Defects in the Fanconi Anemia Pathway in Head and Neck Cancer Cells Stimulate Tumor Cell Invasion through DNA-PK and Rac1 Signaling

Lindsey E. Romick-Rosendale1, Elizabeth E. Hoskins1, Lisa M. Privette Vinnedge1, Grant D. Foglesong1, Marion G. Brusadelli1, S. Steven Potter2, Kakajon Komurov1, Samantha A. Brugmann2, Paul F. Lambert3, Randall J. Kimple4, Elizabeth L. Virts5, Helmut Hanenberg5,6,7, Maura L. Gillson8, and Susanne I. Wells1

Abstract

Purpose: Head and neck squamous cell carcinoma (HNSCC) remains a devastating disease, and Fanconi anemia (FA) gene mutations and transcriptional repression are common. Invasive tumor behavior is associated with poor outcome, but relevant pathways triggering invasion are poorly understood. There is a significant need to improve our understanding of genetic pathways and molecular mechanisms driving advanced tumor phenotypes, to develop tailored therapies. Here we sought to investigate the phenotypic and molecular consequences of FA pathway loss in HNSCC cells.

Experimental Design: Using sporadic HNSCC cell lines and without FA gene knockdown, we sought to characterize the phenotypic and molecular consequences of FA deficiency. FA pathway inactivation was confirmed by the detection of classic hallmarks of FA following exposure to DNA cross-linkers. Cells were subjected to RNA sequencing with qRT-PCR validation, followed by cellular adhesion and invasion assays in the presence and absence of DNA-dependent protein kinase (DNA-PK) and Rac1 inhibitors.

Results: We demonstrate that FA loss in HNSCC cells leads to cytoskeletal reorganization and invasive tumor cell behavior in the absence of proliferative gains. We further demonstrate that cellular invasion following FA loss is mediated, at least in part, through NHEJ-associated DNA-PK and downstream Rac1 GTPase activity.

Conclusions: These findings demonstrate that FA loss stimulates HNSCC cell motility and invasion, and implicate a targetable DNA-PK/Rac1 signaling axis in advanced tumor phenotypes.

Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio. Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio. McArthur Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin. Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin. Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana. Department of Otorhinolaryngology, Heinrich Heine University, Düsseldorf, Germany. Department of Pediatrics III, University Children’s Hospital Essen, University of Duisburg-Essen, Essen, Germany. Internal Medicine—Hematology & Oncology, Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio.

Note: Supplementary data for this article are available at Clinical Cancer Research (http://clincancerres.aacrjournals.org/).

Corresponding Author: Susanne Wells, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital, 3333 Burnet Ave., MLC 7013, 57-206, Cincinnati, OH 45229. Phone: 513-636-5986; Fax: 513-636-2880; E-mail: Susanne.Wells@cchmc.org

doi: 10.1158/1078-0432.CCR-15-2209

©2015 American Association for Cancer Research.
BRIP1/FANCJ, where biallelic mutations clinically cause FA-like syndromes, are nucleases, TLS polymerases, and homologous recombination. The replication fork at the crosslink and coordinates the activity of activated FANCD2/FANCI dimer then stabilizes the stalled replication fork at the crosslink and coordinates the activity of the protein products of eight FA genes including FANCA, is genome instability. When intact, the FA core complex, composed of FANCN, PALB2/FANCN, and RAD51C/FANCO, is assembled at the site of DNA damage and triggers monoubiquitination of the central and evolutionarily conserved pathway members FANCDD2 and FANCI by the E3 ligase FANCL. The activated FANCDD2/FANCI dimer then stabilizes the stalled replication fork at the crosslink and coordinates the activity of nucleases, TLS polymerases, and homologous recombination factors. Genes of the homologous recombination (HR) pathway, where biallelic mutations clinically cause FA-like syndromes, are BRIP1/FANCJ, BRCA1/FANCAC, BRCA2/FANCDD1, PALB2/FANCN, and RAD51C/FANCO. Cells with biallelic mutations in FA genes can compensate for their HR defects by overactivating the error-prone nonhomologous end joining (NHEJ) pathway (12, 13), thus triggering inappropriate DNA repair. Individuals with heterozygous loss-of-function germline mutations in DNA repair genes also are at an increased risk for tumors, due to the loss of the wild-type allele in the malignant cells (6). Here, heterozygous germline defects in the “late” genes of the FA pathway (FANCD1/J/N/O/Q/S) are predominantly associated with the development of hereditary breast/ovarian and pancreatic cancer (14, 15). Furthermore, even sporadic tumors in patients with no family history of cancer frequently harbor mutations in DNA repair genes (3, 16–18). Several lines of evidence suggest that FA pathway loss in the epidermis, in contrast to the hematopoietic system, promotes growth in the basal stem and progenitor cell compartment. First, in murine models, genetic loss of Fancdd2 cooperated with transgenic HPV16 E7 expression targeted to basal epithelial cells to promote the development of HNSCC (19). Importantly, Fancdd2 loss alone was already sufficient for a subtle yet consistent increase in basal cell proliferation in E7-negative control mice, thus highlighting a pro-proliferative role for FA pathway defects in the normal epidermis and in an HPV-negative environment.

Second, using HPV-immortalized human keratinocytes, we have previously reported that FANCA or FANCD2 knockdown drive proliferation and HPV E7–dependent hyperplasia in three-dimensional (3D) organotypic epithelial raft but not in two-dimensional keratinocyte culture systems (20). Third, we have recently reported that defects in the FA pathway stimulate HPV genome amplification and accumulation of the HPV E7 oncoprotein with concomitant cellular proliferation (21, 22). Fourth, FA patient–derived HNSCC cell lines were shown to harbor either similar or increased stem cell populations when compared with sporadic HNSCC lines, using tumor sphere formation, CD44 positivity, or ALDH1 status as experimental end points (23, 24).

To define the functional effects of acquired FA deficiency in HNSCC cells, we generated isogenic FA HNSCC models using shRNA-mediated stable knockdown and rescue strategies in HPV-positive and -negative tumor cell lines. While depletion of the key FA pathway components FANCA, FANCD2, and FANCI induced classical FA phenotypes in these cells when exposed to DNA crosslinkers, minor to no effects on tumor cell growth were observed under standard culture conditions. Surprisingly, however, under these same conditions, FA loss caused cytoskeletal reorganization and dramatic increases in tumor cell invasiveness in the absence of proliferative gains in HPV-positive and negative HNSCC cells. Invasive properties were associated, at least in part, with increased activities of the NHEJ-associated DNA-dependent protein kinase (DNA-PK) and Rac1 GTPase. These findings implicate this important DNA repair pathway in the suppression of advanced tumor phenotypes, and identify new treatment options tailored to FA-deficient HNSCCs.

Translational Relevance

Head and neck squamous cell carcinoma (HNSCC) is a devastating cancer type with poor outcomes particularly when diagnosed at advanced, invasive stages. Targetable genes and pathways that stimulate HNSCC progression remain poorly understood. A significant proportion of HNSCCs harbor mutations in FA DNA repair genes. Furthermore, individuals with germline loss-of-function mutations in FA genes are uniquely predisposed to aggressive HNSCC development. Herein, we show that loss of the FA pathway in HNSCC cells stimulate plasma membrane reorganization and tumor cell invasiveness in vitro and in vivo, that is reliant upon NHEJ-associated DNA-dependent protein kinase (DNA-PK) and Rac1 GTPase. These findings implicate this important DNA repair pathway in the suppression of advanced tumor phenotypes, and identify new treatment options tailored to FA-deficient HNSCCs.

Materials and Methods

Cell culture

The UM-SCC1, UM-SCC6, and UM-SCC47 cell lines were derived and maintained as previously described (25). All cell lines were authenticated regularly by their morphologic characteristics and analysis of corresponding genetic and molecular markers. Non-targeting, FANCA–, FANCD2–, and FANCI– (TRCN49915) specific short hairpin RNA (shRNA)-expressing lentiviral vectors were obtained through the Sigma MISSION shRNA program (Sigma Aldrich) as previously described (20). The MIEG-HPV-16-E7 (GenScript) construct was developed from the pMIG3 retroviral vector, a kind gift from Dr. David Williams (Boston Children’s Hospital, Boston, MA), and has been described earlier. The EcoRI-E7-His(6)-FLAG-XhoI sequence, GA-
ATTCCGCGGCGCGCCACCATGCATAGAGATACATGCAGCTGAGGAGGAGGA-
TAAATGATGTGACCATGGACACTAAACATGCAACAG CCTACATTACATATTGACACCTTTGTCGGATGTCGCTTTGTTGTTGTTGTGCTTTGCTAT-
CTAGCGGCGCGCGCGCGCAGCAGACGGAGGAGGAAGAAGA...
produced in 293T cells using an established protocol in the Hanenberg laboratory. Cells were transduced at 30% to 50% efficiency for a total of 4 hours for retroviruses or 8 hours for lentiviruses in a final concentration of 8 μg/mL Polybrene. For MIEG-based vectors, cells were sorted on GFP. Following sorting and replating, cells were then transduced with either nontargeting or FANCD2-specific shRNA. For the lentiviral vectors, cells were selected and carried in 1.25 μg/mL puromycin. A fusion construct between EGFP and FANCD2 cDNA was generated and verified by direct sequencing (H. Hanenberg, Unpublished observations). The Rac1 inhibitor NSC23766 was a generous gift by Dr. Yi Zheng (Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio).

Cell-cycle measurements

Cells were seeded for 24 hours and then either left untreated or treated for 24 hours with 0.25 μg/mL or 0.5 μg/mL melphanal (Sigma-Aldrich). Cells were trypsinized and 5 × 10^5 cells were washed and prepared to assess BrdU incorporation according to the manufacturer’s instructions (APC BrdU Flow Kit, BD Pharmingen). The cells were pulsed with 10 μM/L BrdUrd for 45 minutes. Cell-cycle profiles were detected using 7AAD, with samples acquired on a BD FACSCanto instrument (BD Biosciences), and the results were analyzed using FlowJo (TreeStar).

RNA sequencing

Individual samples were aligned to the Hg19 genome using TopHat v1.4.1. Gene quantification was performed with Cufflinks v2.0.0 with the “-G -u -b” parameters and the Ensembl gene model. Gene-level quantifications were used throughout. Data were analyzed with GeneSpring 12.6.1 NGS, filtering to remove duplicates, and filtering on post alignment read metrics to remove reads with mapping quality below 40, or with more than one match to genome, or failing vendor QC. Quantification was carried out with DESeq as normalization algorithm and threshold normalized counts to 1, baseline to median of all samples. We filtered to remove genes with fewer than 3 RPMK in at least one sample. Differential expression was determined with the Audic Claverie test (P < 0.05, FC > 1.5). Functional enrichment analysis was carried out with ToppGene and cytoscape figures were made using ToppCluster.

Western blot analysis

Whole-cell protein extracts were harvested and lysed using 1X Laemmli buffer. Blotting was performed as previously described (21). Antibodies used were rabbit polyclonal FANCA (Cascade Bioscience), rabbit polyclonal FANCD2 (Novus), rabbit polyclonal FANCI (Novus), mouse monoclonal DNA-PKcs (Abcam), rabbit polyclonal phospho-DNA-PKcs (S2056; Abcam), and actin (Seven Hills Bioresearch). For detection of HPV16 E7, a primary antibody mix of mouse monoclonal anti-16E7 antibody [1:150, 8C9 (Invitrogen) and a 1:200 dilution of ED17 (Invitrogen)] was used.

Three-dimensional epithelial raft cultures

Organotypic rafts were generated as described previously (20). Briefly, a total of 1 × 10^5 UM-SCC1 cells were plated on a collagen matrix with embedded feeder fibroblasts. Exposure to the liquid–air interface resulted in the generation of stratified epithelium with differentiation properties that reflect its natural human counterpart. The tissue was fixed in 2% paraformaldehyde after 16 days of growth, embedded in paraffin, sectioned, and morphologically examined by hematoxylin and eosin staining.

Immunofluorescence and DIC imaging

Immunofluorescence was performed as previously described (20) using the Leica DM 5000B. Cells were plated onto coverslips into 6-well plates at equal cell number and collected after 24 hours of incubation. Cells were fixed in 4% paraformaldehyde and rinsed in PBS prior to staining with Rhodamine phalloidin (1:200; Invitrogen) and DAPI to stain all nuclei. Differential interference contrast (DIC) images were acquired at the time of Phalloidin imaging. Cells on coverslips were treated overnight with 20 μmol/L NSC23766 prior to fixation.

Invasion assays

BioCoat Matrigel transwell invasion assays were performed as per manufacturer’s instructions (BD Biosciences). Cells were resuspended in serum-free media in the top chamber and allowed to invade throughout Matrigel to serum-containing media in the bottom chamber. For UMSCC-1, 1.5 × 10^5 cells were seeded per transwell while for UMSGCC-6 and UMSGCC-47, 2.5 × 10^5 cells were seeded. Invasion was allowed to proceed for 22 hours prior to fixation in methanol and staining with Giemsa. Total numbers of invaded cells were quantified for each transwell using ImageJ.

Migration assays

Costar transwell migration assay were performed as per manufacturer’s instructions (Corning Incorporated). Briefly, cells were resuspended in serum-free media in the top chamber and allowed to migrate through the polycarbonate membrane to the serum-containing media in the bottom chamber. A total of 1.5 × 10^5 UM-SCC1 cells were seeded per transwell experiment. Migration was allowed to proceed for 16 hours prior to fixation in methanol and staining with Giemsa. The total number of migrating cells was quantified for each transwell using ImageJ. Six independent migration assay experiments were performed.

Chicken chorioallantoic membrane assays

Fertilized White Leghorn chicken eggs were incubated while rotating at 37°C in a humidified atmosphere (>60% relative humidity). After 48 hours, 0.5 mL of albumin was removed from each egg, and the eggs were placed into a nonrotating incubation chamber at 37°C in a humidified atmosphere. After 48 hours, the eggs were windowed to expose the chorioallantoic membrane (CAM), vasculature, and viable embryo. To evaluate tumor cell invasion, a thinly sliced pipette ring was placed on top of the chorion layer of the membrane and a 25-μL suspension of 500,000 UM-SCC1 cells that were either FA-deficient or -proficient and embedded in Matrigel were pipetted into the ring onto the membrane. Egg shell windows were covered with scotch tape and the eggs were returned to the nonrotating incubator. After an additional 72 hours of incubation, CAMs with tumor cells were harvested, fixed in 4% paraformaldehyde, processed, embedded in paraffin blocks, and sectioned. Five-μm sections were utilized for standard hematoxylin and eosin staining.
Rac1 activity assay

The Active Rac1 Pull-Down and Detection Kit (Thermo Scientific) was used to detect active Rac1 in the absence and presence of DNA-PKcs inhibitor NU7026 (Tocris Bioscience). Briefly, cells were plated at equal cell number and allowed to adhere. Cells were treated with either vehicle or 10 μmol/L NU7026 for 24 hours. Prior to harvesting, cells were exposed to a 30-minute pulse of bleomycin (10 μg/ml). Cells were harvested and lysed as directed by the kit and protein concentrations were determined using the Pierce BCA Protein Assay Kit according to manufacturer instructions (Thermo Scientific). Equivalent amounts of protein were loaded onto the column and the protocol outlined within the assay kit was followed. Following elution of activated Rac1 from the column, Western blot analysis for Rac1-GTP was performed using the anti-Rac1 mouse mAb (1:1,000) provided in the assay kit. GTPγS (positive control) and GDP (negative control) were used as controls in the pull-down assays.

Statistical analysis

Statistical significance was determined using two-way ANOVA with Sidak post hoc tests using an α value of 0.05 for all calculations using phalloidin projection data. All other significance was determined using a Student t test. Statistical analyses were performed using GraphPad Prism 6 software.

Results

Classical FA phenotypes result from FA knockdown in HPV-negative and positive HNSCC cancer cells

We have recently analyzed whole-exome sequencing data of sporadic HNSCCs (26) and found that a significant proportion of sporadic HNSCCs harbor somatic mutations in FA and FA-positive and negative HNSCC cancer cells (26) and found that a significant proportion of sporadic HNSCCs harbor somatic mutations in FA and FA-related genes (3). To confirm this with sequencing data from other patient cohorts, we queried The Cancer Genome Atlas (TCGA; ref. 27; n = 306), as well as whole sequencing data from a set of 34 primary human HNSCCs. A total of 11.1% and 17.6%, respectively, of such tumors harbored non-synonymous (N.S.) mutations in the 15 FA genes that had been identified at that time: FANCA, FANCB, FANC D1 (BRCA2), FANC D2, FANCE, FANC F, FANC G, FANC I, FANC J, FANC L, FANC M, FANC N, FANC P, and FANC O (Fig. 1A). To explore possible biologic effects of FA loss in systems mimicking HPV+ and HPV− HNSCC, we created the following knockdown models using previously published lentiviral shRNA vectors (28). First, an HPV-negative UM-SCC1 cell line was transduced with HPV16 E7, and subsequently knocked down for FANC D2. Second, the same cell line was knocked down for FANC A, FANC D2, and FANC J in the absence of E7. Third, a second HPV− cell line, UM-SCC6, and an HPV+ cell line, UM-SCC47, were similarly knocked down for FANC A and FANC D2. Western blot analyses verified efficient FA protein depletion for all HNSCC cell lines transduced with either FANC A, −D2, and −J shRNA expression vectors (Fig. 1B and Supplementary Fig. S1). Cells transduced with the non-targeting (NTsh) control shRNA did not result in FA depletion (as expected). To ensure that FANC D2 depletion induced classical FA phenotypes, DNA cross-linker sensitivity of knockdown versus control cells was quantified. FA lymphoblasts and fibroblasts predictably respond to melphalan exposure with a G2−M cell-cycle arrest (28, 29). As expected, FANC D2-deficient UM-SCC1 cancer cells treated with melphalan also displayed an increase in the proportion of cells in G2−M when compared with control NTsh cells (Fig. 1C). FANC D2-deficient UM-SCC1 cells responded to the melphalan treatment in a similar manner when compared with the FANC D2-deficient cancer cells (data not shown). UM-SCC6 and UM-SCC47 HNSCC cell lines depleted for FA proteins were similarly sensitive to melphalan (data not shown); thus, FA knockdown induces characteristic hallmarks of FA in HPV-positive and negative HNSCC cells. To determine the consequences of FA loss on UM-SCC1 cells grown under standard culture conditions, we quantified proliferation rates based on BrdUrd incorporation (Fig. 1D). FANC D2 and FANC J loss did not increase the proliferation of UM-SCC1 cells, but either decreased or did not change proliferation (Fig. 1D and Supplementary Fig. S1B). In HPV16 E7−expressing UM-SCC1 cells, FANC D2 loss did not affect cellular proliferation (Supplementary Fig. S1C). Similar decreases or no effects were observed in UM-SCC6 and UM-SCC47 cell lines (data not shown). Taken together, FA knockdown in HNSCC cell lines did not alter and sometimes reduced cellular growth under standard two-dimensional culture conditions, and conferred classical FA phenotypes in the presence of DNA crosslinkers.

FA loss deregulates epithelial HNSCC morphology and cytoskeletal organization

To assess global expression patterns induced by perturbing the FA pathway, we performed RNA sequencing (RNASeq) of the above HPV16 E7−positive UM-SCC1 cells, either depleted for FANC D2 or control transduced (Fig. 1B). A number of genes were differentially expressed in the FANC D2sh compared with the NTsh HNSCC cells (Supplementary Table S1). Following identification of genes with significantly altered expression, ToppGene was used to perform gene ontology analysis and redundancies were eliminated. A large number of gene ontology hits were identified (Supplementary Table S2). Figure 2A lists top candidate biologic processes which, based on gene expression alterations, may be regulated by FANC D2 loss. In line with our previously published data wherein FA pathway loss impaired keratinocyte differentiation in organotypic epithelial raft models, the expression of a number of differentiation-associated genes was reduced by FANC D2 knockdown (Supplementary Tables S1 and S2). Importantly, this was not accompanied by the induction of proliferative gene signatures, in agreement with a lack of proliferative gains in the above FA HNSCC cell populations under standard conditions and with previously published data using patient-derived cell lines (Fig. 1D and data not shown; ref. 20). Among the top biologic processes were cellular motility and invasion. Increased expression of the intermediate filament vimentin was noted which has already been linked to a number of cancers as a mesenchymal marker for invasive potential (30). Vimentin induction in FA HNSCC cells was validated by qRT-PCR (Fig. 2B). In contrast, the expression of other genes involved in classical epithelial-to-mesenchymal transition (EMT), such as E-cadherin, Snail1, or Twist1, was not altered. Perhaps related to the observed regulation of genes involved in cellular motility, we observed a marked alteration in the expression of genes involved in cellular adhesion and locomotion (Fig. 2A). Further morphologic examination of FA-depleted UM-SCC1 cells by DIC microscopy revealed a clear difference in cellular shape and spatial arrangement. FANC D2 and FANC J knockdown in the UM-SCC1 cell line impaired SCC epithelial morphology: cells physically separated from each other but remained connected by intercellular projections that were largely absent in the control HNSCC cells (Fig. 2C). To further investigate the intercellular projections,
the F-actin marker phalloidin was used to stain actin filaments. As shown in Fig. 2D, FANCD2 and FANCJ knockdown cells tended to separate but maintained long intercellular projections, in contrast to control cells which harbored tight epithelial cell–cell contacts. Taken together, FA pathway loss in HNSCC cells deregulated transcriptomes associated with cellular motility and adhesion, and this was accompanied by morphologic and cytoskeletal responses including the formation of intercellular protrusions.

To assess the ability of FA-deficient versus proficient tumor cells to grow as 3D tissues, we engineered 3D organotypic epithelial tumor rafts from NTsh or FANCD2sh UM-SCC1 cells (Fig. 2E). Interestingly, while FA-deficient cells were able to grow and assemble into 3D tissue, we noted their occasional presence in the underlying collagen matrix, a feature which was not shared by control cells.

Figure 1.
Generation of FA-deficient, HPV-positive and negative, HNSCC cell models. A, the somatic mutations table (MAF file) for head and neck squamous carcinoma (HNSC) samples was obtained from TCGA data portal and from an independent cohort of sporadic HNSCC tumors from Ohio State University (OSU). Analysis of mutational data from 306 (TCGA) and 34 (OSU) sporadic HNSCC tumors determined that 11.1% and 17.6%, respectively, harbored non-synonymous (N.S.) mutations in one of 16 FA genes, respectively. B, UM-SCC1 HNSCC (HPV16 E7-positive and –negative) cells were knocked down for FANCA, FANCD2, and FANCJ, followed by Western blot analysis for verification of protein depletion. C, FA knockdown by shRNA transduction leads to classical FA phenotypes. UM-SCC1 cells were treated with melphalan, and subjected to flow cytometry-based cell-cycle analysis. The numbers listed indicate percentages of cells in G2–M following melphalan exposure. FANCD2-deficient cells were increased for the proportion of cells in G2–M when compared with the NTsh control cell population. D, BrdUrd incorporation in FANCD2- and FANCJ-deficient compared with control UM-SCC1 cells reveals a slight decrease in proliferation.
the FA-proficient counterparts. We therefore tested the possibility that FA-deficient cells harbored increased invasive properties.

FA pathway loss in HNSCC cells promotes cellular invasion

Tumor cell invasiveness was determined directly using Matrigel transwell assays. Both HPV16 E7⁺ and E7⁻ UM-SCC1 cells were significantly more invasive when knocked down for FANCD2 compared with empty vector controls (Fig. 3A and B). Invasion was not an indirect consequence of increased proliferation (Fig. 1D, data not shown) or increased cellular adhesion (Supplementary Fig. S2A). Similarly, FANCA and FANCJ knockdown also stimulated invasion in UM-SCC1 cells (Fig. 3C). To rule out any off-target effects for the lentiviral knockdown approach, we next expressed a shRNA-resistant FANCD2 construct in FANCD2sh UM-SCC1 cells (Fig. 3D). As predicted, the introduction of EGF-FANCD2 was sufficient to rescue UM-SCC1 FANCD2 shRNA cells from invasion (Fig. 3D). Expression of the EGF-FANCD2 fusion protein was confirmed by Western blot analysis on the right. Finally, FANCA and FANCD2 knockdown in UM-SCC6 and UM-SCC47 cells also stimulated tumor cell invasion (Fig. 3E and F). As expected, the increased invasiveness of the cancer cells correlated with increased motility seen by standard migration assays (Supplementary Fig. S2B). To further assess the invasive properties of FA-deficient versus -proficient tumor cells, we utilized CAM assays (Supplementary Fig. S3). Interestingly, FA-deficient cells were occasionally able to invade into the chorion membranes of living chick embryos, and more specifically appeared to invade as cell clusters; however, invasion was never observed with their FA-proficient counterparts. Taken together, FA loss leads to a dramatic increase of invasive capacity and motility in HPV-positive and negative HNSCC cells.
Invasion in response to FA loss requires DNA-PK activity

FA cells exhibit characteristic sensitivity to DNA crosslinkers, and defects in error-free DNA repair by homologous recombination (HR). These defects are accompanied, under some circumstances, by a corresponding increase in the activity of error-prone NHEJ pathway components (12, 13). NHEJ requires the activation of the catalytic subunit of DNA-PKcs and subsequent autophosphorylation on serine 2056 (31). To probe a possible functional involvement for DNA-PKcs signaling in FA-associated invasion, we first determined whether FANCD2- and FANCJ-deficient UM-SCC1 cells harbored activated DNA-PKcs. We then verified the functionality of a DNA-PK inhibitor NU7026 in this...
system to probe the importance of DNA-PK activity for invasion (Fig. 4A). Control cells and their FANCD2 and FANCJ-depleted counterparts were subjected to a pulse of bleomycin to stimulate DNA damage signaling, and the cells were then treated with vehicle or with the DNA-PKcs inhibitor NU7026. Cells were analyzed for activated DNA-PKcs phosphorylated on serine 2056. FANCD2 and particularly FANCJ loss stimulated DNA-PKcs phosphorylation compared with control (Fig. 4A, lanes 1–3), and autophosphorylation was completely eliminated by NU7026. Next, we determined whether DNA-PKcs activation was functionally important for FA-deficient cancer cell invasion. DNA-PKcs inhibition by NU7026 suppressed the invasive phenotype in FANCD2sh UM-SCC1 cells (Fig. 4B), but did not impair cellular viability (Fig. 4C). Importantly, DNA-PKcs inhibition also reduced control cell invasion under these conditions, thus indicating that DNA-PK activation contributes to HNSCC cell invasion. The ability of NU7026 to suppress invasion in FA-deficient cells was also observed in HPV+ FANCD2sh (Supplementary Fig. S4A) and FANCAs (Supplementary Fig. S4B) UM-SCC47 cells.

Invasion in response to FA loss requires Rac1 GTPase activity

Ras-related small GTPase Rho/Rac/CDC42 signaling pathways are key players in cellular morphology and invasion (32). Because the activation of Rac1 was reported to produce intercellular projections similar to the ones noted for FA-deficient cells (Fig. 2; refs. 33, 34), we carried out Rac1-GTP pull downs to first determine whether Rac1 is activated in FA HNSCC cells, and if so, to probe a possible role for DNA-PKcs in its regulation. FANCJsh knockdown cells were chosen based on the observation that DNA-PK activation was maximal in FANCJ when compared with FANCD2 knockdown cells in Fig. 4A. Interestingly, FANCJsh-transduced UM-SCC1 cells showed increased Rac1 activity when compared with their NTsh control–transduced counterparts (Fig. 5A, compare lanes 1 and 3). Treatment with DNA-PKcs inhibitor did not affect Rac1 activity in the control NTsh cells (Fig. 5A, compare lanes 1 and 2), but significantly lowered Rac1 activity in FANCD2sh and FANCJsh cells (Fig. 5A, compare lanes 3 and 4). Taken together, these results suggest that Rac1 activation downstream from FA loss is, at least in part, dependent upon DNA-PKcs activity. We next sought to examine the requirement for Rac1 GTPase activity in the characteristic cytoskeletal reorganization and invasion of FA-deficient HNSCC cells. We utilized NSC23766, a small molecule that has been shown to specifically inhibit Rac1 structural and functional activity but does not affect the activity of other Rho-related small GTPases (35, 36). Interestingly, NSC23766 reduced the number of intercellular projections.
protrusions and stimulated cell–cell adhesion in FANCD2- and FANCJ-deficient cells compared with control UM-SCC1 cells as assessed by DIC (Fig. 5B, top) and phalloidin staining (Fig. 5B, bottom panel and quantification below). To determine whether NSC23766 was also capable of suppressing cellular invasion in response to FANCD2 loss, FA-proficient and -deficient HNSCC cells were treated with NSC23766 or vehicle over the course of the transwell assay. Indeed, cellular invasion following FANCD2 loss was repressed by NSC23766 which did not significantly affect control cell invasion (Fig. 5C) or cellular growth (Fig. 5D). NSC23766 could also suppress invasion in FA-deficient HPV+ UM-SCC47 cells (Supplementary Fig. S4C). Together, these data demonstrate that FA loss and subsequent DNA-PK activation promote Rac1 activity to induce cytoskeletal aberrations and invasive tumor phenotypes in HNSCC cells (see Fig. 5E for a working model).

Discussion

Each year, approximately 40,000 new patients are diagnosed with head and neck cancer, predominantly HNSCC, in the United States, and this number continues to rise. Two main causative factors in the majority of oral, oropharyngeal, and laryngeal carcinomas are smoking and alcohol use; however, a growing percentage of these head and neck cancers, approximately 25% at present, have been attributed to HPV infection (37). Cellular and molecular characteristics of HPV–positive and –negative HNSCCs are still being explored, although these are distinct biologic and clinical entities (38). Herein, we link the loss of the FA DNA repair pathway in HNSCC cells with stimulated invasive potential regardless of HPV status, and uncover novel roles for DNA-PK (unrelated to DNA repair) in promoting Rac1 activation and invasive behavior.

Locoregional dissemination of malignant tumor cells is associated with poor outcome, and is crucially dependent on the migratory and invasive properties of the cancer cell. Tumor cell migration requires the formation of protrusions, leading edge attachment to the surrounding extracellular matrix, contraction of the cell to pull the cell body towards the leading edge, and detachment of the trailing edge. FA-deficient HNSCC cells display expression changes for genes known to play key roles in cell motility, cell–cell adhesion and locomotion. Furthermore, we observed the presence of pronounced protrusions in FA-deficient cells compared with their FA-proficient counterparts and noted altered cell morphology. Together with these morphologic phenotypes, we showed a significant increase in motility and invasion of FA-deficient cells compared with their FA-proficient counterparts. Invasion was induced by the loss of either upstream (FANCA), central (FANCD2), and downstream (FANCJ) components of the FA pathway, and was reversible by the reintroduction of a knockdown-resistant construct. Together, these data support a scenario whereby the intact FA DNA repair machinery supresses the transition of transformed to invasive HNSCC phenotypes.

DNA crosslink processing utilizes multiple repair pathways whose coordination appears to be a major function of the FA pathway. Recently, two reports have demonstrated that FA loss engages the DNA damage sensor kinase DNA-PK, a process that is likely followed by aberrant DNA repair by NHEJ and resulting characteristic FA chromosome pathologies. As such, FA proteins might govern the decision to channel double strand breaks (DSB) into homologous recombination (HR) in favor of the competing DNA-PK–associated error-prone NHEJ pathway (12, 13). We show that FA loss in HNSCC cells increases the levels of active, autophosphorylated DNA-PKcs, and functionally implicate this DNA damage sensor in advanced HNSCC for the first time. While the nuclear role of DNA-PK in DNA repair is well characterized, noncanonical activities have emerged as well. DNA-PK has been implicated in inflammation through the phosphorylation of NF-kB (39), and in metabolic gene regulation through interaction with and phosphorylation of USF-1 (40). Furthermore, a number of novel cytoplasmic DNA-PK substrates were published recently that participate in cytoskeletal regulation (41). These include members of the 14-3-3 protein family, vimentin, and desmoplakin. The authors showed that DNA-PK activation decreased motility in melanoma cell lines, in contrast to increased invasion in our HNSCC cells. Thus, whether advanced cancer phenotypes are regulated by DNA-PK in both systems, the direction of the observed regulation may be cell type specific. Such differences might reflect significant complexity in the regulation of cytoskeletal components by DNA-PK. Further analysis identified a novel link between DNA-PKcs and Rac1 signaling in FA HNSCC cells wherein a specific DNA-PK inhibitor decreased active Rac1-GTP protein levels. One possible mechanism might be supported by a previous finding that DNA-PKcs can physically interact with the CDC42/Rac1 guanine exchange factor, ARHGEF6, in ovarian cancer cells (42). In addition, growing evidence supports correlations between DNA damage signaling and Rac1 activity (43–45), although the mechanisms and functional relevance of pathway cross-talk are largely unclear. Whether DNA-PKcs activates Rac1 directly through guanine nucleotide exchange factors (GEF) or indirectly through signal transduction cascades is currently under investigation.

Rac1 is a well-known regulator of the cellular actin cytoskeleton, adhesion, barrier function, and migration. Like other members of the Rho family, Rac1 cycles between GDP-bound inactive

Figure 5.
Morphologic aberrations and invasive tumor phenotypes triggered by FA loss are dependent upon Rac1 activation. A, Rac1-GTP pulldown assays show that DNA-PK inhibition attenuates Rac1 activation in FA-deficient cells. All lanes are from the same Western blot analysis. B, the small-molecule Rac1 inhibitor NSC23766 was utilized at 20 μm/L concentrations that did not affect cellular growth. To assess the effects of Rac1 inhibition on aberrant morphology and tumor cell invasion triggered by FA loss, UM-SCC1 cells were plated at equal densities and imaged by DIC microscopy prior to and following an 18-hour exposure to 20 μm/L NSC23766 (left). NSC23766 treated and untreated UM-SCC1 cells were stained for phalloidin and imaged (right). The reduction in intercellular membrane projections following treatment with the Rac1 inhibitor is quantified and included below the images. C, invasion of NSC23766 or vehicle treated FA-deficient versus -proficient UM-SCC1 cells was evaluated by transwell assays. Experiments were carried out in duplicate and SD was calculated. D, UM-SCC1 exposure to NSC23766 at 15 μm/L and 20 μm/L concentrations did not affect cellular fitness and growth for the duration of the invasion assays, 22 hours. E, a working model depicts the consequences of FA deficiency in HNSCC cells. Loss of FA pathway function results in increased DNA stress and activation of the DNA-PK sensor kinase through autophosphorylation on S2056. DNA-PK activity is directly or indirectly required for downstream Rac1 activation, and subsequent Rac1-dependent SCC cell invasion.
and GTP-bound active states (46). These GTPases are controlled by two classes of regulatory molecules: activating GEFs, and repressive GTPase-activating proteins (GAP). Previously published work found that Rac1 was required for Kras-mediated tumorigenesis in skin epithelium and the lung (47, 48). More importantly, Rac1 activity strongly is associated with cell motility and tumor metastasis (49, 50). We found that both cell morphosis (protrusion formation) and cellular invasion were dependent upon Rac1 activation, and show a reversion of the FA-deficient HNSCC cell phenotype to a more epithelial-like morphology following inhibition of Rac1. We also observed a significant decrease in cancer cell invasion of FA-deficient cells following treatment with the Rac1 inhibitor. Taken together, these findings link the loss of the FA pathway with increased Rac1 activation and downstream cytoskeletal aberrations and aggressive invasive potential. Of importance, Rac1 inhibitors are a potential novel therapeutic option for sporadic HNSCC carrying FA mutations, as well as an alternative, non-genotoxic treatment for HNSCC in patients with FA.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: L.E. Romick-Rosendale, E.E. Hoskins, L.M. Privette Vinnedge, S.I. Wells

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): L.E. Romick-Rosendale, E.E. Hoskins, L.M. Privette Vinnedge, G.D. Fogleson, M.G. Brusadelli, P. Lambert, R.J. Kimple, E.L. Virns, M.L. Gillison

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): L.E. Romick-Rosendale, E.E. Hoskins, G.D. Fogleson, M.G. Brusadelli, S.S. Potter, K. Konurow, S.I. Wells

Writing, review, and/or revision of the manuscript: L.E. Romick-Rosendale, E.E. Hoskins, L.M. Privette Vinnedge, G.D. Fogleson, P. Lambert, R.J. Kimple, S.I. Wells

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): E.E. Romick-Rosendale, E.E. Hoskins

Study supervision: E.E. Hoskins, S.I. Wells

Other (provided new innovative reagents): H. Hanenberg

Acknowledgments

The authors thank Dr. James Lessard of Cincinnati Children’s Hospital Medical Center (CCHMC) and Seven Hills Bioresearch (Cincinnati, OH) for his gift of the C4 pan-actin mAb used in this work. The authors also thank Drs. Stella Davies, Parinda Mehta, and Kasiain Myer of CCHMC and the Cincinnati Children’s Fanconi Anemia Comprehensive Care Center for thoughtful experimental guidance and discussion.

Grant Support

This work was supported in part by NIH award RO1 CA102357 (to S.I. Wells). H. Hanenberg is supported by the Lilly Foundation Physician/Scientist initiative.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 12, 2015; revised November 9, 2015; accepted November 10, 2015; published OnlineFirst November 24, 2015.

44. Van Y, Greer PM, Cao PT, Kolb RH, Cowan KH. RAC1 GTPase plays an important role in gamma-irradiation induced G2/M checkpoint activation. Breast Cancer Res 2012;14:R60.

Defects in the Fanconi Anemia Pathway in Head and Neck Cancer Cells Stimulate Tumor Cell Invasion through DNA-PK and Rac1 Signaling

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-15-2209

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2015/11/24/1078-0432.CCR-15-2209.DC1

Cited articles
This article cites 50 articles, 14 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/22/8/2062.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.