Preclinical Efficacy of Ron Kinase Inhibitors Alone and in Combination with PI3K Inhibitors for Treatment of sfRon-Expressing Breast Cancer Patient-Derived Xenografts

Magdalena Bieniasz¹, Parvathi Radhakrishnan², Najme Faham¹, Jean-Paul De La O², and Alana L. Welm³

Abstract

Purpose: Recent studies have demonstrated that short-form Ron (sfRon) kinase drives breast tumor progression and metastasis through robust activation of the PI3K pathway. We reasoned that upfront, concurrent inhibition of sfRon and PI3K might enhance the antitumor effects of Ron kinase inhibitor therapy while also preventing potential therapeutic resistance to tyrosine kinase inhibitors (TKI).

Experimental Design: We used patient-derived breast tumor xenografts (PDX) as high-fidelity preclinical models to determine the efficacy of single-agent or dual Ron/PI3K inhibition. We tested the Ron kinase inhibitor ASLAN002 with and without coadministration of the PI3K inhibitor NVP-BKM120 in hormone receptor–positive [estrogen receptor (ER)⁺/progesterone receptor (PR)⁺] breast PDXs with and without PIK3CA gene mutation.

Results: Breast PDX tumors harboring wild-type PIK3CA showed a robust response to ASLAN002 as a single agent. In contrast, PDX tumors harboring mutated PIK3CA demonstrated partial resistance to ASLAN002, which was overcome with addition of NVP-BKM120 to the treatment regimen. We further demonstrated that concurrent inhibition of sfRon and PI3K in breast PDX tumors with wild-type PIK3CA provided durable tumor stasis after therapy cessation, whereas discontinuation of either monotherapy facilitated tumor recurrence.

Conclusions: Our work provides preclinical rationale for targeting sfRon in patients with breast cancer, with the important stipulation that tumors harboring PIK3CA mutations may be partially resistant to Ron inhibitor therapy. Our data also indicate that tumors with wild-type PIK3CA are most effectively treated with an upfront combination of Ron and PI3K inhibitors for the most durable response. Clin Cancer Res; 21(24); 5588–600. ©2015 AACR.

Introduction

The Ron receptor tyrosine kinase and its ligand, macrophage-stimulating protein, have been shown to be upregulated in breast and other cancers, and the pathway is correlated with poor clinical outcome (1–3). We recently discovered that an alternative isoform of Ron, known as short-form Ron (sfRon), is also a significant contributor to breast cancer pathogenesis (4). sfRon is generated by alternative transcription from a second promoter within exon 10 of the RON gene (5). Thus, the sfRon protein lacks the N-terminus of Ron, including the ligand-binding domain, but organizes into a constitutively active transmembrane protein with an intracellular amino acid sequence that is identical to full-length Ron. Our previous studies revealed the surprising discovery that the major active (phosphorylated) Ron isoform in patient-derived breast tumors is sfRon, rather than full-length Ron. In the same study, we also determined that sfRon plays a significant role in the aggressiveness of breast cancer in vivo by dramatically promoting tumor growth and metastasis (4). We found that sfRon signals strongly through PI3K, which was required for the tumor-promoting and metastatic functions of sfRon in MCF7 xenografts (4). Because sfRon protein is expressed in approximately 69% of breast tumors, with no detectable expression in healthy breast tissue, sfRon may be a good target for breast cancer therapy.

The PI3K signaling network is frequently dysregulated in breast cancer (6). Mutations of PIK3CA gene, which encodes the p110α catalytic subunit of PI3K, are among the most frequent mutational events in breast cancer—occurring in 18% to 40% of tumors (7, 8). Almost all PIK3CA mutations involve “hotspots” on exons 9 and 20, corresponding to the helical (E542K and E545K) and kinase (H1047R) domain mutations, respectively (8, 9). These mutations result in elevated catalytic activity of p110α (10) and cause cell transformation (11). Importantly, molecular alterations within the PI3K pathway predict responsiveness to PI3K pathway–targeted agents (12, 13) and correlate with resistance to targeted therapy of upstream receptors (14–17).
Translational Relevance

Using patient-derived breast cancer xenograft (PDX) models, which are arguably the most clinically relevant models of human breast cancer, this work provides preclinical rationale for future clinical testing of Ron kinase inhibitors in patients with breast tumors that express sfRon. Our results indicate that such trials should include screening tumors for PIK3CA mutations; our PDX data showed that the presence of PIK3CA mutation contributes to partial resistance to the Ron inhibitor ASLAN002. Therefore, there is limited rationale for using Ron kinase inhibitors in patients with breast cancer with mutated PI3K. In tumors with wild-type PIK3CA, the up-front combination of sfRon and PI3K inhibitors may provide the optimal treatment strategy; we found that durable tumor stasis was sustained even after treatment was discontinued.

Although breast cancer is among the most chemosensitive of the solid tumors, important improvements in survival have been achieved during the past two decades with the introduction of targeted therapies, which are generally better tolerated than cytotoxic chemotherapy (18). Preclinical studies, single-agent Ron inhibitors have been reported to inhibit growth of colon, breast, and pancreatic tumor xenografts (19–23). On the basis of these preclinical data, phase I clinical trials have been initiated with Ron inhibitors for multiple cancers (IMC-RON8, an inhibitory antibody in trial #NCT01119456, and ASLAN002, a Ron kinase inhibitor in trial #NCT01721148). However, none of the Ron inhibitory antibodies that have been developed (such as IMC-RON8) will block sfRon, which lacks most of the extracellular domain and does not require ligand binding for activity (4). Inhibition of Ron kinase activity with small molecules (such as ASLAN002), on the other hand, would block both Ron and sfRon and therefore might be a more efficacious approach in tumors where sfRon is expressed.

Preclinical drug testing largely relies on in vitro and xenograft assays to determine the efficacy of candidate antitumor agents. This system is suboptimal, as evidenced by common failures at the phase II and III stages of human testing due to lack of antitumor efficacy in humans (24, 25). Likewise, xenograft models using human breast cancer cell lines, despite their clear advantages for speed and ease of use, only partially recapitulate breast tumor biology, metastatic progression, and response to therapy for breast cancers overexpressing sfRon. Our data also indicate the importance of considering PIK3CA mutation status in the setting of Ron inhibition.

Materials and Methods

Source of cells and tumors

MCF7 cells expressing sfRon (MCF7-sfRon) were previously described (4). Our MCF7 cell lines were authenticated by short tandem repeat (STR) profiling analysis by the ATCC on January 5, 2015. Our MCF7 cell lines are an exact match to ATCC cell line HTB-22 (MCF7). HCl-002, HCl-003, HCl-007, HCl-011, and HCl-013 PDX tumors were obtained from our published collection (28, 29) and implanted as tumor fragments into cleared inguinal mammary fat pads as described below and in our detailed protocol article (30).

Generation of lentiviruses and cell transduction

To generate breast cancer cell lines expressing sfRon and the most common mutations of the PIK3CA gene found in breast tumors, the endogenous PIK3CA gene was knocked down in MCF7-sfRon cells, followed by conditional reexpression of different variants of this gene [wild-type (WT), E545K, or H1047R]. The knockdown was performed by lentiviral transduction of MCF7-sfRon cells using lentiviral plasmid pLKO.1-puro shRNA directed against 3’-untranslated region (UTR) of the PIK3CA gene (Sigma-Aldrich; validated MISSION shRNA clone, TRCN0000010407, clone ID NM_006218.s-3234s1c1) followed by selection with puromycin. To conditionally reexpress variants of PIK3CA gene, MCF7-sfRon PIK3CA-knockdown cells were subsequently transduced with pLentiTRE/rTA-PIK3CAWT, pLentiTRE/rTAR-PIK3CAE545K, or pLentiTRE/rTAR-PIK3CAH1047R lentiviruses, which were constructed as follows: The coding sequence of the WT PIK3CA gene was amplified by PCR from pBabe puro HA PIK3CA plasmid (plasmid 12522, Addgene) and flanked by restriction sites for the Hpal and PacI enzymes. Next, the sequence was subcloned into Hpal and PacI restriction sites of the tetracycline inducible Tet-On lentiviral expression vector pLentiTRE/rTAR carrying both TRE and rTA cassettes (kindly provided by Trudy Oliver, Huntsman Cancer Institute, Salt Lake City, UT). Specific mutations were introduced into the WT PIK3CA sequence by site-directed mutagenesis with the QuikChange Site-Directed Mutagenesis Kit (Stratagene). Primers used to generate the desired mutation were (mutated nucleotide in bold):

E545K-Fwd: CTCCTGAAATCTACCTAGCGAGAAGAATTTTCTAGGAGCTC
E545K-Rev: GTGCATCATTCAT

H1047R-Fwd: GACTCCCATAGAAAATCTTTCTCCTGCT
H1047R-Rev: AGTGATTTCAGAG

To best address challenges associated with reliability of tumor models for in vivo drug testing, we used our patient-derived orthotopic breast tumor xenograft (PDX) models, which retain characteristics of patient tumors with very high fidelity (28). Importantly, most of our PDX models, like bona fide human breast tumors (4), overexpress endogenous sfRon, which is consistently maintained through multiple rounds of serial transplantation of the PDX tumor.

Here, we report the in vivo efficacy of the Ron kinase inhibitor ASLAN002 with and without coadministration of the PI3K inhibitor NVP-BKM120 in estrogen receptor (ER)+/−/progesterone receptor (PR)+ breast PDX models. The study results validate Ron and PI3K pathway inhibitors as potential targeted therapy for breast cancers overexpressing sfRon. Our data also indicate the importance of considering PIK3CA mutation status in the setting of Ron inhibition.
was induced by the addition of 500 ng/mL of doxycycline for 24 hours.

Drugs and reagents

Doxycycline was purchased from Sigma-Aldrich and dissolved in water to a final concentration of 1 mg/mL. IMC-RON8 was provided by ImClone LLC system, diluted in PBS and 40 mg/kg dose was administered by intraperitoneal injections 3 days a week. OSI-296 was obtained from OSI Pharmaceuticals and diluted in 40% Trappsol followed by sonication. For \textit{in vivo} studies, OSI-296 was administered orally as a 200 mg/kg dose every other day. NVP-BEZ235 and NVP-BKM120 were provided by Novartis Pharmaceuticals. Lysophosphatidyl NVP-BEZ235 or NVP-BKM120 was dissolved in 1 volume of NMP (1-methyl-2-pyrrolidone; Sigma-Aldrich). After dissolution, 9 volumes of PEG300 (Sigma-Aldrich) was added to a final ratio of NMP 10%/PEG300 90%. Drug solutions (NVP-BKM120 at 60 mg/kg or NVP-BEZ235 at 45 mg/kg) were administered orally to mice within 30 minutes to avoid precipitation. ASLAN002 was provided by ASLAN Pharmaceuticals and was prepared as a 500 mg/mL stock solution in DMSO. For \textit{in vitro} experiments, mice were treated orally with a 50 mg/kg dose every other day. For \textit{in vitro} studies, a 10 mmol/L stock solution of each compound was made in DMSO and administered to cells at the concentrations indicated. Target inhibition was validated by incubating with 30 mmol/L dithiothreitol (DTT), 25% sucrose, 1 mmol/L Na3VO4, and 1× protease inhibitor cocktail on ice for 15 minutes, followed by centrifugal clearing at 4°C for 10 minutes at 10,000 rpm to recover whole-cell lysates. For immunoprecipitations, 200 μg whole-cell lysate was diluted in immunoprecipitation buffer (50 mmol/L Tris-HCl, pH 7.5, 0.42 mol/L NaCl, 1.5 mmol/L MgCl2, 0.5 mmol/L EDTA, 1 mmol/L dithiothreitol (DTT), 25% sucrose, 1 mmol/L Na3VO4, and 1× protease inhibitor cocktail) on ice for 15 minutes, followed by centrifugal clearing at 4°C for 10 minutes at 10,000 rpm to recover whole-cell lysates. For immunoprecipitations, 200 μg whole-cell lysate was diluted in immunoprecipitation buffer (50 mmol/L Tris-HCl, pH 7.5, 150 mmol/L NaCl, 1% (w/v) Triton X-100, 10% glycerol, 1 mmol/L EDTA, 1 mmol/L DTT, 1 mmol/L Na3VO4, and 1× protease inhibitor cocktail) and immunoprecipitated by incubating with 30 μl of clone 4G10 anti-phosphotyrosine agarose conjugate (cat. no. 05-777, Millipore Co.) for 16 hours at 4°C. Immunoprecipitates were washed extensively with immunoprecipitation buffer and then processed for SDS-PAGE analysis and Western blotting. For Western blot analyses, cellular proteins (100 μg whole-cell lysate) were separated by 10% SDS-PAGE under reduced conditions and transferred to PVDF membranes (Millipore Co.). Primary antibodies used were: anti-Ron (cat. no. sc-3232; 1:500) from Santa Cruz Biotechnology; anti-pan-Akt (cat. no. 4691; 1:1,000), anti-phospho-Akt Ser473 (cat. no. 9271; 1:1,000), anti-phospho-PRAS40 Thr246 (cat. no. 2997; 1:1,000), anti-PRAS40 (cat. no. 2610; 1:2,000), anti-PI3K p110 alpha (cat. no. 4249; 1:1,000) from Cell Signalling Technology; and anti-β-actin (cat. no. ab6276; 1:1,000) from Abcam. Anti-rabbit or anti-mouse secondary antibodies, conjugated with horseradish peroxidase (Santa Cruz Biotechnology) were applied, and specific bands were visualized using Western Lightning Plus-ECL (PerkinElmer). Levels of chemiluminescence were captured and quantified with the ChemiDoc XRS system with Image Lab Software.

Dose response assays

The \textit{in vitro} dose response assays were carried out by treating exponentially growing cells with the drugs followed by an MTI assay to measure cell viability using the Quick Cell Proliferation Assay kit II (BioVision). Briefly, cells were seeded in a 96-well plate in 100 μL of their respective media at a density of 25,000 or 50,000 cells per well to achieve about 40% confluency (low cell culture density) or about 80% confluency (high cell culture density), respectively, after 3 days in culture. After cells were cultured for 3 days, the media were aspirated and cells were exposed to serial dilutions of drugs (concentrations ranging from 0.1 to 100 μmol/L as indicated) for 4 days. In addition, a vehicle control corresponding to the highest DMSO concentration, which did not exceed 0.2%, was also included. Next, cells were incubated with the WST reagent for 2 hours and absorbance was determined at 450 nm. Absorbance measurements were normalized to the DMSO control wells. Normalized values were plotted as an average ± SD of 3 wells per condition and these data were analyzed using the dose response nonlinear curve fitting function with GraphPad Prism 6.0 to determine the half maximal effective concentration (EC50).

Animal experiments

All animal procedures were approved by the University of Utah or Oklahoma Medical Research Foundation Institutional Animal Care and Use Committee. For tumor growth inhibition experiments, 4- to 6-week-old female NOD/SCID mice (stock #1303, Jackson Laboratory) were implanted subcutaneously with estrogen pellets [beeswax E2 pellets, each containing ~1 mg estrogen (estradiol 1,3,5{-10}-Estratriene-3, 17 β-diol), described in ref. 30 and characterized in Supplementary Fig. S1] behind the shoulder blades, followed immediately by implantation of tumor cells or fragment into the right cleared inguinal mammary fat pad. Tumors consisted either of injection with 1 × 10⁶ MCF7-sfRon cells suspended in Matrigel or implantation of a PDX fragment using our routine procedures (28, 30). Five PDXs with different clinical attributes were used in this study: HCI-002 (low/negative Ron and sfRon, PIK3CAWildtype), HCI-003 (low sfRon, high PIK3CAWildtype), HCI-007 (high sfRon, PIK3CAMutant), HCI-011 (low sfRon, PIK3CAWildtype), or HCI-013 (high sfRon, PIK3CAH1047R). Mice with established tumors of approximately 100 to 200 mm³ volumes were randomized and then treated with the indicated drug regimen. A detailed summary of treatment doses, schedules, and number of animals in each experiment is given in Supplementary Table S1. Tumor dimensions were measured with Vernier calipers, and tumor volumes were calculated using the formula \(V = \frac{1}{2} \times (length \times width^2) \). Experiments involving PDXs were divided into two phases: a 4-week treatment phase followed by discontinuation of treatment and a 3-week observation phase to assess recurrence. At the end of the experiment, tumor specimens were harvested and snap-frozen in liquid nitrogen or fixed for further histologic and molecular analysis.

Pharmacodynamic analysis of tumor specimens

To determine whether ASLAN002 and/or NVP-BKM120 therapy caused effective target inhibition in tumor tissue after 2 weeks of treatment, one animal from each treatment group (50 mg/kg of ASLAN002 and/or 60 mg/kg of NVP-BKM120) or vehicle (70% PEG in PBS) was euthanized 3 hours after routine drug administration. Tumors were harvested and
analyzed by Western blotting for levels of phosphorylated target protein (p-sfRon, pAKT, or pPRAS40) as previously described (32).

Morphologic and immunohistochemical analyses of tumors

Tumor sampling from treated PDxs was performed 3 hours after the last drug treatment. Harvested tumors were fixed in 10% neutral-buffered formalin, paraffin-embedded, and hematoxylin and eosin (H&E)-stained according to standard protocols by the Cancer Tissue Pathology core at the Stephenson Cancer Center, University of Oklahoma Health Science Center (Oklahoma City, OK). Tumors were analyzed by immunohistochemistry (IHC) for expression of the following markers: anti-human cytokeratin (1:400, DAKO #Z0622), Ki67 (1:200, Thermo Scientific #RM-9106-S1), or cleaved caspase-3 (1:250, Cell Signaling #9661).

Staining was visualized by 3,3’-diaminobenzidine, with hematoxylin as a counter-stain. Slides were imaged on an Olympus BX50 microscope with a Canon EOS Rebel XSI camera using EOS imaging software. For Ki67 or cleaved caspase-3 quantification, 4 images per one tumor from each treatment group were manually analyzed with ImageJ software, version 1.48v and Java 1.6.0_20 (32-bit) engine (33). The percentage of Ki67- or cleaved caspase-3–positive cells was quantified by the average ratio of positive nuclei to total nuclei in each field.

Statistical analysis

All *in vitro* experiments were performed three separate times and in triplicate when applicable. Analysis of tumor growth inhibition and comparison of the percentage of Ki67- or cleaved caspase-3–positive cells between groups was done using multiple t test with Holm–Sidak correction. Error bars represent SEM. P < 0.05 was considered significant. Statistical analysis was performed using GraphPad Prism 6.0 Software.

Results

Evaluation of Ron/Met kinase inhibitors against sfRon

We used two Ron/Met kinase inhibitors in the study: OSI-296 (34) and BMS-776707 (35); the latter compound is now being developed clinically as ASLAN002 by ASLAN Pharmaceuticals. We first tested the ability of OSI-296 or ASLAN002 to inhibit sfRon activity *in vitro* in MCF7-sfRon cells following serum starvation. Within 1 hour of treatment, both compounds completely inhibited phosphorylation of sfRon in the 0.5 to 1 μmol/L range and also caused reduction in downstream phosphorylated AKT when higher doses were given over the same time period (Fig. 1A and B). These data are consistent with our previous results showing robust PI3K/AKT activity downstream of sfRon in MCF7 cells (4).

To test whether ASLAN002 or OSI-296 could effectively treat sfRon-expressing tumors *in vivo*, we treated groups of NOD/SCID mice carrying orthotopic MCF7-sfRon tumors with each of these compounds. Drug treatment (or vehicle control) began when tumors reached a volume of 200 mm³ and continued every other day for 2 weeks. Treatment groups were vehicle control (40% trappsol in PBS) versus OSI-296 (200 mg/kg; Fig. 1C) and, in a separate experiment, vehicle control (70% PEG in PBS) versus ASLAN002 (50 mg/kg; Fig. 1D). Both compounds exhibited significant tumor growth inhibition in comparison with controls. The published selectivity of ASLAN002 for Ron kinase (35) and its comparable *in vivo* efficacy to OSI-296 at a 4-fold lower dose (Fig. 1C and D) compelled us to further continue our studies with ASLAN002.

Evaluation of PI3K inhibitors as agents targeting sfRon downstream signaling

To target the PI3K pathway (36), we obtained the pan-PI3K inhibitor NVP-BKM120 and dual PI3K/mTOR inhibitor NVP-BEZ235 from Novartis. We first assessed the activity of NVP-BKM120 and NVP-BEZ235 *in vitro* in MCF7-sfRon cells. We found that both agents were potent inhibitors of PI3K signaling as determined by dose-dependent inhibition of phosphorylated AKT; however, at higher doses, NVP-BEZ235 led to some returning AKT phosphorylation (Fig. 1E). This activity of NVP-BEZ235 has been also reported by others; at certain doses and exposure times, the drug may relieve feedback inhibition, resulting in reactivation of PI3K/AKT signaling (37, 38).

We next compared the efficacy of NVP-BKM120 and NVP-BEZ235 against MCF7-sfRon tumors *in vivo* in NOD/SCID mice. Once tumor xenografts reached 200 mm³, mice were treated daily with vehicle control (10% NMP + 90% PEG300), NVP-BKM120 (60 mg/kg/d), or NVP-BEZ235 (45 mg/kg/d) for 19 days. Both PI3K inhibitors significantly inhibited growth of sfRon-expressing tumors; however, suppression of tumor growth with NVP-BKM120 was significantly better than with NVP-BEZ235 treatment (Fig. 1F). Together, these data provided strong rationale to further pursue NVP-BKM120 in combination with the Ron kinase inhibitor for breast tumors overexpressing sfRon.

Evaluation of Ron and PI3K inhibitors in MCF7-sfRon xenograft model

We next tested ASLAN002 and NVP-BKM120 head-to-head as single agents and as combination therapy against MCF7-sfRon tumors. As a negative control, we included a cohort of mice treated with IMC-RON8, a humanized monoclonal antibody against Ron being investigated in clinical trials (16). This antibody can inhibit full-length Ron, but cannot inhibit sfRon, because sfRon lacks the extracellular domain containing the targeted epitope. We orthotopically transplanted MCF7-sfRon cells into cleared mammary fat pads of NOD/SCID mice and begin treatment when tumors reached a volume of 200 mm³. Animals were treated for 3 weeks (orally, every other day) with either a vehicle control (70% PEG in PBS), ASLAN002 (50 mg/kg), NVP-BKM120 (60 mg/kg), ASLAN002 + NVP-BKM120 (50 and 60 mg/kg, respectively), or animals received intraperitoneal injection of IMC-RON8 (40 mg/kg) 3 times a week. We found that although monotherapy with either ASLAN002 or NVP-BKM120 significantly inhibited tumor growth, the most effective treatment regimen was ASLAN002 + NVP-BKM120 combination therapy (Fig. 2A). The results also showed that, as expected, IMC-RON8 was not effective in blocking growth of tumors driven by sfRon. Thus, either Ron kinase inhibition or PI3K inhibition effectively reduces progression of sfRon-expressing MCF7 tumors, but the most powerful effect is achieved with combination therapy. No overt toxicity or weight loss was observed in mice treated with the combination therapy.

Evaluation of the Ron kinase inhibitor ASLAN002 in tumors lacking Ron/sfRon expression

To determine whether ASLAN002 had off-target effects on tumor growth in our models, we conducted a negative control
by testing ASLAN002 on a PDX model that does not express Ron receptors. Fresh PDX tumor fragments of HCl-002, which express little/no sfRon and Ron (Fig. 2B) were implanted orthotopically into cleared mammary fat pads of NOD/SCID mice. Treatment began when tumors reached a volume of 100 mm³, and animals were treated orally every other day for 5 weeks with vehicle control (70% PEG in PBS) or ASLAN002 (50 mg/kg). The results showed that ASLAN002 had no effect on tumor growth inhibition in a PDX that does not express appreciable amounts of Ron (Fig. 2C).

Effects of Ron and PI3K inhibition in MCF7-sfRon cells expressing different PI3K variants

MCF7 cells contain a heterozygous mutation in the PIK3CA gene (E545K) that could affect the efficacy of Ron or PI3K inhibitors. To determine whether ASLAN002 or NVP-BKM120 have selective effects depending on PIK3CA mutation status, we generated stable isogenic MCF7-sfRon cell lines whereby the endogenous PIK3CA mRNA was knocked down (Fig. 3A). We then rescued expression of PI3K with a Tet-On system that allowed conditional reexpression of either WT PIK3CA cDNA or

Figure 1.
The efficacy of Ron and PI3K inhibitors. A, Immunoprecipitation (IP)–Western blot analysis showing inhibition of phosphorylated (active) sfRon in MCF7-sfRon cells treated with Ron kinase inhibitor OSI-296. The blot was quantified using the ChemiDoc XRS system with Image Lab Software and the table represents percentage of p-sfRon or pAKT expression normalized to total sfRon or AKT protein after treatment with various doses of the drug. B, IP–Western blot analysis showing almost complete suppression of p-sfRon or PI3K signaling in MCF7-sfRon cells by 0.5 or 5 μmol/L concentrations of Ron kinase inhibitor ASLAN002, respectively, which is quantified in the table below. C and D, graphs represent orthotopic MCF7-sfRon tumor growth rate in NOD/SCID mice treated every other day with vehicle (40% trappsol in PBS) or OSI-296 (200 mg/kg; C) and vehicle (70% PEG in PBS) or ASLAN002 (50 mg/kg; D). *, statistically significant difference (P < 0.05) in tumor growth rate between vehicle and OSI-296 or ASLAN002 treatment groups. E, Western blot analysis showing the effect of NVP-BKM120 and NVP-BEZ235 on PI3K signaling in MCF7-sfRon cells. Levels of phosphorylated AKT (pAKT) or total AKT were assessed in the presence of either of these inhibitors. F, graph represents orthotopic MCF7-sfRon tumor growth rate in NOD/SCID mice. Animals were treated daily with vehicle (10% NMP + 90% PEG300), NVP-BKM120 (60 mg/kg), or NVP-BEZ235 (45 mg/kg) beginning when tumors reached a volume of 200 mm³.
PIK3CA cDNA harboring two of the most common mutations found in human breast tumors, E545K or H1047R (hereafter called PI3K-WT, PI3K-E545K, or PI3K-H1047R cell lines, respectively). Addition of doxycycline to the medium induced expression of each rescue variant of PI3K and induced pAKT to levels that were comparable to that of parental MCF7-sfRon cells (Fig. 3A). To determine the effect of ASLAN002 or NVP-BKM120 on sfRon-expressing cells with different PI3K alleles, each of the PI3K-inducible cell lines was serum-starved for 24 hours, treated with each drug for 1 hour, and then evaluated by Western blot analysis. The WT PI3K cell line showing the best effect. sfRon-expressing cells with mutant PI3K required slightly higher doses of ASLAN002 to detect an effect on AKT phosphorylation (Fig. 3B). These findings indicated that mutated PI3K activity may not be completely dependent on sfRon signaling.

We also addressed the impact of mutational status of PI3K on treatment with NVP-BKM120. MCF7-sfRon cells expressing different variants of PI3K and treated with NVP-BKM120 showed good inhibition of AKT phosphorylation regardless of which PI3K variant was expressed (Fig. 3C).

MCF7-sfRon cells expressing different PI3K variants are equally sensitive to Ron and PI3K inhibitors

We next examined the effects of Ron and/or PI3K inhibitors on the viability of sfRon-expressing cells expressing different PI3K variants. Cells were exposed to various concentrations of each drug for 4 days in high and low cell culture density conditions, as it has been previously reported that cell density may affect drug response and resistance (39). Next, cell survival was estimated using MTT. We determined the half maximal effective concentration of each drug (EC50), defined as the concentration of drug that caused 50% loss of cell viability.

Although we observed stronger effects (lower EC50 values) of NVP-BKM120 and/or ASLAN002 on MCF7-sfRon cells viability in high versus low cell culture density (Fig. 4), the effects of neither compound were significantly affected by PI3K mutation status (Fig. 4). We observed no benefit of adding ASLAN002 to NVP-BKM120 in the in vitro cell viability assay, regardless of cell culture density or PIK3CA mutation (Fig. 4).

Our data indicate that, in vitro, subconfluent MCF7-sfRon cells were less sensitive to pharmacologic treatments than confluent cells and that the effects of Ron and/or PI3K inhibitors are not strongly affected by PIK3CA mutational status of sfRon-expressing MCF7 cells regardless of cell culture density. We next sought to examine Ron and PI3K inhibitors in more physiologically relevant, nonengineered models of breast cancer in vivo.

Evaluation of single-agent and dual Ron and PI3K inhibition in breast PDX models expressing endogenous sfRon and WT or mutated PIK3CA

To test the potential benefit of Ron and PI3K inhibition in the highest fidelity models possible, we used PDX models with or without spontaneous PIK3CA mutation. PDX tumors, like human breast tumors, express both endogenous Ron and sfRon (4).
chose four PDX models for our studies: two containing WT PIK3CA (HCI-007 and HCI-011) and another two harboring a PIK3CA H1047R mutation (HCI-003 and HCI-013). Our models were derived from invasive ductal carcinomas that were ER+ and responsive to estrogen (28) (Supplementary Fig. S2) and thus represent the most common type of breast cancer. HCI-007 is the only PDX model used in this study with HER2 amplification (28). As expected, on the basis of PIK3CA mutation status, HCI-003 and HCI-013 displayed a significantly higher level of phosphorylated AKT than did HCI-007 or HCI-011 (Fig. 5A). HCI-013 exhibits the highest level of sfRon expression; sfRon is lower in HCI-003 and HCI-007 PDx and the lowest in HCI-011 PDx (Fig. 5A).

Fresh PDX tumor fragments were implanted orthotopically into cleared mammary fat pads of NOD/SCID mice. Treatment began when tumors reached a volume of about 100 mm³, and animals were treated every other day for 4 weeks. Treatment groups consisted of vehicle control (70% PEG in PBS), ASLAN002, NVP-BKM120, or NVP-BKM120 + ASLAN002 combination therapy, using the same doses via oral delivery as in Fig. 2A.

In all four PDX models, treatment with ASLAN002 alone, NVP-BKM120 alone, or the combination therapy significantly inhibited tumor growth when compared with the vehicle control group. To ensure pharmacologic efficacy of inhibitors, we performed pharmacodynamic analysis of sfRon and PI3K signaling within tumors by examining the phosphorylation status of sfRon and AKT (Ser473). As another indicator of AKT activity, we also examined phosphorylation of the PRAS40 protein, which is a demonstrated direct target of AKT (40). The results confirmed reduction of phosphorylated sfRon and Akt, as well as loss of phospho-PRAS40 in vivo (Fig. 6A and D). In addition, treatment with ASLAN002 reduces the binding of the p85α subunit of PI3K to sfRon in MCF7 cells and PDX models (Supplementary Fig. S3).

Our data also revealed that HCI-007 and HCI-011 (WT PIK3CA) showed an excellent initial response to ASLAN002, with tumors initially shrinking in size and then starting to slowly recover (Fig. S3 and D). In contrast, HCI-003 and HCI-013 (PIK3CA mutant) responded to ASLAN002 to a lesser extent, with no tumor shrinkage and less effective growth inhibition over the course of treatment (Fig. S3B and E). Inhibition of PI3K activity with NVP-BKM120 resulted in strong tumor growth inhibition in all four PDX models, and there was no significant benefit to combination therapy for the initial response (see below for data regarding duration of response).

To assess tumor morphology and determine whether treatment with Ron and/or PI3K inhibitors resulted in inhibition of cell
proliferation and/or enhancement of apoptosis, we performed H&E and IHC analysis of representative PDX tumors expressing WT or mutated PI3K (HCI-011 and HCI-013, respectively) with the following antibodies: human cytokeratin (CK), Ki67, and cleaved caspase-3 (Fig. 6B, C, E and F). Overall, there was a good correlation between expression of the proliferation marker Ki67 and tumor growth in vivo (Fig. 6C and F). In both tumor models, Ki67 staining decreased markedly upon ASLAN002 and/or NVP-BKM120 treatment in comparison with vehicle-treated tumors. Among the different treatment regimens, we observed a significantly higher number of Ki67-positive cells in ASLAN002-treated versus NVP-BKM120- or combination therapy–treated HCI-013

Figure 4.
Evaluation of the effect of ASLAN002 and/or NVP-BKM120 on viability of MCF7-sfRon cells expressing different variants of PIK3CA gene. Graphs represent relative viability of MCF7-sfRon cells treated for 4 days with a range of drug concentrations (0.1-100 μmol/L), in either high (left) or low (right) density conditions. The EC50 of ASLAN002, NVP-BKM120, or the combination of both drugs was estimated for each cell line and summarized in tables. Both compounds reduced the viability of MCF7-sfRon cells with a stronger effect (lower values of EC50) in the high density condition, but all lines showed equal sensitivity to NVP-BKM120 and/or ASLAN002.

<table>
<thead>
<tr>
<th></th>
<th>ASLAN002</th>
<th>NVP-BKM120</th>
<th>ASLAN002 + NVP-BKM120</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>13.81</td>
<td>0.44</td>
<td>0.49</td>
</tr>
<tr>
<td>E545K</td>
<td>14.84</td>
<td>0.43</td>
<td>0.41</td>
</tr>
<tr>
<td>H1047R</td>
<td>11.89</td>
<td>0.36</td>
<td>0.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ASLAN002</th>
<th>NVP-BKM120</th>
<th>ASLAN002 + NVP-BKM120</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>26.24</td>
<td>0.69</td>
<td>0.70</td>
</tr>
<tr>
<td>E545K</td>
<td>20.95</td>
<td>0.81</td>
<td>0.73</td>
</tr>
<tr>
<td>H1047R</td>
<td>24.46</td>
<td>0.66</td>
<td>0.75</td>
</tr>
</tbody>
</table>
(PI3K-mutant) tumors. This difference was insignificant in HCl-011 (WT PI3K) tumors, which might explain better responses of HCl-011 to ASLAN002 (Fig. 6C and F).

Assessment of apoptosis associated with targeted therapy revealed that vehicle-treated HCl-011 and HCl-013 tumors did not exhibit detectable levels of the apoptotic marker cleaved caspase-3; in contrast, treatment with Ron and/or PI3K inhibitors resulted in various levels of apoptosis (as assessed by percentage of cleaved caspase-3–positive cells). HCl-013 showed minimal overall apoptosis with any treatment (0.1%–1.9% of cleaved caspase-3–positive cells). In contrast, HCl-011 was very sensitive to treatment-induced cell death (17.9%–26.3% of cleaved caspase-3–positive cells) but with no difference in percentage of apoptotic cells between treatment groups (Fig. 6C and F).

In summary, although we found no differences in the ability of ASLAN002 to affect viability of sfrRon-expressing breast cancer cell lines with different PI3K variants in vitro, we observed a significant differential effect of ASLAN002 efficacy in four PDX models, which correlated to PI3K mutational status in vivo. In particular, we found that treatment with ASLAN002 resulted in stronger inhibition of tumor cell proliferation of PDX tumor that harbor WT PI3K compared with those containing mutated PI3K (Fig. 6C and F).

One theoretical advantage to upfront combination therapy might be prevention of acquired resistance to Ron inhibitors through downstream activation of the PI3K pathway. To address this question, we monitored the residual tumors for 3 weeks following discontinuation of all treatment. Our data demonstrate that mice bearing HCl-007 or HCl-011 tumors (WT PIK3CA) treated previously with combination therapy showed no cancer progression in comparison with mice treated with single agents, whose tumors started to recur (Fig. 5C and D).

In contrast, HCl-003 or HCl-013 tumors (mutant PIK3CA) demonstrated tumor

Figure 5.
Evaluation of Ron and PI3K inhibitors in breast tumor grafts expressing sfrRon and WT or mutated PIK3CA gene. A, Western blot analysis showing levels of sfrRon and pAKT in four breast PDX models used to test efficacy of Ron and PI3K inhibitors. PDXs containing a spontaneous mutation in PIK3CA (HCl-003 and HCl-013) displayed a significantly higher level of phosphorylated AKT than PDXs with WT PIK3CA (HCl-007 and HCl-011). B and E, graphs represent orthotopic HCl-003 or HCl-013 tumor growth rate in NOD/SCID mice. Animals were treated orally every other day for 4 weeks with vehicle (70% PEG in PBS), ASLAN002 (50 mg/kg), NVP-BKM120 (60 mg/kg), ASLAN002 + NVP-BKM120 (50 and 60 mg/kg, respectively), beginning when tumors reached a volume of 100 mm³. Treatment was discontinued after 4 weeks and mice were followed for recurrence to investigate the long-term effect of Ron and PI3K inhibitors (indicated as dashed lines on the graph). C and D, HCl-007 and HCl-011 tumors were treated as in B and E. B–E, black asterisks indicate a statistically significant difference (P < 0.05) in tumor growth between vehicle and all other treatment groups; red asterisks indicate a significant difference between ASLAN002 versus NVP-BKM120 or combination therapy groups; green asterisks indicate a significant difference between combination therapy versus either monotherapy.
Molecular and IHC analysis of treated breast PDX tumors. A, representative Western blot analysis showing Ron and/or PI3K inhibitor target inhibition in NOD/SCID mice bearing HCI-011 (PIK3CA WT) tumors. The pharmacodynamic effect was measured 3 hours following administration of each drug: ASLAN002 (50 mg/kg), NVP-BKM120 (60 mg/kg), or the combination of these two drugs (combo, 50 mg/kg ASLAN002 and 60 mg/kg NVP-BKM120) versus vehicle. B, representative sections of tumors obtained from therapeutic experiments on HCI-011 (PIK3CA WT) treated with different drug regimens. Tumor sections were H&E stained and immunohistochemically evaluated for cytokeratins, Ki67, or cleaved caspase-3 expression. Scale bar, 100 μm. C, quantification of Ki67 or cleaved caspase-3 positive cells determined from IHC staining of HCI-011 tumors shown in B. D, pharmacodynamic effect of Ron and/or PI3K inhibitors assessed in HCI-013 (PIK3CA H1047R) tumor as in A. E, representative sections of tumors obtained from therapeutic experiments on HCI-013 (PIK3CA H1047R) treated with different drug regimens. Tumor sections were H&E-stained and immunohistochemically evaluated for cytokeratins, Ki67, or cleaved caspase-3 expression. Scale bar, 100 μm. F, quantification of Ki67- or cleaved caspase-3-positive cells determined from IHC staining of HCI-013 tumors shown in E.

Discussion

Breast cancer, like many other types of cancer, is such a heterogeneous disease that improvements to standard care are requiring an unprecedented level of precision, choosing treatment cocktails that match specific features of a tumor (41). Likewise,
appropriate patient selection criteria are of utmost importance in clinical trial design.

An emerging target of importance in breast tumors is the Ron receptor tyrosine kinase, in part because of its dual role in the tumor and in the tumor microenvironment, where it regulates the antitumor immune response (3, 42, 43). Despite the success of the IMC-RON8 inhibitory antibody in preclinical studies using several human cancers (20, 44) and a phase I clinical trial recently completed, our work showed that breast tumors have a preponderance of active sfRon and therefore would not respond to an antibody targeting the Ron extracellular domain (verified in Fig. 2A). Therefore, we have focused our efforts on investigating Ron kinase inhibitors that could be effective against tumors expressing sfRon and/or Ron. Here, we tested two relatively new Ron/Met kinase inhibitors (OSI-296 and ASLAN002). On the basis of in vitro and in vivo evaluation of these compounds, ASLAN002 appeared to be better suited than OSI-296 for the treatment of breast tumors expressing sfRon, due to the higher selectivity of ASLAN002 toward Ron versus Met (34, 35), and its higher potency for tumor growth inhibition in vivo (Fig. 1C and D). Although ASLAN002 was developed as a Ron/Met kinase inhibitor with about 2-fold stronger selective activity for Ron (IC50 = 1.8 nmol/L) over Met (IC50 = 3.9 nmol/L ref. 35), it has some inhibitory effect toward other Met superfamily kinases such as Axl, Tyro3, and Mer kinases (35). However, according to RNA sequencing data for each of these kinases in the PDX models examined here, expression of different Met superfamily kinases other than Ron is not consistent with the observed response to ASLAN002 in breast PDX tumors (Supplementary Table S2), which strongly suggests that ASLAN002 is blocking growth of these breast tumors through inhibition of Ron kinase activity.

Although several selective TKIs have marked clinical activity, it is widely recognized that the overall value of these agents is substantially limited by the acquisition of drug resistance (45). Resistance to agents targeting receptor tyrosine kinases often results from continued signaling through the PI3K pathway despite TKI treatment, which is often directly associated with PIK3CA or PTEN mutations (14–17). Importantly, resistance to TKIs can be overcome by addition of a PI3K pathway inhibitor to reduce remissions (45). For example, trastuzumab resistance of HER2-driven breast tumors with mutated PIK3CA can be overcome by treatment with the PI3K inhibitor GDC-0941 (46). This has important implications for the use of Ron kinase inhibitors, especially as sfRon-expressing breast tumors strongly depend on PI3K signaling (4). Moreover, mutations in PIK3CA are among the most frequent mutational events in breast cancer (7).

Here, we tested the PI3K inhibitor NVP-BKM120 as a potential candidate for combination with ASLAN002. The results demonstrated that in either PIK3CA WT or mutated PDX tumors, the combination of ASLAN002 and NVP-BKM120, despite inducing significant tumor growth inhibition, was not superior to monotherapy with NVP-BKM120 for the initial response. Interestingly, in PIK3CA WT breast PDXs, the benefit of combination therapy was not apparent until treatment stopped, whereby combination treatment led to a more durable response (prolonged tumor stasis following cessation of therapy, Fig. 5C and D). However, in a PIK3CA-mutant breast PDX tumors, we did not observe benefits of combination therapy, these tumors continued to grow progressively following treatment cessation regardless of the treatment applied (Fig. 5B and E).

Rexer and colleagues conducted a comparable study, where recurrence of HER2-expressing breast xenografts with E542K or H1047R PIK3CA mutation was evaluated following 4 weeks of treatment with a combination of trastuzumab, lapatinib, and NVP-BKM120. The authors concluded that combination of both HER2 and PI3K inhibitors was effective at preventing tumor regrowth, as tumor recurrence eventually developed in about half of the mice. Those observations are consistent with our present findings that concurrent inhibition of an RTK (sfRon) and PI3K in tumors with mutant PIK3CA leads to recurrence in some of the mice (4 of 6 mice for HCl-003; Supplementary Table S1), whereas the rest of the mice remained in a prolonged period of tumor stasis. Interestingly, in our experiments, all the mice bearing HCl-007 and 3 of 7 mice bearing HCl-011 (WT PIK3CA) PDX tumors exhibited lack of tumor regrowth after combination therapy (Supplementary Table S1). On the basis of our PDX-based preclinical data and the body of literature currently available, we believe there is strong rationale for clinical testing of Ron kinase inhibitors in patients with breast tumors that express sfRon. This should include screening the tumors for PIK3CA mutations; our PDX data suggest that the presence of PIK3CA mutation contributes to partial resistance to ASLAN002. We also noted that the ability to respond to ASLAN002 is not associated with the intrinsic PDX tumor growth rate. These results also imply that there is limited rationale for using Ron kinase inhibitors in patients with breast cancer with mutated PI3K. However, the combination of sfRon and PI3K therapies upfront, if risk for toxicity is acceptable, might provide an optimal treatment strategy for patients with WT PIK3CA. It is noteworthy, however, that the combination of ASLAN002 and NVP-BKM120, despite inducing significant tumor growth inhibition, was unable to achieve complete and sustained tumor regression in tumor models examined in this study, which is a common feature of targeted therapies (47, 48). Consequently, it may be necessary to combine or otherwise include conventional chemotherapy with sfRon/PI3K-directed targeted therapy for maximal clinical efficacy.

We recognize that there are limitations to this preclinical study; the heterogeneity of tumors makes it impossible to generalize from the 5 models tested here (MCF7 sfRon cells and four sfRon-expressing PDX tumors) to the human patients with breast cancer who might be treated with newly emerging Ron inhibitors. However, we believe that this study provides important information relevant to the design of such trials.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: M. Bieniasz, A.L. Welm
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M. Bieniasz, N. Faham, J.-P. De La O
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M. Bieniasz
Writing, review, and/or revision of the manuscript: M. Bieniasz, P. Radzak-nishan, N. Faham, A.L. Welm
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M. Bieniasz, A.L. Welm
Study supervision: M. Bieniasz, A.L. Welm
Other (performing drug treatment of MCF7 sfRon tumor–bearing mice): P. Radzak-nishan
Other (performed some experiments): N. Faham
Dual Ron and PI3K Inhibition in Breast Cancer

Acknowledgments

The authors thank ASLAN Pharmaceuticals, OSI Pharmaceuticals, Novartis, and ImClone LLC for providing drugs for in vitro and in vivo assays. They also thank the Cancer Tissue Pathology core at the Stephenson Cancer Center, University of Oklahoma Health Sciences Center for processing tumor tissues and conducting IHC staining. They are grateful to Trudy Oliver (Huntsman Cancer Institute, Salt Lake City, UT) for the lentiviral expression vector p lentIRE/Nla and Jeff Hager (Seragen Pharmaceuticals) for providing data with regard to characterization of beeswax E2 pellets. They also wish to thank their colleagues Guoying Wang, Yoko DeRose, Yi-Chun (Christine) Lin, and Jin Liu for help developing and maintaining PDX tumors and animals.

Grant Support

This work was supported by the National Cancer Institute (T80CA164422 to A.L. Welm), a Susan K. Gorman Postdoctoral Fellowship (PDF12230398 to M. Biemans), and a research grant from OSI Pharmaceuticals (to A.L. Welm).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 18, 2014; revised August 6, 2015; accepted August 11, 2015; published OnlineFirst August 19, 2015.

References

Dual Ron and PI3K Inhibition in Breast Cancer

Grant Support

This work was supported by the National Cancer Institute (T80CA164422 to A.L. Welm), a Susan K. Gorman Postdoctoral Fellowship (PDF12230398 to M. Biemans), and a research grant from OSI Pharmaceuticals (to A.L. Welm).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 18, 2014; revised August 6, 2015; accepted August 11, 2015; published OnlineFirst August 19, 2015.

www.aacrjournals.org

5599

Downloaded from clinicalcancers.aacrjournals.org on July 16, 2017. © 2015 American Association for Cancer Research.

Preclinical Efficacy of Ron Kinase Inhibitors Alone and in Combination with PI3K Inhibitors for Treatment of sfRon-Expressing Breast Cancer Patient-Derived Xenografts

Magdalena Bieniasz, Parvathi Radhakrishnan, Najme Faham, et al.