Intratumor Heterogeneity Affects Gene Expression Profile Test Prognostic Risk Stratification in Early Breast Cancer

Rekha Gyanchandani1, Yan Lin2, Hui-Min Lin2, Kristine Cooper2, Daniel P. Normolle2, Adam Brufsky3, Michael Fastuca1, Whitney Crosson1, Steffi Oesterreich1, Nancy E. Davidson3, Rohit Bhargava4, David J. Dabbs4, and Adrian V. Lee1

Abstract

Purpose: To examine the effect of intratumor heterogeneity (ITH) on detection of genes within gene expression panels (GEPs) and the subsequent ability to predict prognostic risk.

Experimental Design: Multiplexed barcoded RNA analysis was used to measure the expression of 141 genes from five GEPs (Oncotype Dx, MammaPrint, PAM50, EndoPredict, and Breast Cancer Index) in breast cancer tissue sections and tumor-rich cores from 71 estrogen receptor (ER)-positive and atypical cores) to fully account for the ITH-driven variation in risk prediction. Clin Cancer Res; 22(21); 5362-9. ©2016 AACR.

Results: Hierarchical clustering using all GEP genes showed that majority (61 of 71) of tumor samples clustered by patient, indicating greater interpatient heterogeneity (IPH) than ITH. We found a strikingly high correlation between Oncotype Dx recurrence scores obtained from whole sections versus tumor-rich cores ($r = 0.94$). However, high Ki67 and low PR cores had slightly higher but not statistically significant recurrence scores. For 18 of 71 (25%) patients, scores were divergent between sections and cores and crossed the boundaries for low, intermediate, and high risk.

Conclusions: Our study indicates that in patients with highly heterogeneous tumors, GEP recurrence scores from a single core could under- or overestimate prognostic risk. Hence, it may be a useful strategy to assess multiple samples (both representative and atypical cores) to fully account for the ITH-driven variation in risk prediction. Clin Cancer Res; 22(21); 5362-9. ©2016 AACR.

Introduction

Breast cancer, the most common malignancy in women, is a heterogeneous disease characterized by distinct molecular subtypes (1–3). In the past decade, gene expression profiling has enabled development of a wide variety of multigene prognostic signatures such as Oncotype Dx (4), MammaPrint (5), PAM50 (Prosigna) (6), EndoPredict (7), and Breast Cancer Index (BCI; refs. 8, 9). Clinical studies on large patient cohorts have demonstrated that these gene expression panels (GEP) may serve as tools to identify patients who are most likely to benefit from adjuvant systemic therapies while sparing others of the unwanted side effects and treatment-related cytotoxicity. Although there is growing recognition that GEPs are clinically relevant in breast cancer management, they have not been fully embedded into routine clinical practice (10–12).

Among the many commercially available GEPs, Oncotype Dx and EndoPredict are the only tests that are supported by level I evidence on the basis of the marker utility grading system (13). Oncotype Dx (Genomic Health Inc.) measures the expression of 21 genes and calculates a recurrence score that predicts the risk of relapse in patients with estrogen receptor (ER)-positive lymph node-negative early-stage breast cancer (4). Oncotype Dx is so far the most widely used GEP in clinical practice likely based upon its clinical validation (14) and approval by the National Comprehensive Cancer Network (NCCN), American Society of Clinical Oncology (ASCO), and St. Gallen European Society for Medical Oncology (ESMO).

In the past decade, there have been an increasing number of reports of intratumor heterogeneity (ITH) of gene expression and somatic DNA mutations (15–20). Immunohistochemical and FISH studies using multiple areas of a breast tumor have shown significant ITH in ER gene expression levels and HER2 amplification (15, 16). However, very few studies have examined the effect of ITH on measurement of GEPs and the accuracy to predict...
Translational Relevance

Recent studies show tremendous transcriptomic and genomic heterogeneity not only between breast cancers but also within a single breast cancer. This study examines the clinical importance of this heterogeneity, showing that prognostic risk scores derived from gene transcript levels deviate when taken from different regions (cores) of a breast tumor. Importantly, use of single cores can under- or overestimate prognostic risk and highlight the importance of understanding intratumor heterogeneity for breast cancer prognosis.

Materials and Methods

Breast tumor specimens

We previously reported interobserver agreement among pathologists for hormone receptor scoring in 74 cases of ER-positive early breast cancer (25). We used the same cohort to examine GEPs but removed 3 cases because of inadequate tissue, for a total of 71 cases (Supplementary Table S1). All patients had clinical Oncotype Dx recurrence risk scoring performed at Genomic Health. Studies were performed with Institutional Review Board approval PRO09100201. Immunohistochemical expression levels for ER, PR, and Ki67 were scored according to the ASCO/CAP guidelines (Supplementary Table S2).

For each patient, we selected the single formalin-fixed, paraffin-embedded (FFPE) block that was used for the clinical Oncotype Dx test and cut a 5-μm section and a 0.6-mm core from a tumor-rich representative part of the block. Additional cores were cut from tumors that had foci of high Ki67 (n = 26), low PR (n = 13), or both (n = 5) to test the hypothesis that high Ki67 and/or low PR may indicate aggressive areas of a tumor. High Ki67 area in a tumor was defined as 10% or higher labeling index compared with the overall Ki67 labeling index for the whole section (Supplementary Table S2). Low PR area in a tumor was defined as more than 50% cells negative for PR. Five patients had all 4 types of tumor samples (including section, tumor-rich core, high Ki67 core, and low PR core), 39 patients had 3 tumor samples (section, tumor-rich core, and either high Ki67 core or low PR core), and 27 patients had 2 tumor samples (section and tumor-rich core). In total, we processed 181 samples for NanoString nCounter analysis.

RNA isolation

The selected tumor blocks were enriched for invasive tumor and the most predominant noninvasive tissue component in the blocks was adipose tissue. For the tumor section, the whole section was scraped (without macrodissection), and the paraffin shavings were used to isolate RNA. In addition, 1 to 3 cores from each sample were also used for RNA isolation. RNA was isolated using RNeasy FFPE Kit (Qiagen) and quantified using UV spectrophotometry (Nanodrop Technologies).

Gene expression

Barcoded probes to measure the expression of genes comprising 5 GEPs and their respective housekeeping genes were manufactured by NanoString Technologies. This included Oncotype Dx (16 genes, 5 housekeeping genes), MammaPrint (66 genes), PAM50 (50 genes, 5 housekeeping genes), EndoPredict (8 genes, 3 housekeeping genes), and BCI (7 genes, 4 housekeeping genes). Since there were some genes that overlapped among the 5 GEPs, gene expression was measured for a total of 141 unique genes (127 endogenous genes and 14 housekeeping genes; Supplementary Table S3). The nCounter assay also included 6 positive controls and 8 negative controls. nCounter analysis was performed according to the manufacturer’s instructions using 100 ng of total RNA. Data were collected using the nCounter Digital Analyzer and initially processed using nSolver Analysis Software. QC metrics, including positive control linearity and limit of detection, were assessed using the positive and negative control probes (Supplementary Fig. S1A). Raw intensities were normalized to the geometric mean of the positive controls and housekeeping genes using the R NanoStringNorm package (Supplementary Fig. S1B). Data reproducibility was also assessed using technical replicates (Supplementary Fig. S1C). NanoString data are available in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE79378.

Statistical analysis

All data analyses were performed using R version 3.1.2 (http://www.r-project.org). The NanoString raw intensities were normalized to the geometric mean of positive controls and housekeeping genes using the R NanoStringNorm package (26). Hierarchical clustering (using the Ward method on the Manhattan metric) was performed to visualize the clustering pattern of the NanoString gene expression data. To evaluate the effect of ITH on the GEPs, we clustered all samples by genes belonging to each GEP and...
calculated the percentage of subjects with all samples clustered together as an indication of the robustness of the GEP to the ITH. Since the clustering results heavily depend upon the number of clusters, we performed the clustering analysis by the number of clusters from 1 to 80.

Clinical Oncotype Dx recurrence scores were available for all patients. The Oncotype Dx score is based on an RT-PCR assay utilizing RNA isolated from macrodissected tissue sections, which is most comparable to the whole sections used in our study. As RT-PCR and nCounter use different technologies for mRNA detection (amplification versus hybridization), the Oncotype Dx recurrence score was calculated from NanoString data (nstringRS) by fitting the following model to data from the “section” samples (1):

$$\text{clinRS} = \beta_0 + \sum_{i=1}^{16} \beta_i X_i + \varepsilon$$

(1)

where clinRS denotes the clinical Oncotype Dx recurrence score and X_i represent the expression level of the 16 Oncotype Dx genes in the sections measured by NanoString. The overall fit of the model was good ($R^2 = 0.87$). The coefficients (β_0 and β_i) estimated from the linear model were then used to calculate the nstringRS for each type of tissue using (2):

$$\text{nstringRS} = \beta_0 + \sum_{i=1}^{16} \beta_i X_i$$

(2)

Here, the X_i represent the expression level of the Oncotype Dx genes measured by Nanostring for each sample.

The association of gene expression or nstringRS between two different types of tumor samples was described by the Spearman correlation coefficient. To investigate the intratumor variability of each gene and nstringRS, we fit a random-effects model for each gene by subject. Samples from the same subject are considered to be within a cluster. From the linear mixed-effect model, we derived the intratumor variability (1-ICC), effect model, we derived the intratumor variability (1-ICC), and 0.6 for high heterogeneity), 0.2 for low heterogeneity), 0.4 for fair heterogeneity), 0.4 for moderate heterogeneity), 0.6 for high heterogeneity). Among the 127 genes that were analyzed, 73 genes showed low, 36 genes showed fair, 11 genes showed moderate, and 7 genes showed high ITH (Fig. 2A and Table 2). Hence, a small proportion of genes (18 of 127, 14%) showed elevated variability in gene expression among the tumor samples. Figure 2B shows the distribution of 1-ICC scores for genes in the individual GEPs. Three of 5 GEPs (including Oncotype Dx, MammaPrint, and PAM50) showed genes with moderate-to-high ITH. Supplementary Table S5 lists these heterogeneous genes and the correlation of expression values between different samples. This list includes several proliferation- and invasion-related genes including MYC, FOXC1, EGFR, FGFI8, CTSL2, and MMP9. When we clustered patient samples using the genes with low ITH (0–0.2 and 0.2–0.4 intravariance scores), the majority of samples clustered by patient (Fig. 2C and Supplementary Fig. S4A–S4D). Conversely, when we clustered using the genes with 0.4–0.6 and 0.6–1.0 intravariance scores, only a few patients had all samples clustered together, thus confirming their high ITH.

ITH of gene expression affects Oncotype Dx recurrence risk stratification

Oncotype Dx is the most widely used GEP for evaluating ER-positive early breast cancer prognosis. It uses a weighting algorithm to calculate the risk of recurrence score, which is divided into low-risk (<18), intermediate-risk (18–30), and high-risk (≥31) categories. On the basis of the clinical Oncotype Dx recurrence scoring (clinRS) performed at Genomic Health, 28 patients showed low-risk with 1 case of disease recurrence; 30 patients showed intermediate-risk with 5 cases of recurrence; and 13 patients showed high-risk with 1 case of recurrence (Supplementary Table S6). To study the effect of ITH arising from sampling a tumor-enriched area or regions of high Ki67 and low PR, we estimated a predicted RS on the basis of NanoString data (nstringRS), as described in Statistical analysis. Supplementary Figure S5A and SSB shows the expression of Ki67 and PR mRNA in the different types of tumor samples. To compare Ki67 and PR expression levels between tumor-rich cores and high Ki67/lower PR cores, we selected only those patients for which both types of cores were available (n = 26 and $n = 13$, respectively; Supplementary Fig. S5C and SDD). As expected, the expression of Ki67 mRNA was significantly higher in cores from focal areas of high Ki67, and PR...
mRNA was significantly lower in cores from areas of low PR (Supplementary Fig. S5C and S5D). Figure 3A and Supplementary Table S6 shows nstringRS scores for the different types of samples along with the clinical Oncotype DX recurrence scores (clinRS). Overall, the nstringRS scores derived from sections and tumor-rich cores correlated well with the clinRS (Spearman’s $\rho = 0.92$ and $\rho = 0.90$, respectively; Supplementary Fig. S6A and S6B). However, the Oncotype Dx risk categories differed in 14 of 71 (19.7%) sections and 16 of 71 (22.5%) tumor-rich cores. We next looked at the agreement of nstringRS between the different types of samples (Fig. 3B and Supplementary Fig. S6C–S6F). nstringRS was strikingly similar between a whole tumor section and a tumor-rich core (Spearman’s $\rho = 0.94$; Fig. 3B). The risk categories based on the tumor-rich cores and high Ki67 cores differed in 7 of 26 (27%) samples, whereas those derived from low PR cores differed in 3 of 13 (23%) samples. Although, the high Ki67 and low PR cores showed a trend toward higher median nstringRS scores compared with tumor-rich cores (Supplementary Fig. S6E).

Figure 1. Hierarchical clustering analysis of genes from 5 GEPs shows greater IPH than ITH. A, nCounter analysis was used to measure the expression of genes from 5 GEPs in FFPE tumor sections compared with cores taken from tumor blocks for 71 ER-positive node-negative tumors. Cores were also obtained from foci of high Ki67 ($n = 26$), low PR ($n = 13$), or both ($n = 5$). B, mean versus SD plot of gene expression intensities for all measured genes (including 127 endogenous genes, 14 housekeeping genes, 6 positive controls, and 8 negative controls). Housekeeping genes show modest to high levels of gene expression with very low variation. C, hierarchical clustering by the Ward method using the Manhattan metric was performed on all GEP genes. The heatmap represents gene expression from 71 tumors ($n = 181$ samples) profiled for 5 GEPs (127 endogenous genes). Red indicates high, and green indicates low relative gene expression. Genes (columns) are clustered, and tumors (rows) are clustered. D, clustering analysis for individual GEPs indicating the proportion of patients with all samples within the same cluster for a range of clusters (1–80).
and S6FJ), when we calculated for each patient, the difference in nstringRS scores between tumor-rich cores and high Ki67 or low PR cores, we observed no significant change in the median of this quantity ($P = 0.095$ and $P = 0.675$, respectively). Finally, when we compared clinRS with the nstringRS for all types of samples, we found that for majority of tumors (53 of 71, 75%) the different samples showed similar nstringRS scores and risk stratification. However, in 18 of 71 (25%) tumors, the recurrence scores diverged enough to cause differential classification, as the scores crossed the boundaries for low, intermediate, and high risk (Fig. 3C, Table 3, Supplementary Tables S6 and S7). One of 18 tumors with discordant scores (associated with a decrease in risk due to a section) was from a patient with recurrent disease (Supplementary Table S6). In addition, in these tumors with discordant scores, cases where at least 3 types of samples (section, tumor-rich core, high Ki67 core, and/or low PR core) were available, 6 of 10 tumors showed an increase in risk due to a high Ki67 or low PR core, 3 of 10 tumors showed an increase in risk due to a tumor-rich core, and 1 of 10 tumors showed an increase in risk due to both low PR core and a tumor-rich core (Supplementary Table S7).

Discussion

This is the first study to comprehensively examine the effect of ITH on measurement of clinically used GEPs and their ability to predict prognostic risk in early breast cancer. The study utilized the Nanostring nCounter platform, which is ideally suited for gene expression detection in FFPE tissue. We described the ITH for each gene ($n = 127$) in the 5 most commonly used GEPs. Hierarchical clustering of tumors using all of the genes in the 5 GEPs showed relatively low ITH as individual samples from each patient clustered together for the majority of patients. However, when clustering tumors using genes in the individual GEPs, higher rates of ITH were found. An in-depth analysis of Oncotype Dx showed a strikingly high correlation between the Oncotype Dx recurrence score from a whole section (without macrodissection) and a representative tumor-rich core, suggesting little influence of the tumor microenvironment on the genes in this test. However, when measuring multiple cores within a tumor, ITH resulted in prognostic misclassification in 25% of patients.

Recent genome-wide genomic and transcriptomic studies have indicated high ITH in cancer, with some tumors having regions of both indolent and aggressive diseases (15–20). However, these studies are generally designed to identify the greatest level of ITH.
as they include all transcribed genes. This is in contrast to GEPs which all use a small number of selected genes. Indeed, the effect of ITH on GEP tests seems to be a balance between the number of genes in the test, and the ITH of each of these genes. For example, when we clustered tumors on the basis of all of the genes that were measured, we found that most tumor samples clustered by patient, indicating greater IPH than ITH. However, selecting genes from each individual GEP resulted in lower numbers of tumors clustering per patients and higher apparent ITH. An additional level of consideration is the actual genes themselves. We show the level of ITH of each gene in each test and find that choosing genes with low ITH results in apparent low ITH. It should be noted that none of the current GEPs used ITH as a determinant in inclusion/exclusion of genes in the test.

Our data are consistent with two previous smaller reports on the level of ITH and its effect upon risk prediction in early breast cancer. Drury and colleagues reported high concordance in recurrence scores between 0.6-mm cores and whole tumor sections, similar to our data, but showed high variability in recurrence scores between the individual cores, resulting in prognostic misclassification in 1 of 4 patients (25%; ref. 22). Barry and colleagues examined the influence of ITH on the precision of microarray-based assays in multiple core needle biopsies and showed high variance in recurrence risk predictions in 1 of 18 patients due to global variation in gene expression (23). In the current study, the clinical Oncotype Dx recurrence scores correlated well with the nstringRS scores derived from sections and tumor-rich cores, but the Oncotype Dx risk categories differed in 20% of sections and 23% of representative cores. Similarly, the risk categories based on the high Ki67 and low PR expression cores differed in 27% and 23% of patients, respectively. Overall, comparing the nstringRS from sections and all 3 cores, we found a 25% (18 of 71) divergence in risk categories. In our analysis, we also found that an increase in risk was more commonly observed with a high Ki67 or low PR core, whereas a decrease in risk occurred more frequently due to a tumor-rich core. However, given the similarities in risk scores and differences in risk categories, the high variation observed in risk categories might be due to a limitation of the risk category cutoffs that lie in high-density areas of patient scores, even if those cutoffs have been precisely and objectively determined. Importantly, all differences in classifications were between adjacent risk groups (e.g., low to intermediate and intermediate to high), and no tumors showed divergence from low to high. Another limitation is that the Oncotype Dx and NanoString nCounter use different technologies for mRNA detection (amplification vs. hybridization). Although they show a good concordance using our linear model ($R^2 = 0.87$), differences in the technologies might contribute to some of the variations in the risk categories. Hence, on the basis of the inclusion of atypical cores potentially representing aggressive

Table 2. Distribution of genes with low, fair, moderate, and high ITH

<table>
<thead>
<tr>
<th>Rank</th>
<th>GEP</th>
<th>Low (0–0.2)</th>
<th>Fair (0.2–0.4)</th>
<th>Moderate (0.4–0.6)</th>
<th>High (0.6–1)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oncotype</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>MammaPrint</td>
<td>35</td>
<td>21</td>
<td>6</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>PAM50</td>
<td>32</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>EndoPredict</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>BCI</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>All genes</td>
<td>73</td>
<td>36</td>
<td>11</td>
<td>7</td>
<td>127</td>
</tr>
</tbody>
</table>

Figure 3.

ITH in gene expression affects Oncotype Dx recurrence risk stratification. **A**, NanoString-derived Oncotype Dx recurrence scores (nstringRS) are indicated for patients with different sample types; section, tumor-rich core, high Ki67 core, and low PR core, along with clinical Oncotype Dx recurrence scores (clinRS). **B**, correlation of nstringRS between whole sections and representative cores (Spearman’s $p = 0.94$). **C**, clinRS was compared with the nstringRS for all types of samples for changes in risk stratification. For 18 of 71 patients, recurrence scores crossed the boundaries for low, intermediate, and high risk.
Clinical Cancer Research; 22(21) November 1, 2016

Table 3. Differential risk stratification of patients with discordant scores based on Clinical Oncotype Dx and NanoString Oncotype Dx recurrence scores.

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>Risk from clinical oncotype Dx recurrence scores (clinRS)</th>
<th>Risk from nanoString Oncotype Dx recurrence scores (nstringRS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/71 (9.9%)</td>
<td>Low Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td>4/71 (5.6%)</td>
<td>Intermediate High</td>
<td>Low</td>
</tr>
<tr>
<td>5/71 (7.0%)</td>
<td>Intermediate</td>
<td>High</td>
</tr>
<tr>
<td>1/7 (1.4%)</td>
<td>High</td>
<td>Intermediate</td>
</tr>
</tbody>
</table>

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: A.M. Brufsky, S. Oesterreich, N.E. Davidson, R. Bhargava, D.J. Dabbs, A.V. Lee

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): R. Gyanchandani, A.M. Brufsky, W. Crosno, D.J. Dabbs, A.V. Lee

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): R. Gyanchandani, Y. Lin, H.-M. Lin, K.L. Cooper, D.P. Normolle, A.M. Brufsky, A.V. Lee

Writing, review, and/or revision of the manuscript: R. Gyanchandani, Y. Lin, K.L. Cooper, D.P. Normolle, A.M. Brufsky, S. Oesterreich, N.E. Davidson, R. Bhargava, D.J. Dabbs, A.V. Lee

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): R. Gyanchandani, A.M. Brufsky, M. Fastuca, A.V. Lee

Study supervision: R. Bhargava, A.V. Lee

Acknowledgments

The authors thank the University of Pittsburgh Health Sciences Tissue Bank (HSTB) for collection of breast tumor specimens and clinical data.

Grant Support

This work was supported in part by funds from the Breast Cancer Research Foundation (BCRF; to A.V. Lee, S. Oesterreich, and N.E. Davidson), National Cancer Institute of the NIH award number P30CA047904, Fashion Footwear of New York (FFANY), and research support from UPMAC. A.V. Lee is a recipient of a Scientific Advisory Council award from Susan G. Komen for the Cure, and is a Hillman Foundation Fellow. This project also used the University of Pittsburgh Cancer Institute (UPCI) Biostatistics Facility and Tissue and Research Pathology Services that are supported in part by award P30CA047904.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 26, 2015; revised March 18, 2016; accepted May 2, 2016; published OnlineFirst May 16, 2016.

References

Intratumor Heterogeneity in GEP Test Risk Stratification

Intratumor Heterogeneity Affects Gene Expression Profile Test Prognostic Risk Stratification in Early Breast Cancer

Rekha Gyanchandani, Yan Lin, Hui-Min Lin, et al.

Updated version
Access the most recent version of this article at:

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2016/05/14/1078-0432.CCR-15-2889.DC1

Cited articles
This article cites 27 articles, 11 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/22/21/5362.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/22/21/5362.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/22/21/5362.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.