Clinical Trial of Oral Nelfinavir before and during Radiation Therapy for Advanced Rectal Cancer

Esme J. Hill, Corran Roberts, Jamie M. Franklin, Monica Enescu, Nicholas West, Thomas P. MacGregor, Kwan-Ye Chu, Lucy Boyle, Claire Blesing, Lai-Mun Wang, Somnath Mukherjee, Ewan M. Anderson, Gina Brown, Susan Dutton, Sharon B. Love, Julia A. Schnabel, Phil Quirke, Ruth Muschel, William G. McKenna, Michael Partridge, and Ricky A. Sharma

Abstract

Purpose: Nelfinavir, a PI3K pathway inhibitor, is a radiosensitizer that increases tumor blood flow in preclinical models. We conducted an early-phase study to demonstrate the safety of nelfinavir combined with hypofractionated radiotherapy (RT) and to develop biomarkers of tumor perfusion and radiosensitization for this combinatorial approach.

Experimental Design: Ten patients with T3-4 N0-2 M1 rectal cancer received 7 days of oral nelfinavir (1,250 mg b.i.d.) and a further 7 days of nelfinavir during pelvic RT (25 Gy/5 fractions/7 days). Perfusion CT (p-CT) and DCE-MRI scans were performed pretreatment, after 7 days of nelfinavir and prior to the last fraction of RT. Biopsies taken pretreatment and 7 days after the last fraction of RT were analyzed for tumor cell density (TCD).

Results: There were 3 drug-related grade 3 adverse events: diarrhea, rash, and lymphopenia. On DCE-MRI, there was a mean 42% increase in median K_{trans} and a corresponding median 30% increase in mean blood flow on p-CT during RT in combination with nelfinavir. Median TCD decreased from 24.3% at baseline to 9.2% in biopsies taken 7 days after RT ($P = 0.01$). Overall, 5 of 9 evaluable patients exhibited good tumor regression on MRI assessed by tumor regression grade (mrTRG).

Conclusions: This is the first study to evaluate nelfinavir in combination with RT without concurrent chemotherapy. It has shown that nelfinavir-RT is well tolerated and is associated with increased blood flow to rectal tumors. The efficacy of nelfinavir-RT versus RT alone merits clinical evaluation, including measurement of tumor blood flow. Clin Cancer Res; 22(8); 1922–31. ©2016 AACR.

See related commentary by Meyn et al., p. 1834

Introduction

Pelvic radiotherapy (RT) has an important role in the treatment of patients with rectal adenocarcinoma. Short course RT, 25 Gy delivered in 5 daily fractions in 1 week followed by surgery within 5 to 7 days, can halve the risk of local recurrence in patients with operable rectal cancer (1,2). Long-course preoperative chemoradiotherapy (LCCRT), typically 45 to 50.4 Gy in 25 to 28 daily fractions over 5 to 7 weeks in combination with 5-fluorouracil or capecitabine as a radiosensitizer, is generally offered to patients with locally advanced tumors. Tumor regression has been shown to correlate with improved outcomes for patients (3–5).

The optimal first treatment for patients with a symptomatic primary rectal cancer and distant metastases at presentation is a matter of debate. Systemic therapy is not effective in all patients; although it may achieve response after 6 to 8 weeks of therapy, it does not provide rapid symptom relief for all patients (6). Planning and delivery of LCCRT may delay delivery of full-dose systemic therapy and may therefore compromise surgical treatment of metastatic disease (e.g., liver surgery for operable metastases). A strategy of short-course RT followed 2 weeks later by full-dose systemic combination chemotherapy can be used to prevent this delay. Short-course RT can safely precede full-dose systemic therapy (e.g., capecitabine and oxaliplatin and bevacizumab), resulting in pathological complete response (pCR) rates above 25% and radical resection and/or radiofrequency ablation of all metastatic disease in the majority of patients (7).

One factor that increases cellular resistance to RT is overexpression of activated oncogenes, such as the epidermal growth factor receptor (EGFR; ref. 8), RAS (9), or loss of the tumor suppressor gene PTEN (10). These mutations share molecular signaling via the PI3K–Akt pathway. We have previously shown that inhibition...
of this pathway augments response to RT in vitro and in vivo in cells with constitutive activation of this pathway, an effect not seen in cells with a nonactivated pathway (11–14). This pathway is frequently altered in humans with colorectal cancer (15). Because the PI3K signaling pathway can be constitutively activated in tumor cells, yet not in host cells, an inhibitor of this pathway frequently altered in humans with colorectal cancer (15). Because the PI3K signaling pathway can be constitutively activated in tumor cells, yet not in host cells, an inhibitor of this pathway might be expected to improve the therapeutic index through selective tumor radiosensitization (16).

Nelfinavir is an HIV protease inhibitor (HPI) that has been shown to inhibit Akt at standard clinical doses and to cause radiosensitization in vivo (17). In addition to intrinsic radiosensitization, we have shown previously that nelfinavir caused sustained improvements in tumor perfusion and reduction in hypoxia in a mouse xenograft model (18). Although some clinical studies have investigated nelfinavir in combination with chemoradiotherapy (see Table 1), there are no published data on the addition of nelfinavir to RT without concomitant chemotherapy. Nor are there data on whether the changes in perfusion observed in preclinical studies with nelfinavir are replicated in human subjects with cancer. Dynamic contrast-enhanced MRI (DCE-MRI) and perfusion CT (p-CT) have previously been used to detect changes in tumor perfusion induced by anti-angiogenic drugs (19, 20) and chemoradiotherapy for rectal cancer (21–25).

A barrier to the advancement of radiosensitizers is uncertainty regarding the optimal primary endpoint for clinical trials. Endpoints traditionally used, such as pCR rate, radiological response or disease-free survival, have a number of limitations, including variability of definitions (26). The development of new tissue biomarkers of response is highly desirable for the evaluation of novel radiosensitizers. We have developed a quantitative assessment of tumor cell density (TCD), which is a predictor of survival in patients with colorectal cancer (27). We are currently exploring this technique to compare different preoperative RT schedules (28).

The objective of the SONATINA (Study Of Nelfinavir Addition to Radiotherapy Treatment In Neo-Adjuvant Rectal Cancer) clinical trial was to investigate the safety of nelfinavir administered before and during RT in patients with rectal adenocarcinoma. We also explored the feasibility of incorporating biomarkers of RT that could be used in efficacy studies and the ability of p-CT and DCE-MRI to detect changes in tumor perfusion during therapy.

Patients and Methods

Study design
SONATINA was a nonrandomized, open-label clinical trial (EudraCT number: 2010-020621-40) to establish the safety of nelfinavir with hypofractionated pelvic RT. The primary outcome was measured by the occurrence of any grade 3 or higher toxicities [Common Terminology Criteria for Adverse Events (CTCAE), version 4.0] within 28 days of the last fraction of RT. Because the primary outcome was the safety of this novel combinatorial therapy, there was no control group. Secondary outcomes included radiological response of primary tumor at 8 weeks after RT, feasibility of measuring a tissue biomarker (TCD) in pretreatment biopsies and biopsies taken 7 days after RT, and feasibility of using dynamic imaging to evaluate tumor perfusion.

Ethical approval was obtained from National Research Ethics Service Committee South Central (reference 10/H0604/61). Key inclusion criteria were patients with histologically proven adenocarcinoma of the rectum, radiological evidence of M1 disease, suitability for short-course RT as primary treatment (determined by the Colorectal Tumor Board), ECOG performance status 0 to 2, and age ≥18 years. Exclusion criteria included previous pelvic RT, recent severe cardiac disease, or operable primary tumor (in opinion of the Tumor Board).

Treatment
Patients received 7 days of oral Nelfinavir (1,250 mg b.i.d.) before RT and a further 7 days of nelfinavir during RT. This dose of nelfinavir has been shown to consistently reduce levels of Akt phosphorylation in peripheral blood mononuclear cells in patients with cancer (29). Compliance logs were used to check that all doses were taken as prescribed. The total dose of RT was 25 Gy, delivered in 5 Gy fractions over 5 days during a 7-day period as a single-phase treatment prescribed to the International Commission on Radiation Units (ICRU) Reference Point. The dose constraints were set such that at least 99% of the planning target volume (PTV) should receive 95% of the prescription dose. The PTV maximum was no more than 107% of the prescribed dose to the ICRU reference point. For all patients, 3 to 7 photon beams (6 or 15 MV) were used, with the entire plan displayed in physical dose. Conformal RT plans were reviewed by a RT quality assurance panel (independent clinician, radiographer, physicist) prior to delivery of the first fraction. Verification imaging by cone beam CT to localize the treatment volume was required prior to every fraction for the first three fractions. In order to treat metastases, patients were permitted to commence systemic chemotherapy 14 days after the completion of RT.

Details of procedures
Patients underwent MRI of the pelvis at baseline and 8 weeks after completion of RT for assessment of tumor regression grade (mTRG) according to a recognized scoring system (30). As previously published (30), patients with mTRG score of 1 to 3 on MRI scan were classified as having “good mTRG score” and patients with mTRG score of 4 or 5 were classified as having “poor mTRG score.” Anonymized scans were assessed by two independent radiologists; agreement was evaluated by weighted Kappa statistic. In cases of discrepancy, scans were assessed by a third independent radiologist and consensus was derived.

Dynamic imaging
In order to explore changes in tumor perfusion induced by protocol therapy, DCE-MRI and p-CT scans of the rectum were incorporated at three time points: before commencement of...
<table>
<thead>
<tr>
<th>Study (reference)</th>
<th>Tumor type</th>
<th>Patients, n</th>
<th>Treatment regimen</th>
<th>Endpoints</th>
<th>G3/4 toxicities observed</th>
<th>Dose limiting toxicities</th>
<th>Response rates on CT scans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brunner et al. (29)</td>
<td>Pancreatic adenocarcinoma (Unresectable or borderline resectable)</td>
<td>12</td>
<td>NFV 1250 mg b.i.d. 3 d before and concurrent with: 59.4 Gy pancreas DL1 Cisplatin 30 mg/m² Gemcitabine 200 mg/m² D1, 8, 22, 29 (n = 5) DL2 Cisplatin 30 mg/m² Gemcitabine 300 mg/m² D1, 8, 22, 29 (n = 5)</td>
<td>DLT RECIST (CT) response PET response Resection rate</td>
<td>G3 leukopenia (4) G3 neutropenia (3)</td>
<td>G3 upper GI (1) at DL1 G3 nausea and vomiting (1) at DL2</td>
<td>5/10 PR, 6/10 resection, 5/9 CR</td>
</tr>
<tr>
<td>Rengan et al. (46)</td>
<td>Non-small cell lung cancer (Unresectable stage IIIA/IIIB)</td>
<td>16</td>
<td>NFV 7-14 d before and concurrent with: 66.6 Gy in 38# involved field + Cisplatin 50 mg/m² D1, 8, 29, 36 Etoposide 50 mg/m² D1-5, 29-36 DL1: NFV 625 mg b.i.d. (n = 5) DL2: NFV 1250 mg b.i.d. (n = 8)</td>
<td>DLT CT response PET response</td>
<td>G3 esophagitis (4) G3 pulmonary toxicity (1) G3 leukopenia (3) G3 anemia (2) G3 thrombocytopenia (2) G3 upper GI (3) G3 hypotension (3) G3 fatigue (2) G4 leukopenia (6) G4 thrombocytopenia (1)</td>
<td>None</td>
<td>4/12 CR, 7/12 PR, 1/12 SD</td>
</tr>
<tr>
<td>Buijsen et al. (32)</td>
<td>Locally advanced rectal adenocarcinoma</td>
<td>12</td>
<td>50.4 Gy in 28 # pelvis and capecitabine 825 mg/m² concurrent with NFV: DL1 NFV 750 mg b.i.d. (n = 5) DL2 NFV1250 mg b.i.d. (n = 3) DL3 NFV 100 mg b.i.d. (n = 3)</td>
<td>DLT pCR TRG</td>
<td>G3 transaminase (2) G3 cholangitis (1) G3 ileus G3 diarrhea (2) G4 post-op wound complication (1)</td>
<td>G3 diarrrhea (2) at DL2 G3 transaminase (2) G3 cholangitis (1) G3 ileus G4 post-op wound complication (1) At DL3</td>
<td>pCR 3/11 (27%) Good TRG 4/11</td>
</tr>
<tr>
<td>Alonso-Basanta et al. (33)</td>
<td>Glioblastoma (post-op)</td>
<td>21</td>
<td>NFV 7-10 days before and concurrent with: 60 Gy in 30# GTV and Temozolomide 75 mg/m² od DL1 NFV 625 mg b.i.d. (n = 3) DL2 NFV 1250 mg b.i.d. (n = 18)</td>
<td>DLT pFS OS</td>
<td>Diarrhea (1) Transaminase (8) Bilirubin (1) Alkaline phosphatase (1) Lymphopenia (2)</td>
<td>G3 hepatotoxicity (3) G3 diarrrhea (1) at DL2 G3 diarrrhea (1) at DL2</td>
<td>Median pFS 7.2 months Median OS 15.7 months</td>
</tr>
</tbody>
</table>

Abbreviations: CR, complete response; CT, computed tomography; DL, dose level; DLT, dose limiting toxicity; G3/4, grade 3/4; NFV, nelﬁnavir; OS, overall survival; pCR, pathologic complete response; PET, positron emission tomography; pFS, progression-free survival; PR, partial response; SD, stable disease; TRG, tumor regression grade.
Nelfinavir, the day before commencement of RT (i.e., day 7 of nelfinavir), and on the last day of the treatment (before the RT fraction was delivered). Mean p-CT parameters [blood flow, blood volume, and mean transit time (MTT)] and median DCE-MRI scan parameters (Ktrans, Keq, and V) were measured in the tumor volume of interest, and percentage change in these values was presented graphically.

Tissue biomarkers

In diagnostic biopsies and biopsies performed 7 days after completion of RT, TCD was measured in digitally scanned hematoxylin and eosin–stained slides using an automated scanning system (Aperio XT, Aperio Technologies) at 200× magnification (27, 28). In cases where there was variation in TCD across the specimen, we used the area of tumor with highest TCD, as we have previously reported and correlated with clinical outcomes (27). Immunohistochemistry was carried out on pretreatment rectal biopsy specimens using the Leica Bond-Max automated immunostainer (Leica Microsystems) on 5-μm sections cut from formalin-fixed paraffin-embedded tissue. As an indicator of baseline characteristics, pretreatment biopsy sections were stained for the following biomarkers: CAIX, HIF1α, Phospho-PRAS40 (see Supplementary Information).

Statistical analyses

The Wilcoxon signed-rank test was used to determine pairwise differences for nonparametric data, and the paired Student t test was used to determine pairwise differences for parametric data.

Results

Recruitment, compliance, and toxicities

From April 2011 to August 2013, 19 patients were screened and 10 patients were recruited (Fig. 1; Table 2). All patients completed RT as per protocol. Compliance logs revealed that 1 patient missed one dose of nelfinavir and another patient missed two doses of nelfinavir.

There were no grade 4 toxicities. Two patients stopped taking nelfinavir early because of toxicity: one on day 13 of treatment because of an allergic rash (grade 3, probably related), the other on day 4 due to vomiting (grade 3, possibly related but the patient had preexisting partial gastric outlet obstruction). Additionally, 5 patients had grade 3 toxicities within 28 days of RT (Table 3). One patient was admitted to hospital with grade 3 diarrhea 23 days after the completion of RT and nelfinavir, which was 7 days after the commencement of oxaliplatin and 5FU chemotherapy. This event was considered to be related to chemotherapy and possibly related to RT, but unrelated to nelfinavir. Another patient developed grade 3 diarrhea 4 days after the completion of nelfinavir and RT; this event was considered to be causally related to protocol therapy. Another patient had grade 3 perianal pain due to hemorrhoids, probably related to RT.

With regard to laboratory values, one patient developed grade 3 lymphopenia on the last day of protocol therapy. This persisted on a blood test 1 month following completion of therapy. The total white cell count was normal, and the patient had no evidence of active infection. A number of grade 1 or 2 abnormalities in liver function tests were observed within 3 months of therapy, likely to be related to liver metastases or chemotherapy (Supplementary Table S1). One patient had hyponatremia (grade 3), which preceded protocol therapy, and worsened transiently during an episode of diarrhea after RT. Because a known side effect of nelfinavir is diabetes mellitus, fasting glucose was checked during treatment and follow-up. Three patients had grade 1 or 2 hyperglycemia after 7 days of nelfinavir; blood glucose was normal on subsequent testing 28 days after completion of therapy.

Radiological responses

Using a recognized scoring system (30), interobserver agreement between two independent radiologists was good, with weighted kappa score of 0.79. Of 9 patients who completed MRI scans of the pelvis 8 weeks after completion of nelfinavir and RT to assess mrTRG response of the primary tumor, 5 patients exhibited “good” tumor regression according the definitions of the scoring system (ref. 30; Table 4; Supplementary Fig. S1). It should be noted that, as discussed in the Introduction, a major benefit of the treatment strategy adopted in this clinical trial was that patients were permitted to commence full-dose systemic chemotherapy to treat metastatic disease as early as 14 days from the last fraction of RT, as documented in Table 4.

Dynamic Imaging

All 10 patients in the study successfully completed p-CT scans at 3 time points (Supplementary Fig. S2). The pCT scans for 1 patient (patient 7) were excluded from analysis for technical reasons. Nine patients underwent DCE-MRI scanning at all 3 time points. One patient (patient 1) did not undergo the second DCE-MRI scan because of vertigo. A further 3 scans were excluded from analysis because of inadequate contrast enhancement or contrast extravasation.

Analyzing the percentage change in perfusion parameters between the pretreatment scans (scan 1) and the scan on the seventh day of nelfinavir (scan 2), the median blood flow was 37.3 at scan 1, and 43.9 at scan 2 (nonsignificant by the Wilcoxon signed-rank test). There were also no statistically significant changes in blood volume or MTT demonstrated between scans 1 and 2 (nonsignificant by the Wilcoxon signed-rank test).

Between the p-CT on the seventh day of nelfinavir (scan 2) and the scan at the end of RT (scan 3), an increase in blood flow in association with a decrease in MTT was observed in 8 of 9 evaluable patients (Fig. 2A). A significant median 30% increase in blood flow (P = 0.01, Wilcoxon signed-rank test) and a 29% median decrease in MTT was observed (P = 0.01, Wilcoxon signed-rank test) on p-CT from scan 2 to scan 3 (Supplementary Table S2).

Between the DCE-MRI on the seventh day of nelfinavir (scan 2) and the scan at the end of RT (scan 3), an increase in median Ktrans was demonstrated in all 7 evaluable patients (Fig. 2B; Supplementary Table S3). Between scans 2 and 3, there was a 42% (0.08/minute) mean increase in median Ktrans and a 13% (0.07) mean increase in median Vp (P = 0.03 and 0.02, respectively, Student t test).

Tissue biomarkers

TCD was evaluable in all of the pretreatment rectal biopsy specimens and in 9 out of 10 post-radiotherapy biopsy specimens (Fig. 2C). The median TCD decreased from 24 (interquartile range, 13–45) at baseline to 9 (interquartile range, 3–16) on post-treatment biopsies. One of the post-treatment biopsies contained adenoma cells but no malignant cells, which was attributed to sampling error; this sample was not included in analyses.
Patients with metastatic rectal cancer requiring pelvic RT entered into study (N = 10)

Assessed for eligibility (N = 19)

Excluded (n = 9)
Ineligible (n = 5)
Declined to participate (n = 1)
More suitable for alternative trial (n = 3)

Diagnostic rectal tumor biopsy, MRI pelvis and CT CAP (N = 10)

Received nelfinavir 1250 mg bd orally for 7 days prior to RT (N = 10)*

Received further 7 days of nelfinavir 1250 mg bd + RT pelvis 5 x 5 Gy in 1 week (N = 10) †

Rectal tumor biopsy 7 days after last fraction of RT (N = 10)

TCD evaluable in posttreatment biopsy (n = 9)

Scan 1 : Pretreatment p-CT (n = 10) and DCE-MRI (n = 10)

Scan 2 : p-CT (n = 10) and DCE-MRI on Day 7 of nelfinavir (n = 9)

Scan 3 : p-CT (n = 10) and DCE-MRI on last day of RT (n = 10)

MRI pelvis 8 weeks after last fraction of RT (n = 9)

Included in ITT analysis (N = 10)

Abbreviations used: MRI, magnetic resonance imaging; CT CAP, computed tomography chest abdomen and pelvis; p-CT, perfusion CT; DCE-MRI, dynamic contrast enhanced magnetic resonance imaging; RT, radiation therapy; N/n, number of patients; ITT, intention to treat

* one patient stopped taking nelfinavir after 4 days due to vomiting
† one patient stopped taking nelfinavir after 4th fraction of RT due to an allergic rash

Figure 1.
CONSORT diagram showing the flow of participants through each stage of the SONATINA study.

Hill et al.
The sample size was not adequate to study potential relationships between somatic or immunohistochemical analyses (Supplementary Fig. S3) at baseline and radiological response 8 weeks from the end of RT, but these data are presented in Table 4 and Supplementary Tables S4 to S6 because they may assist in the design of future studies of this treatment combination. Of note, 7 of 10 tumors had KRAS mutation.

Discussion

Nelfinavir has been shown to inhibit Akt at standard clinical doses and to cause radiosensitization in vivo (17). This early-phase trial was designed to study the safety of nelfinavir with hypofractionated pelvic RT and to develop both tissue and imaging biomarkers of the potential efficacy of this combinatorial therapy for use in future studies. We have demonstrated that the combination of nelfinavir and hypofractionated pelvic RT is well tolerated in patients with advanced rectal cancer.

Advancement of nelfinavir as a radiosensitizer

Although the sample size in this study was not sufficient to make any definite conclusions about the response rate, the proportion of good mTRG in the study presented here compares favorably with LCCRT for locally advanced rectal cancer. In one large UK study, the rate of good mTRG for LARC was 50% overall (30) and for ≥T3c tumors only 33%. This compares with 56% in the patients presented here, in which 60% patients had T4 tumors and 70% had a KRAS mutation. It should be noted that 4 of the patients with good mTRG score had 3 to 6 weeks of chemotherapy between the end of RT and MRI assessment. Although systemic therapy may have contributed to the clinical response rates observed, the ability to administer full-dose systemic therapy soon after RT appears to be a promising treatment strategy with regard to clinical response rates. The efficacy of hypofractionated RT followed by systemic chemotherapy in comparison with standard chemoradiation is currently being tested in the international, multicenter, randomized trial RAPIDO (NCT01558921; ref. 31).

Importantly, the SONATINA study is the first clinical trial to assess the safety of nelfinavir and RT without the confounding effect of concurrent chemotherapy (see Table 1). A previous study of nelfinavir and long-course chemoradiotherapy with capecitabine resulted in unacceptable levels of grade 3 hepatotoxicity (32), which may have been attributable to a drug interaction between chemotherapy and nelfinavir. Similarly, in a study of concurrent nelfinavir, temozolomide, and RT for patients with glioma, 3 patients experienced dose-limiting grade 3 transaminase elevation (33). In our study, we observed 3 grade 3 toxicities that were considered to be possibly or probably related to nelfinavir: diarrhea, drug rash, and lymphopenia. Of these, only the drug rash was a dose-limiting toxicity. Consistent with the published toxicities of hypofractionated pelvic RT without nelfinavir (34–36), our conclusion is that the addition of nelfinavir to hypofractionated pelvic RT is well tolerated. Importantly, hepatotoxicity was not observed in our study (see Table 1; Supplementary Information). It should be noted that 7 of 10 patients treated in the clinical trial reported here had low rectal tumors (Table 2). We propose that future studies including patients with mid and high rectal tumors should carefully document toxicities to ensure the safety of treating larger volumes of small intestine with RT.

Dynamic imaging as a biomarker of efficacy

In addition to intrinsic radiosensitization, we have shown previously that nelfinavir caused sustained improvements in tumor perfusion and reduction in hypoxia in a mouse xenograft model after 5 to 14 days of treatment (18). We therefore evaluated two imaging biomarkers to measure potential changes in perfusion during nelfinavir therapy in patients with cancer: p-CT and DCE-MRI. Although no changes were observed from 7 days of the trial drug, our study showed a 30% increase in mean blood flow using p-CT and a 42% mean increase in median k_{trans} using DCE-MRI scans during RT and nelfinavir. The intrasubject coefficient of variation for blood flow in colorectal tumors has been reported to be in the range of 14% to 23% (37, 38), and studies suggest that the coefficient of variation for k_{trans} measurements in tumors using DCE-MRI is of the order of 20% (39, 40). In our study, the consistency between the findings of the two imaging modalities adds substantial support to the observation of increased tumor perfusion. Although k_{trans} can be affected by permeability, our findings from p-CT as well as DCE-MRI suggest increased blood flow from the combination of nelfinavir plus RT.

Because there was no control group (i.e., no nelfinavir) in this early-phase trial designed to show the safety of protocol therapy, it is not possible to differentiate the effect of RT on blood flow from the effect of nelfinavir plus RT in the data from our imaging biomarkers. Previous studies of LCCRT have demonstrated increases in tumor perfusion parameters during the initial weeks of RT (22, 41) followed by subsequent decreases in tumor perfusion after completion of therapy (21, 24, 42–44). Our findings are consistent with previously reported increases in median k_{trans} between baseline and the

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>SONATINA patients (N = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>65</td>
</tr>
<tr>
<td>Range</td>
<td>45–81</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
</tr>
<tr>
<td>Female</td>
<td>5</td>
</tr>
<tr>
<td>ECOG performance status</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Subsite of tumor in rectum</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>7</td>
</tr>
<tr>
<td>Mid</td>
<td>2</td>
</tr>
<tr>
<td>Upper</td>
<td>1</td>
</tr>
<tr>
<td>MRI-defined T stage</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>4</td>
</tr>
<tr>
<td>T4</td>
<td>6</td>
</tr>
<tr>
<td>MRI-defined N stage</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>2</td>
</tr>
<tr>
<td>N1</td>
<td>3</td>
</tr>
<tr>
<td>N2</td>
<td>5</td>
</tr>
<tr>
<td>Sites of metastatic disease (CT)</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>8</td>
</tr>
<tr>
<td>Distant lymph nodes</td>
<td>5</td>
</tr>
<tr>
<td>Lung</td>
<td>6</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
</tr>
</tbody>
</table>
fifth fraction of hypofractionated RT for locally advanced rectal cancer (23). In order to ascertain whether the significant changes we have observed are due to RT or due to the combination of nelfinavir with RT, we propose that phase II studies of the efficacy of nelfinavir-RT versus RT alone should incorporate imaging biomarkers of blood flow.

Tissue biomarkers

At present, tissue biomarkers for the selection of patients for a treatment strategy including a novel radiosensitizing drug do not exist. Visual estimation of the tumor:stroma ratio has been shown to be prognostic for patients with localized colon cancer (45), but this has not been studied in patients with metastatic rectal cancer scheduled to receive RT. We sought to develop a reproducible, quantitative tissue biomarker of potential radiosensitization for use in future clinical trials. We have previously assessed TCD in pretreatment biopsy specimens and resected tumors (27, 28), and in the study presented here we assessed the feasibility of measuring TCD in both pre-RT and post-RT biopsy samples obtained at endoscopy.

Our results are in favor of the hypothesis that the addition of nelfinavir to hypofractionated RT may result in additional tumor cell kill compared with RT alone. Compared with our previous study of 45 rectal cancer patients who received 25 Gy in 5 fractions of RT to the pelvis followed by surgery 7 days after the end of radiotherapy (28), whose TCD values ranged from 14 to 46, the range of post-treatment TCDs in this study was 1 to 21. Based on these findings, we conclude that TCD can be measured in biopsies taken pre- and post-RT. Although TCD could be developed further as a biomarker of radiosensitizing drugs for use in prospective clinical trials, there are limitations in assessing TCD from biopsies due to differences in sampling techniques. Larger, correlative studies with imaging such as mrTRG are warranted.

Table 3. Toxicities observed up to 28 days from the last fraction of RT

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>CTCAE grade 0–2</th>
<th>CTCAE grade 3 (nelfinavir causality)</th>
<th>CTCAE grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>1 (1 patient)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anorexia</td>
<td>2 (2 patients)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7 (6 patients)</td>
<td>2 (2 patients) (probably related, definitely not related)</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>8 (7 patients)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fever</td>
<td>1 (1 patient)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastrointestinal—other</td>
<td>7 (5 patients)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hyperglycemia (fasting glucose)</td>
<td>3 (3 patients)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>0</td>
<td>1 (1 patient) (probably not related)</td>
<td>0</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>2 (2 patients)</td>
<td>2 (1 patient) (possibly related, definitely not related)</td>
<td>0</td>
</tr>
<tr>
<td>Nausea/vomiting</td>
<td>12 (5 patients)</td>
<td>1 (1 patient) (possibly related)</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>8 (7 patients)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pain</td>
<td>3 (3 patients)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>2 (2 patients)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Proctitis/perianal pain</td>
<td>3 (3 patients)</td>
<td>1 (1 patient) (probably not related)</td>
<td>0</td>
</tr>
<tr>
<td>Rash</td>
<td>4 (4 patients)</td>
<td>1 (1 patient) (probably related)</td>
<td>0</td>
</tr>
<tr>
<td>Urinary symptoms</td>
<td>5 (3 patients)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>68</td>
<td>8 (7 patients)</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4. Tumor response on MRI 8 weeks after therapy (mrTRG score) for individual patients in relation to baseline characteristics and number of cycles of chemotherapy administered

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Baseline MRI stage</th>
<th>KRAS mutation status</th>
<th>HIF1α expression at baseline</th>
<th>CAIX expression at baseline</th>
<th>Phospho-PRAS40 expression at baseline</th>
<th>No. weeks of oxaliplatin–fluouracil chemotherapy between end of RT and MRI</th>
<th>mrTRG score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T3b N2</td>
<td>Wild-type</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>6</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>T4 N2</td>
<td>Mutant (G12V)</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>6</td>
<td>Poor</td>
</tr>
<tr>
<td>3</td>
<td>T3a N2</td>
<td>Wild-type</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>6</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>T3b N2</td>
<td>Mutant (G12A)</td>
<td>Not evaluable</td>
<td>Positive</td>
<td>Negative</td>
<td>6</td>
<td>Poor</td>
</tr>
<tr>
<td>5</td>
<td>T3a N2</td>
<td>Mutant (G12S)</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>3</td>
<td>Good</td>
</tr>
<tr>
<td>6</td>
<td>T4 N2</td>
<td>Mutant (G12V)</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>3</td>
<td>Poor</td>
</tr>
<tr>
<td>7</td>
<td>T4 N2</td>
<td>Wild-type</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>4</td>
<td>Poor</td>
</tr>
<tr>
<td>8</td>
<td>T4 N2</td>
<td>Mutant (G12V)</td>
<td>Negative</td>
<td>Not evaluable</td>
<td>Not evaluable</td>
<td>4</td>
<td>Good</td>
</tr>
<tr>
<td>9</td>
<td>T4 N1</td>
<td>Mutant (G12C)</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>None</td>
<td>Good</td>
</tr>
<tr>
<td>10</td>
<td>T4 N2</td>
<td>Mutant (G13A)</td>
<td>Negative</td>
<td>Negative</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Abbreviations: CAPOX, capecitabine and oxaliplatin; mrTRG, tumor regression grade on MRI 8 weeks after radiotherapy; Ox/MDG, oxaliplatin and modified de Gramont.
Conclusions

This study has shown that the combination of nelﬁnavir and hypofractionated RT for locally advanced rectal cancer is well tolerated, and that this novel treatment strategy can be followed by combination chemotherapy as early as 14 days after RT to treat metastatic disease. Consistent with previous studies of RT, nelﬁnavir plus hypofractionated RT signiﬁcantly increased mean blood ﬂow to tumor compared with baseline values. The tissue biomarker TCD can be measured on biopsies taken before and after RT; it is a candidate biomarker for systematic development for assessing potential radiosensitizing drugs prior to phase II evaluation.

Disclosure of Potential Conﬂicts of Interest

P. Quirke reports receiving speakers bureau honoraria from Amgen and Roche, and reports receiving commercial research support from Leica and Roche. R. Muschel is a consultant/advisory board member for Midatech, and reports receiving commercial research support from Galaxy Biotech. No potential conﬂicts of interest were disclosed by the other authors.

Authors’ Contributions

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc): E.J. Hill, N. West, T.P. MacGregor, K.-Y. Chu, L. Boyle, C. Blessing, L.-M. Wang, E.M. Anderson, G. Brown, P. Quirke, R.A. Sharma

Other (contributed patients to the study): S. Mukherjee

Acknowledgments

The authors thank the patients who participated in this study, the University of Oxford as sponsor, present and former staff at Oncology Clinical Trials Office and Centre for Statistics in Medicine (both part of the UKCRC registered Oxford Clinical Trials Research Unit (OCTRU), members of the Independent Early Phase Trials Oversight Committee for support and guidance, Andrew Slater, Margaret Betts, Emma Tinkler-Hundal and the Rectal Subgroup of the NCRI Colorectal Clinical Study Group and NCRI CTRAd Working Group for advice during protocol development.

Grant Support

This study was supported by Oxfordshire Health Services Research Committee, CRUK-ESPIC Oxford Cancer Imaging Centre, NIHR Oxford Biomedical Research Centre, Oxford ECAMC, Pathological Society of Great Britain and Ireland, Academy of Medical Sciences, Higher Education Funding Council for England, Yorkshire Cancer Research.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 29, 2015; revised December 15, 2015; accepted December 28, 2015; published OnlineFirst February 9, 2016.

References

Nelfinavir Combined with Radiotherapy for Rectal Cancer

Clinical Cancer Research

Clinical Trial of Oral Nelfinavir before and during Radiation Therapy for Advanced Rectal Cancer

Esme J. Hill, Corran Roberts, Jamie M. Franklin, et al.

Updated version
Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-15-1489

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2016/02/26/1078-0432.CCR-15-1489.DC2

Cited articles
This article cites 46 articles, 11 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/22/8/1922.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/22/8/1922.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.