Inactivation of Hippo Pathway Is Significantly Associated with Poor Prognosis in Hepatocellular Carcinoma

Bo Hwa Sohn1,2, Jae-Jun Shim1,2,3, Sang-Bae Kim1,12, Kyu Yun Jang4, Soo Mi Kim5, Ji Hoon Kim6, Jun Eul Hwang1,2, Hee-Jin Jang1,2, Hyun-Sung Lee1,2, Sang-Cheol Kim7, Woojin Jeong8, Sung Soo Kim9, Eun Sung Park10, Jeonghoon Heo11, Yoon Jun Kim12, Dae-Ghon Kim13, Sun-Hee Leem14, Ahmed Kaseb15, Manal M. Hassan15, Minse Cha1, In-Sun Chu16, Randy L. Johnson17, Yun-Yong Park18, and Ju-Seog Lee1,2,9

Abstract

Purpose: The Hippo pathway is a tumor suppressor in the liver. However, the clinical significance of Hippo pathway inactivation in HCC is not clearly defined. We analyzed genomic data from human and mouse tissues to determine clinical relevance of Hippo pathway inactivation in HCC.

Experimental Design: We analyzed gene expression data from Mst11/21/2 and Savi1/2 mice and identified a 610-gene expression signature reflecting Hippo pathway inactivation in the liver [silence of Hippo (SOH) signature]. By integrating gene expression data from mouse models with those from human HCC tissues, we developed a prediction model that could identify HCC patients with an inactivated Hippo pathway and used it to test its significance in HCC patients, via univariate and multivariate Cox analyses.

Results: HCC patients (National Cancer Institute cohort, n = 113) with the SOH signature had a significantly poorer prognosis than those without the SOH signature (P < 0.001 for overall survival [OS]). The significant association of the signature with poor prognosis was further validated in the Korean (n = 100, P = 0.006 for OS) and Fudan University cohorts (n = 242, P = 0.001 for OS). On multivariate analysis, the signature was an independent predictor of recurrence-free survival (HR, 1.6; 95% confidence interval, 1.12–2.28: P = 0.008). We also demonstrated significant concordance between the SOH HCC subtype and the hepatic stem cell HCC subtype that had been identified in a previous study (P < 0.001).

Conclusions: Inactivation of the Hippo pathway in HCC is significantly associated with poor prognosis. Clin Cancer Res; 22(5); 1256–64. © 2015 AACR.

Introduction

HCC is the second most common cause of cancer-related death in the world, accounting for an estimated 700,000 deaths annually (1). It is one of few cancers whose incident rate has increased in the United States over the past 25 years, and this rate is expected to double over the next 10 to 20 years (2–4). HCC is the second most lethal cancer type in the United States, where its overall 5-year survival rate is around 11% (5). A lack of a molecular classification system and the clinical heterogeneity of this
Translational Relevance

Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death (700,000 deaths per year) in the world and the second most lethal cancer type in the United States, where its overall 5-year survival rate is around 11%. Lack of molecular classification and the clinical heterogeneity of HCC have hampered development of treatment standards. Our data suggested that Hippo pathway is inactivated in about 20% of patients with HCC and YAP1/TAZ, downstream effector of Hippo pathway. These findings may guide the development of subgroup-specific treatments, for example, targeted YAP1/TAZ, and improve the design of future clinical trials.

Materials and Methods

Gene expression data from mouse models

The generation and breeding of Savifl/fl, Mst1fl/fl, and Mst2fl/fl mice were described in a previous report (11). Mice were subsequently bred to albumin-Cre mice and then backcrossed to homozygous floxed animals. All mice were housed in a conventional facility on a 12-h light/dark schedule, with access to food and water ad libitum. All procedures were approved by The University of Texas MD Anderson Cancer Center (Houston, Texas) Animal Care and Use Committee. To collect gene expression data from HCC and surrounding non-tumor liver tissues from mutant mice (n = 15) and healthy liver tissues from wild-type (WT) mice (n = 8), we extracted total RNA from fresh-frozen tissues using a mirVana RNA Isolation Kit (Ambion, Inc.). Five hundred nanograms of total RNA were used for labeling and hybridization (mouse-6 BeadChip v.2 microarray; Illumina), according to the manufacturer’s protocols. After the bead chips were scanned with an Illumina BeadArray Reader, the microarray data were normalized using the quantile normalization method in the Linear Models for Microarray Data package in the R language environment (23).

Statistical analysis

BRB-ArrayTools was primarily used for the statistical analysis (24). We identified genes that were differentially expressed between the two subtypes using a random-variance t-test (25).
Differences in gene expression were considered statistically significant if their P value was less than 0.001. A stringent significance threshold was used to minimize the number of false-positive findings. We also determined whether the expression profiles differed between the subtypes by permuting the labels of which arrays corresponded to which subtype. For each permutation, the P values were recomputed and the number of genes that was statistically significant was compared with the number of genes that produced at least as many significant results as the actual data was considered the significance level of the test.

We estimated patient prognoses using Kaplan–Meier plots and the log-rank test. We used a multivariate Cox proportional hazards regression analysis to evaluate independent prognostic factors associated with survival; we used gene signature, tumor stage, and pathologic characteristics as covariates (26). A P value less than 0.05 indicated statistical significance and all statistical tests were two-tailed. We carried out all statistical analyses in the R language environment (http://www.r-project.org).

Drop in concordance index analysis was carried out as described in previous studies (27–29). Briefly, using eight variables in Table 2, eight prediction models lacking each one variable were generated and compared with the full model containing all variables. In each comparison, the degree of decrease in predictive accuracy was estimated by measuring drop in concordance index after omitting one variable.

Prediction model

Before using the prognostic classification algorithms, we normalized the gene expression data used as training and test sets by centralizing the gene expression level across tissues. To stratify HCC patients according to the mouse SOH gene expression signature, we used a classification algorithm based on the Bayesian compound covariate predictor (BCCP; refs. 30, 31). A detailed description of the BCCP is available in the Supplementary information.

Immunohistochemical staining of human HCC tissue

To avoid endogenous biotin contamination during immunohistochemical staining, we used the DAKO EnVision system (DAKO), which uses dextran polymers conjugated with horseradish peroxidase. In brief, 4-μm-thick HCC tissue sections were de-paraffinized with xylene and rehydrated with graded alcohols. After washing the sections in distilled water, we performed a microwave antigen retrieval procedure in citrate buffer (pH 6.0) for 20 minutes. Thereafter, tissue sections were incubated with peroxidase blocking solution (ready to use, DAKO) and Proteinase K to reduce non-specific background staining. The slides were rinsed and incubated with a primary antibody (H-125; 1:100, Santa Cruz Biotechnology) at 4°C overnight. They were rinsed again, a secondary antibody (EnVision Kit, DAKO), which uses dextran polymers conjugated with horse-radish peroxidase, was added. Tissue sections were incubated with the enzyme substrate, 3-amino-9-ethyl carbazole (DAKO). The sections were counterstained with hematoxylin. To evaluate immunohistochemical staining for YAP1, the staining intensity was scored as 0 (no staining), 1 (weak staining), 2 (intermediate staining), or 3 (strong staining), and the staining area was scored as 0 (no staining cells), 1 (1%–10% of positive cells), 2 (11%–33% of positive cells), 3 (34%–66% of positive cells), or 4 (67%–100% of positive cells). Thereafter, the sum of the staining intensity score and staining area score (0–8) was calculated to generate a final score.
was used for further analysis. The immunohistochemical expression of YAP1 was classified as positive or negative by a receiver operating characteristic (ROC) curve analysis at the highest positive likelihood ratio point for HCC recurrence. The cut-off point for the sum score was 7. Immunohistochemical staining for YAP was scored as positive when the sum score was 7 or more.

We used immunohistochemical staining data, available from a previously published study (16). Formalin-fixed, paraffin-embedded sections were used to assess phosphorylated proteins in human tissue using anti-phosphorylated (S473) AKT antibody, anti-phosphorylated (Y1316) insulin-like growth factor-I receptor, and anti-phosphorylated (S240/244) S6.

Western blot analysis and siRNA
siYAP1 and siTAZ were purchased from Dharmacon (SMART-Pool). Cells were transfected with indicated siRNA using oligo-fectamine (Invitrogen) for the indicated times. Cells were maintained and Western blot analysis performed as described previously (32). Antibodies used were against YAP1 (sc-500; Santa Cruz Biotechnology), pYAP1 (#9411; Cell Signaling Technology (CST)), TAZ (560235; BD Biosciences), p70 S6K (#9202; CST), p-p70 S6K (Thr389) (#9205; CST), β-actin (ab3220; Abcam), S6 (#2217; CST), pS6 (Ser240/244) (#2215; CST), 4E-BP1 (#9452; CST), and p4E-BP1 (Ser65) (#9456; CST).

Results
Gene expression signature of inactivation of the Hippo pathway in the liver
We generated gene expression data from 33 liver tissues of genetically modified Sav1^{-/-} and Mst1/2^{-/-} mice and WT mice and analyzed them to identify a gene expression signature that was significantly associated with SOH in the mouse liver and the development of HCC (Fig. 1). We identified genes whose expression was uniquely associated with the SOH pathway in the mouse liver. Two gene lists were generated using a stringent cut-off value for statistical significance (P < 0.001 for the two-sample t-test and a two-fold difference). Gene list X represented the genes that were differentially expressed between normal liver tissue from WT mice and nontumor-surrounding tissue from tumor-bearing Sav1^{-/-} and Mst1/2^{-/-} mice. Gene list Y represented the genes that were differentially expressed between nontumor-surrounding liver tissue and HCC tumors from Sav1^{-/-} and Mst1^{-/-} mice (Fig. 1A).

Three different gene expression patterns were observed among all tissues (Fig. 1B): X not Y (737 probes), X and Y (97 probes), and Y not X (255 probes). Genes in the X not Y category (610 unique genes) displayed unique expression patterns that were significantly associated with the SOH pathway (Supplementary Table S1).

The expression of Ctgf, one of the best known direct downstream targets of Yap1 (33), was highly upregulated in nontumor-surrounding liver (5.4-fold, P = 9.0 × 10⁻⁶ by the two-sample t-test) and HCC tissues (7.5-fold, P = 5.6 × 10⁻⁵ by the two-sample t-test) in both Sav1^{-/-} and Mst1/2^{-/-} mutant mice compared with normal liver in WT mice, indicating that the upregulation of many genes in murine HCC is due to the activation of Yap1 in the mouse liver. The functional category of genes in the signature is consistent with known molecular features of the Hippo pathway when it is inactivated (Supplementary Table S2 refs. 6–9). Interestingly many of canonical pathways enriched in SOH signature are related to immune systems (Supplementary Table S3), suggesting potential connection of Hippo pathway to activation of immune system in liver. Because genes in list Y simply reflects the transformed nature of hepatocytes during tumorigenesis, we only included genes in X not Y category for further analysis and it is referred to as the SOH signature. The expression of many genes in the SOH signature is similar between surrounding tissues and
HCC; the expression patterns of the two groups of tissues differ substantially, but the significance of these differences did not reach the statistical cut-off ($P < 0.001$) that was initially used to select genes. For example, the expression of Ctgf was 2.1-fold higher ($P = 0.05$ by the two-sample t-test) in HCC than in nontumor-surrounding tissues of mutant mouse liver.

Silence of Hippo pathway is significantly associated with poor prognosis in human HCC.

After identifying a gene expression signature, we determined its clinical relevance in human HCC by comparing the mouse SOH signature with gene expression data from human HCC. Gene expression data from 113 NCI HCC tumors (20) were used for this analysis (Table 1); a BCCP algorithm (30) was used to determine the probability that SOH was present (Fig. 2A), as described in Supplementary Information. We dichotomized the HCC patients according to SOH probability (cut-off of 0.65) of having the SOH signature (SOH+), and found that 24 (21%) had a high probability (>0.65) of having the SOH signature (SOH subgroup), whereas the remainder lacked this signature (active Hippo (AH) subgroup). Kaplan–Meier plots showed significant differences in RFS ($P = 7.4 \times 10^{-5}$), by log-rank test and overall survival ($OS, P = 9.5 \times 10^{-5}$) between the two subgroups (Fig. 2C and D), strongly indicating that the SOH pathway in HCC dictates clinical outcome and is associated with poor prognosis.

We further tested the association between the SOH pathway and clinical outcome in an independent HCC cohort (Korean cohort, $n = 100$). When BCCP and the same cut-off (0.65) used in the NCI cohort were used, the Kaplan–Meier plots showed significant differences in both RFS and OS between the two subgroups of the Korean cohort (Fig. 3A and B). The robustness of the association between the SOH signature and prognosis was further validated in another larger, independent cohort (FULCI cohort; ref. 22). When 242 patients in the FULCI cohort were stratified according to SOH probability (cut-off of 0.65), Kaplan–Meier plots showed a significant difference in RFS and OS ($P = 0.006$ and 0.001, respectively, by log-rank test; Fig. 3C and D). Furthermore, immunohistochemical staining of the same HCC tissues from the Korean cohort showed significant concordance between YAP1 expression and the SOH signature, suggesting that the SOH signature from mouse models reflects inactivation of the Hippo pathway in human HCC (Supplementary Figs. S1 and Table S4). Together, the results from three independent HCC cohorts (total, 455 patients) clearly demonstrate a strong association between the SOH pathway and poor prognosis in HCC.

SOH signature is an independent predictor of prognosis.

We combined the clinical data from two test cohorts that had not been used to determine the cut-off of SOH probability (Korean and FULCI cohorts) and assessed the prognostic strength of the SOH signature with and without adjustment for known clinical prognostic factors. On univariate analysis, significant predictors of RFS included the SOH signature, tumor size, and Barcelona Clinic Liver Cancer (BCLC) stage (Table 2). When the dichotomized SOH subtypes was included in the multivariate model, it was the most significant predictor of RFS [HR, 1.6; 95% confidence interval (CI), 1.14–2.39, $P = 0.006$; Table 2]. The significance remained same when dichotomized subtypes were replaced by continuous Bayesian probability of SOH signature in the multivariate model (Supplementary Table S5). Likewise, multivariate analysis of over overall survival also showed significance of SOH signature with or without dichotomization (Supplementary Tables S6 and S7). In addition, we carried out "drop in
signature (20) were significantly associated with the SOH subtype. SOH significantly overlapped with the 65-gene risk score (Supplementary Fig. S2), further suggesting that the SOH subtype is biologically similar to the HS subtype.

We further tested the concordance between the SOH subtype and the 65-gene-based recurrence risk score of HCC, which was developed by correlating gene weight with tumor recurrence (34). All 24 patients with the SOH subtype were classified into the high-risk group for recurrence, whereas the vast majority of patients with the AH subtype were classified into the low-risk group ($K = 0.37, P = 1.97 \times 10^{-6}$ by Cohen K statistics; Supplementary Table S10). Moreover, the Pearson correlation between the 65-gene risk score and SOH Bayesian probability was significantly high in all three cohorts ($r > 0.85; P < 2.2 \times 10^{-16}$ in all cohorts; Fig. 4A), strongly suggesting that the 65-gene risk score reflects inactivation of the Hippo pathway in HCC.

SOH signature is associated with activation of mTORC1 in HCC

We next determined the association between SOH and other well-known genetic alterations in HCC. Ninety-one HCC tissues from the MSH cohort (16) were stratified according to the mouse SOH signature using BCCP and the same cut-off point (0.65) used in human tumors. Interestingly, the phosphorylation of signaling proteins was significantly associated with the SOH subtype. SOH HCC had relatively higher AKT phosphorylation ($P = 0.017$ by χ^2 test) and insulin-like growth factor R1 phosphorylation ($P = 0.019$) levels than did the AH subtype (Supplementary Table S10). Most interestingly, its association with the phosphorylation of ribosomal protein S6, a substrate of S6K1 that is activated by mTORC1 (35), was the strongest among all examined phosphorylations ($P = 1.4 \times 10^{-5}$ by χ^2 test), indicating that mTORC1 is more activated in the SOH subtype. To validate this interesting observation, we next silenced the expression of YAP1 and TAZ in SK-Hep1 HCC cells and measured the phosphorylation of S6, S6K1, and 4E-BP1, which are the best known direct downstream targets of mTORC1 (35). In good agreement with our observations in clinical samples, phosphorylation of three proteins was substantially reduced (Fig. 4B), suggesting that YAP1/TAZ expression is necessary for maintaining mTORC1 activity in HCC cells. A similar reduction in mTORC1 activity upon silencing of YAP1 and TAZ expression was also observed in Hepa cells (Fig. 4B), further supporting the hypothesis that YAP1/TAZ regulates mTORC1.

Discussion

We identified a gene expression signature that reflects inactivation of the Hippo pathway in the mouse liver and show that this inactivation accounts for the poor prognosis of a subset of patients with HCC. We tested and validated the association between the SOH subtype and clinical outcome in 435 patients in three independent cohorts. The SOH subtype had the highest HR for RFS on multivariate analysis, independent of other clinicopathologic characteristics, including BCLC stage; thus, this signature may be able to identify clinically important subtypes that are not recognized by current staging criteria.

The SOH signature showed great concordance with independently developed genomic and genetic predictors in previous studies. First, the SOH subtype significantly overlapped with the HS subtype, which was identified by the gene expression signature that was originally derived from HS (20); this finding strongly suggests that inactivation of the Hippo pathway occurs predominantly in HS during hepatocarcinogenesis. This suggestion is
supported by the finding that inactivation of the Hippo pathway in liver-specific SAV1−/− mice resulted in significant expansion of liver progenitor cells (11, 12). However, our current data do not rule out the possibility that the significant concordance between the SOH and HS subtypes results from inactivation of the Hippo pathway in mature hepatocytes, leading to dedifferentiation and the acquisition of HS characteristics. Second, we found a significant positive correlation between the SOH signature and the previously defined 65-gene HCC recurrence risk score (Fig. 4), which suggests that inactivation of the Hippo pathway in HCC is well reflected in this independently developed score. The strong correlation further suggests that alteration of the Hippo pathway is indeed a major genetic event that dictates the clinical outcome of patients with HCC. Thus, we rediscovered previously recognized clinically distinct subtypes of HCC and updated what is known about these subtypes; our observation that the poor clinical outcome of patients with the HS subtype is due to inactivation of the Hippo pathway suggests that YAP1 and TAZ are good therapeutic targets for patients with the HS phenotype. Furthermore, the results of a direct comparison with previously developed prognosis signatures suggested that the SOH signature is more accurate at estimating prognosis in patients with HCC, as it had the highest association with prognosis.

Our data also demonstrated that YAP1 and TAZ regulate mTORC1, the master regulator of cell growth, as evidenced by the significant association between the SOH subtype and
phosphorylation of the downstream target of mTORC1 in human HCC tissues and the reduced phosphorylation after silencing YAP1 and TAZ expression in HCC cells. The results of a previous study suggested that YAP1 and TAZ regulate mTORC1 through the PTEN–PI3K–AKT pathway (36). Thus, it will be interesting to determine whether the regulation of mTORC1 by YAP1 and TAZ is mediated by the PTEN–PI3K–AKT pathway in HCC.

There are several limitations to our study. First, the tissues and clinical information used in our analysis were retrospectively collected. Therefore, although we obtained highly reproducible results from three independent patient cohorts, it will be necessary to validate our prognostic model in a prospective study. Second, because most of our patients were hepatitis B virus positive, the prognostic value of the SOH signature may be limited to hepatitis B-related HCC. Thus, it will be necessary to test our models in patients with different etiologic backgrounds, such as hepatitis C virus or other forms of HCC. Third, all of the data in this study were generated using microarray technology and frozen tissues that are not routinely available through general practice in clinics. Therefore, it will be necessary to identify a small number of robust genes (5–10 genes) that reflect inactivation of the Hippo pathway in HCC and use simpler but more robust methods, such as quantitative reverse transcription polymerase chain reaction experiments, to measure the expression of these genes using RNA from easily available formalin-fixed paraffin-embedded tissues.

In conclusion, we used a well-defined SOH gene expression signature from a mouse model to identify two clinically distinct subtypes of human HCC, in the process, we uncovered molecular characteristics that were associated with clinical outcome. The molecular classification of tumors has significantly improved patient outcomes in some cancers by allowing the development of treatments that are tailored to the abnormalities present in each patient's cancer cells. An example is the discovery of estrogen receptor–positive and ERBB2 (or HER2)–positive breast cancer subtypes and the subsequent development of agents that target estrogen receptor or HER2 (37). The results of our study may provide a foundation for the molecular classification of HCC and thus the development of effective targeted therapies and scientifically designed clinical trials.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors' Contributions
Conception and design: B.H. Sohn, J.-J. Shim, W. Jeong, Y.J. Kim, R.L. Johnson, Y.-Y. Park, J.-S. Lee
Development of methodology: J.H. Kim, Y.J. Kim, J.-S. Lee
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): B.H. Sohn, J.-J. Shim, K.Y. Jang, S.M. Kim, J.H. Kim, J.E. Hwang, Y.J. Kim, D.-C. Kim, S.-H. Lee, I.-S. Chu, R.I. Johnson, Y.-Y. Park, J.-S. Lee
Writing, review, and/or revision of the manuscript: B.H. Sohn, J.-J. Shim, H.-J. Jang, J. Heo, A. Kaseb, M.M. Hassan, Y.-Y. Park, J.-S. Lee
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J.H. Kim, J.E. Hwang, H.-J. Jang, J. Heo, J.-S. Lee
Grant Support
This research was supported in part by the 2011 and 2012 cycles of the MD Anderson Sister Institute Network Fund (J.-S. Lee), Scientific Research Center Program grant 2012R1A5A1048236 and 2014R1A2A201003983 (W. Jeong), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2053529 (Y.-Y. Park), and the GlaxoSmithKline Research Fund of the Korean Association for the Study of the Liver (J.H. Kim).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 18, 2015; revised August 27, 2015; accepted September 10, 2015; published OnlineFirst October 12, 2015.

Acknowledgments
The authors are grateful to Dr. Jun Young Kim, who provided critical feedback and encouragement. We thank Dr. Jeanne Jang, Dr. Jin Heo, Dr. Jin-Joo Shim, Dr. Seungho Lee, Dr. Sang-Hyeok Park, and Dr. Jin-Sun Lee for helpful discussions.

Conflicts of Interest
No potential conflicts of interest were disclosed.

Grant Support
This research was supported in part by the 2011 and 2012 cycles of the MD Anderson Sister Institute Network Fund (J.-S. Lee), Scientific Research Center Program grant 2012R1A5A1048236 and 2014R1A2A201003983 (W. Jeong), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2053529 (Y.-Y. Park), and the GlaxoSmithKline Research Fund of the Korean Association for the Study of the Liver (J.H. Kim).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 18, 2015; revised August 27, 2015; accepted September 10, 2015; published OnlineFirst October 12, 2015.

References
Inactivation of Hippo Pathway Is Significantly Associated with Poor Prognosis in Hepatocellular Carcinoma

Bo Hwa Sohn, Jae-Jun Shim, Sang-Bae Kim, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-15-1447

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2015/10/10/1078-0432.CCR-15-1447.DC1

Cited articles
This article cites 37 articles, 16 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/22/5/1256.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/22/5/1256.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.