LCLs were treated with increasing concentrations of paclitaxel and cellular growth inhibition was measured. The log2-transformed area under the survival curve (AUC) was used as the paclitaxel-induced cytotoxicity phenotype. To evaluate ethnic differences in mean log2 AUC of paclitaxel, we compared results from LCLs derived from the Asian populations (JPT, n = 57; CHB, n = 59; YRI, n = 88; ASW, n = 83) with our previous data of three other HapMap LCL populations (CEU, n = 77; YRI, n = 87; ASW, n = 83; ref. 19). The paclitaxel-induced log2-transformed cytotoxicity phenotype showed normal distributions in each population. Figure 1 illustrates the paclitaxel-induced cytotoxicity among 5 populations with no statistical differences among the populations observed.

Genome-wide association study in Asian LCLs
Figure 2 illustrates the Manhattan plot of paclitaxel-induced cytotoxicity in LCLs derived from the Asian populations (JPT and CHB). There were 248 SNPs associated with paclitaxel cytotoxicity in the ASN population at a suggestive significance of $P < 10^{-5}$; however, among them only one SNP (rs56763443) and two SNPs (rs8049617 and rs7598550) were significant in the CEU and YRI GWAS results at $P < 0.05$, respectively. Three of the most significant six SNPs in the ASN GWAS of paclitaxel-induced cytotoxicity were located near (within 2 kb) gene AIPL1 (aryl-hydrocarbon-interacting protein-like 1). The three AIPL1 SNPs are in perfect LD ($r^2 = 1, D^* = 1$ in ASN), and thus represent one signal. We evaluated whether any of these six SNPs were expression quantitative trait loci (eQTLs) with $r^2 \geq 0.8$ in two distinct databases, University of Chicago database (http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/) and GTEx Portal (http://www.gtexportal.org); however, they were not eQTLs in any tissues listed (generic genome browser version 1.68). We also downloaded the expression data collected from ASN LCLs in Stranger and colleagues (34). We found no relationship between AIPL1 expression and paclitaxel cytotoxicity $(n = 88, \beta = -0.012, P = 0.66)$ or AIPL1 expression and rs3892315 genotype $(n = 90, \beta = -0.009, P = 0.52)$. Table 1 illustrates these three SNPs trending toward significance in LCLs derived from individuals of Northern/Western Europe (CEU; $P < 0.065-0.078$), but there was no significance in African LCLs (YRI; $P = 0.305-0.355$). Thus, the genetic variation near AIPL1 may contribute to paclitaxel-induced cytotoxicity particularly in Asians. Supplementary Table S2 lists 28 SNPs in or near AIPL1 and their association with sensory neuropathy in Asian patients; one SNP (rs7214517) has a P value of 0.028. The three LCL SNPs (rs56763443, rs8049617, and rs7598550) were not genotyped in the Asian study.

Functional validation of AIPL1 using human iPSC-derived neurons
The effects of AIPL1 expression on paclitaxel-induced neurotoxicity was assessed in neurons derived from iPSCs. To evaluate the effects of low AIPL1 expression on paclitaxel-induced neurotoxicity, we modulated the gene in neurons through transient siRNA transfection and verified with quantitative PCR (qPCR), a reduction of expression in AIPL1 to 62% and 14% relative to control at 24 and 48 hours posttransfection relative to NTC (Fig. 3A). The modulation expression of AIPL1 resulted in increased resistance of neurons to paclitaxel at 48 hours using two-way ANOVA analysis, as measured by significant increase in relative total outgrowth (Fig. 3B; $P = 0.017$), mean process length (Fig. 3C; $P = 0.008$), and relative number of processes (Fig. 3D; $P = 0.029$). Median process length ($P = 0.005$), max process length ($P = 0.011$), phenotypes related to mean process length and mean outgrowth intensity, a phenotype related to thickening of the neurite outgrowths ($P = 0.0065$) was also significantly
Table 1. SNPs significantly associated with paclitaxel-induced cytotoxicity in Asian LCLs ($P < 10^{-5}$) and their level of significance in CEU LCLs and YRI LCLs.

<table>
<thead>
<tr>
<th>SNP</th>
<th>ASN Beta</th>
<th>P</th>
<th>MAF*</th>
<th>CEU Beta</th>
<th>P</th>
<th>MAF*</th>
<th>YRI Beta</th>
<th>P</th>
<th>MAF*</th>
<th>Host gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs11595500</td>
<td>-0.212</td>
<td>4.13E-08</td>
<td>0.167</td>
<td>-0.036</td>
<td>0.463</td>
<td>0.346</td>
<td>0.171</td>
<td>0.149</td>
<td>0.058</td>
<td>NA</td>
</tr>
<tr>
<td>rs264124</td>
<td>0.146</td>
<td>6.95E-07</td>
<td>0.343</td>
<td>0.020</td>
<td>0.694</td>
<td>0.463</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>NA</td>
</tr>
<tr>
<td>rs3892315</td>
<td>0.207</td>
<td>8.72E-07</td>
<td>0.134</td>
<td>0.151</td>
<td>0.085</td>
<td>0.113</td>
<td>-0.047</td>
<td>0.353</td>
<td>0.321</td>
<td>AIPL1</td>
</tr>
<tr>
<td>rs1663196</td>
<td>0.207</td>
<td>8.75E-07</td>
<td>0.134</td>
<td>0.144</td>
<td>0.078</td>
<td>0.113</td>
<td>-0.050</td>
<td>0.507</td>
<td>0.317</td>
<td>AIPL1</td>
</tr>
<tr>
<td>rs3892316</td>
<td>0.206</td>
<td>9.23E-07</td>
<td>0.137</td>
<td>0.151</td>
<td>0.066</td>
<td>0.113</td>
<td>-0.047</td>
<td>0.355</td>
<td>0.321</td>
<td>AIPL1</td>
</tr>
</tbody>
</table>

Figure 3. Decreased AIPL1 expression reduces sensitivity of human iPSC-derived neurons to paclitaxel. A, relative AIPL1 expression 24 to 48 hours posttransfection normalized to NTC. Neurite outgrowth phenotypes measured following 48 hours paclitaxel exposure (0.001–10 µmol/L) were tested for differences between siAIPL1 and NTC by two-way ANOVA, including relative total neurite outgrowth ($P = 0.017$; B), relative mean process length ($P = 0.008$; C), and relative number of processes ($P = 0.029$; D). Error bars, SEM from three experiments of >2,000 cells per dose. E, representative high-content images comparing human iPSC-derived neurons upon siRNA knockdown of AIPL1 and NTC 48 hours after treatment with 0.01 mol/L paclitaxel. Images taken at >10 magnification; scale bar, 100 µm.
GWAS in patient samples of paclitaxel-induced neuropathy

We performed GWAS of paclitaxel-induced neuropathy in 183 Asian cancer patients (Fig. 4A). We identified four SNPs above a suggestive threshold of \(P < 10^{-5} \) and no genome wide significant SNPs at \(P = 5 \times 10^{-8} \). Gene-based tests are commonly used following traditional SNP-based analysis because they reduce multiple testing and provide genes as opposed to SNPs. Therefore, we evaluated LCL Asian GWAS (Fig. 2), Asian cancer patient data (Fig. 4A), and GWAS data from CALGB40101, a study of 855 Europeans evaluated for paclitaxel-induced neuropathy (9) using Sherlock, a program that enables gene-based sorting of targets by scoring alignment of genetic signatures of eQTLs and the phenotype (18). Comparison of results from Asian LCL cytotoxicity and Asian patient neuropathy at \(P < 0.05 \), had 32 overlap genes (Fig. 4B; Supplementary Table S3); comparison of Asian LCL cytotoxicity and European patient neuropathy at \(P < 0.05 \) had 37 overlap genes (Fig. 4B, Supplementary Table S4) and comparison of Asian and European patient GWAS cohorts at \(P < 0.05 \) had 10 overlap genes (Fig. 4B, Supplementary Table S5). Interestingly, PTPMT1 (protein tyrosine phosphatase, mitochondrial 1) overlapped all three analyses: Asian LCL cytotoxicity, Asian patient neuropathy, and European patient neuropathy at \(P < 0.05 \). Although we modulated gene expression of PTPMT1 in iCell neurons, resulting in 77% and 41% gene remaining after 24 and 48 hours, no significant difference was found in any of the neurite outgrowth phenotypes when compared with NTC (data not shown), indicating that some mechanism distinct from levels of gene expression may explain the role of PTPMT1 in paclitaxel-induced peripheral neuropathy. Alternatively, the effect of gene knockdown on other neuronal phenotypes such as electrical activity would not be captured in this system that is focused on morphologic changes.

Functional validation of BCR and DDX54 using human iPSC-derived neurons

To prioritize the 32 Asian specific genes (Supplementary Table S3), we evaluated both their gene level expression in...
iPSC-derived neurons (using RNA-Seq) and published literature using PubMed search terms: Gene name and CIPN or neuropathy or neurons done 2/2015 (Supplementary Fig. S6). Breakpoint cluster region (Bcr) protein, highly expressed in iPSC-derived neurons, is enriched in neurons and involved in neural activities, and therefore was chosen for further studies (35–37). We found that a change in expression to 62% and 67% at 24 and 48 hours compared with NTC (Fig. 5A), resulting in a decrease in the relative total outgrowth \((P = 0.0097) \), number of processes \((P = 0.0298) \), max process length \((P = 0.0016) \), and number of branches \((P = 0.0003) \). Error bars, SEM from three experiments of >2,000 cells per dose.

Discussion

A comparison of paclitaxel-induced cytotoxicity in LCLs derived from patients of Asian, European, and African ancestry demonstrates no difference in cellular sensitivity to paclitaxel. Traditional GWAS reveals only a small fraction (3/248) SNPs suggestively significant in Asian LCLs for paclitaxel-induced cytotoxicity are also significant in either CEU or YRI LCLs with the most significant genetic variant associations unique within populations. The top intragenic SNPs in the ASN GWAS of paclitaxel-induced cytotoxicity were located near *AIP1L1* gene. Upon knockdown of *AIP1L1* in human iPSC-derived neurons, decreased sensitivity to paclitaxel as measured by neurite outgrowth phenotypes was observed. Using a gene-based approach, a gene identified as Asian specific (overlapped in Asian LCLs and Asian clinical cohort of neuropathy) *BCR* (breakpoint cluster region), was validated using iPSC-derived neurons with knockdown corresponding to increased sensitivity to paclitaxel-induced damage to neurons. The same approach identified *PTPMT1* associated with paclitaxel-induced cytotoxicity in Asian LCLs, as well as Asian and European paclitaxel-induced peripheral neuropathy clinical cohorts. By integrating gene-based analyses from clinical studies of paclitaxel-induced neuropathy in Asian and European patients with LCL results, population specific, and across population target genes were identified.

The HapMap LCLs are advantageous for evaluating pharmacogenomics of anticancer agents because these samples have publicly available genotypes (39, 40) and sequencing data (20) for GWAS. The samples also have gene expression (41), miRNA (42), modified cytosine (43), and protein data (44) that allow for the elucidation of potential function of the genetic variants associated with pharmacologic phenotypes. Our observation of a lack of population difference in
paclitaxel-induced cytotoxicity is in contrast with population differences observed for platinating agents (45) and antimetabolites (46). In part, these population differences in drug sensitivity may be explained by population differences in gene expression (41). The role of gene expression in population differences in chemotherapeutic cytotoxicity is supported by the observation that pharmacologic SNPs for several different chemotherapeutic agents (etoposide, daunorubicin, cisplatin, carboplatin, cytarabine, and capcitabine) are enriched in eQTLs or SNPs associated with gene expression (25). In contrast, pharmacologic SNPs associated with paclitaxel are not enriched in eQTLs; however, enrichment in protein quantitative trait loci has been observed (47). These differences may be due to differences in mechanism of action of paclitaxel, a microtubule stabilizer compared with the other cytotoxic agents that target DNA.

In our Asian patient dataset, it appears that peripheral neuropathy is more common in females than males (males: 1 case/33 controls; females: 23 cases/88 controls); however, this gender difference is likely confounded by differences in cumulative dose, treatment schedule or age of the patients. Evidence suggests that age, race, and comorbid conditions, such as diabetes, and cumulative dose of drug administered may be associated with an increased risk of developing neuropathy (48).

In efforts to decrease multiple tests and identify genes instead of SNPs, we chose to utilize a gene-based approach to detect clinically significant genes with multiple trans eQTLs with moderate associations, which cannot be identified from the GWAS alone (18). We used Sherlock to compare genes significant in two independent studies of paclitaxel-induced neuropathy (855 European and 183 Japanese) and the LCL data we generated in the Asian populations. According to the gene-based test, 10 genes, including PTPMT1, were found to overlap between Asians and Europeans along with hundreds of candidate gene associations that were unique to each population. At this threshold, PTPMT1 was revealed as a common target of paclitaxel-induced sensory peripheral neuropathy among populations. PTPMT1 is anchored in the inner mitochondrial membrane and is required for mitochondrial integrity and oxidative respiration (49). Because its ablation increased apoptosis in cancer cell lines and decreased differentiation and proliferation, but not survival in embryonic stem cells, its function may be cell-type specific in the regulation of cell growth and survival (50). Thus, PTPMT1 in peripheral nerve mitochondria may play a critical role in paclitaxel-induced neurotoxicity across populations and is worth further studies. Our data indicate that expression knockdown PTPMT1 in iPSC-derived neurons did not alter sensitivity to paclitaxel as measured by morphologic changes in neuronal outgrowth; however, it is possible that the gene is important in electrical activity or other measures of neuronal damage.

Through LCL GWAS of paclitaxel-induced cytotoxicity, SNPs in AIPL1 were implicated as the most significant intragenic SNPs in the Asian LCLs. In evaluating SNPs within or close to AIPL1, rs7214517 was associated with Asian patient peripheral neuropathy (P = 0.028). AIPL1 expressed in rod and cone photoreceptors has a critical role in cell viability, and gene defects in AIPL1 cause heterogeneous degenerations of the human retina, such as retinitis pigmentosa (51). Interestingly, this disease is related to NARP syndrome (neuropathy, ataxia, and retinitis pigmentosa), which is an inherited condition chiefly affecting nervous systems due to mitochondrial DNA dysfunction in creating adenosine triphosphate (52). Its worldwide prevalence is unknown and it remains unclear how this disruption in mitochondrial energy production leads to muscle weakness, vision loss, and the other specific features of NARP syndrome. Kirschman and colleagues (53) also found that transgenic expression of AIPL1 restored rod morphology and the rod-derived electroneutropathy response in Aipl−/− mice, implicating a neuron component for this gene. Mitochondrial dysfunction has been implicated as a mechanism for neurotoxicity of paclitaxel (54) and our results demonstrated that decreased expression of AIPL1 significantly decreased sensitivity of neurons to paclitaxel; hence, there could be a cell-type–specific function of AIPL1 in a mitochondrial component in peripheral neurons and AIPL1 could be a potential therapeutic target of paclitaxel-induced sensory peripheral neuropathy especially in Asians.

We identified a set of 32 Asian specific genes that overlapped in the Asian LCL and Asian patient datasets. One of those genes, BCR, was functionally validated in the iPSC-derived neuronal model with increased sensitivity of neurons to paclitaxel upon knockdown of the gene. Bcr has been shown in rat PC12 cells to cooperate with Fes to activate Rho family GTPases as part of a novel pathway regulating neurite extension (55). Furthermore, Huntington’s-associated protein, 1A interacts with Bcr on microtubules to regulate neuronal differentiation (56). Increasingly, Bcr is emerging as an important regulator of excitatory synapse receptor expression and development. Our data indicate that BCR contributes to the protection of neurons from paclitaxel-induced damage as measured by several neuronal phenotypes, including total outgrowth of neurites.

Although CIPN is a common, potentially severe and dose-limiting adverse effect of many commonly used cancer therapeutics, including paclitaxel, there are no effective genetic markers or treatment for this side effect (4, 7, 8). Therefore, to identify genetic variants and genes associated with CIPN, several large clinical GWAS have been conducted and revealed a few promising associations (9, 10, 14). However, there are some considerable issues in clinical GWAS of CIPN, including (i) lack of replication studies; (ii) pharmacogenomics underlying ethnic specificity; and (iii) lack of appropriate models to functionally validate important GWAS results. Therefore, combining cell-based data with multiple clinical genome-wide association studies, as done in this study, is a way to identify the most promising genes. Furthermore, we utilized a novel technology, human iPSC-derived neurons for gene functional validation. The elucidation of variants specific to the Asian population may be helpful in developing personalized cancer treatments.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: M. Komatsu, M. Kubo, M.E. Dolan
Development of methodology: M. Komatsu, M.E. Dolan
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M. Komatsu, S. Chung, C. Wing, S.M. Delaney, D.L. Kroetz, M.E. Dolan
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M. Komatsu, H.E. Wheeler, S.-K. Low, C. Wing, S.M. Delaney, A. Takahashi, D.L. Kroetz, W. Zhang, M.E. Dolan

Published OnlineFirst May 26, 2015; DOI: 10.1158/1078-0432.CCR-15-0133

Downloaded from clincancerres.aacrjournals.org on December 31, 2017. © 2015 American Association for Cancer Research.
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Chang, C. Wing, S.M. Delaney, L.K. Gonsic, M. Kubo, D.L. Kowetz, W. Zhang, M.E. Dolan

Study supervision: M. Komatsu, Y. Nakamura, M.E. Dolan

Acknowledgments
The authors thank Dr. R. Stephanie Huang, Bonnie LaCroix, and Jamie Meyers of the Pharmacogenomics of Anticancer Agents Research LCL core for maintaining, distributing and authenticating LCLs. The authors also appreciate the imaging guidance provided by Sam Bettis, Siquan Chen, and Elise Fletcher of the University of Chicago Cellular Screening Center.

References

55. Laurent CE, Smithgall TE. The c-Fos tyrosine kinase cooperates with the breakpoint cluster region protein (Bcr) to induce neurite extension in a Rac1–Cdc42-dependent manner. Exp Cell Res 2004;299:186–98.

Clinical Cancer Research

Pharmacoethnicity in Paclitaxel-Induced Sensory Peripheral Neuropathy

Masaaki Komatsu, Heather E. Wheeler, Suyoun Chung, et al.

Updated version
Access the most recent version of this article at:

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2015/05/28/1078-0432.CCR-15-0133.DC1

Cited articles
This article cites 56 articles, 15 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/21/19/4337.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/21/19/4337.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/21/19/4337.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.