67-Kilodalton Laminin Receptor Expression Correlates with Worse Prognostic Indicators in Non-Small Cell Lung Carcinomas

Gabriella Fontanini, Silvana Vignati, Silvana Chiné, Marco Lucchi, Alfredo Mussi, Carlo Alberto Angeletti, Sylvie Ménard, Vincent Castronovo, and Generoso Bevilacqua

Institute of Pathology [G. F. S. V., S. C. G. B.], Service of Thoracic Surgery [M. L. A. M., C. A. A.], via Roma 57, 56126 Pisa, Italy; Division of Experimental Oncology E, National Cancer Institute, Milan, Italy [S. M.]; and Metastasis Research Laboratory, University of Liège, Belgium [V. C.]

ABSTRACT

Tumor samples obtained from 72 patients resected for non-small cell lung cancer were stained immunohistochemically using an immunoperoxidase method and the MLuC5 monoclonal antibody specific for the 67-kDa laminin receptor. Sixty-one of 72 patients (84.7%) displayed a MLuC5-positive reaction, which was usually localized in both the inner surface of the plasmatic membranes and the cytoplasm of neoplastic cells. When we compared the laminin receptor expression with clinicopathological and biological parameters such as histotype, grading, T status, N status, ploidy, proliferative activity, vessel invasion, and p53 protein accumulation, the following results were observed: (a) the mean expression of the receptor was higher in the group of patients with metastatic nodal involvement than in those with uninvolved lymph nodes \((P = 0.02)\); (b) a high Ki-67 score \((\geq 13\% \text{ of positive cells})\) was observed in tumors with a higher mean value of laminin receptor \((P = 0.004)\); (c) the tumors harboring neoplastic emboli in their vessels showed a higher laminin receptor immunoreactivity \((P = 0.02)\); and (d) a borderline association was found between the high mean value of laminin receptor immunopositivity and p53 accumulation in neoplastic cell nuclei \((P = 0.05)\). Our observations indicate that detection of high tissue levels of 67-kDa laminin receptor is associated with an invasive phenotype in non-small cell lung cancer and may provide further information in the biological characterization of this type of cancer.

INTRODUCTION

One critical event of the metastatic cascade is the crossing of the basement membranes by cancer cells when they: (a) leave the primary tumor site; (b) invasate blood or the lymphatic circulation; and (c) extravasate at metastatic sites. It has been proposed that among the various cell surface proteins able to interact with laminin, an important component of basal membranes, the 67-kDa high affinity laminin receptor plays a crucial role during tumor invasion and metastasis.

Furthermore, the expression of the 67-kDa protein has been shown to have an important prognostic role in some human cancers, as reported recently by Martignone et al. \(1\) in breast carcinoma. The 67-kDa laminin receptors seem to be implicated in human cancer progression. As a matter of fact, several in vitro and in vivo data suggest a putative involvement of this receptor in the migration, invasion, and metastatic capability of human cells \(2, 3\), as demonstrated by the analysis of the laminin receptor expression in different types of human cancers \(4, 5\). However, up until now, the relation between this receptor and tumor behavior has not been clarified completely.

Owing to the availability of a monoclonal antibody (MLuC5) recognizing the 67-kDa laminin receptor in formalin-fixed and paraffin-embedded tumor samples \(6\), we analyzed the MLuC5 immunoreactivity in a series of NSCLCs \(3\) to check, on the one hand, the expression of the laminin receptor in this type of cancer, and on the other hand, the association between MLuC5 immunoreactivity and clinicopathological and biological parameters, such as size, nodal status, proliferative activity, and p53 expression, which represent both conventional \(7\) and putative new prognostic factors \(8-10\) in this very aggressive and frequent group of cancers.

PATIENTS AND METHODS

Patients. Seventy-two patients resected for NSCLC were analyzed. The surgical resection included a radical lymph node dissection for all patients. Intrapulmonary, hilar, and mediastinal lymph nodes, including subcarinal and lymph nodes superior to the carina, were excised, respectively. Patients (67 males and 5 women, mean age of 62.8) received no adjuvant systemic chemotherapy or thoracic radiation. The pathological features of the surgical specimens were classified and staged according to the WHO criteria \(11\) and the Tumor-Node-Metastasis staging system \(12\).

Immunohistochemistry. Freshly resected tissues from 72 consecutive NSCLCs were collected for immunohistochemical analysis. The samples were immediately frozen in liquid nitrogen and stored in a \(-80\)°C freezer until sectioning. One

\[1\] The abbreviations used are: NSCLC, non-small cell lung cancer; PAb, purified monoclonal antibody; BVI, blood vessel invasion.

Received 7/10/96; revised 11/12/96; accepted 11/22/96.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

\(1\) This work was supported by a grant from the Associazione Italiana per la Ricerca sul Cancro, Grant BMH-I-CT92-0520 from the European Community Program BIOMED I, and a grant from Consiglio Nazionale delle Ricerche (Applicazioni Cliniche della Ricerca Oncologia).

\(2\) To whom requests for reprints should be addressed. Phone: 39-50-592983; Fax: 39-50-592706.
portion of the same samples was fixed in 10% formalin and routinely processed for paraffin embedding. The monoclonal antibody MLuC5, which reacts with the 67-kDa laminin receptor, was used. A small cell lung cancer sample was used as positive control (13). The proliferative activity of tumor samples was evaluated using Ki-67 monoclonal antibody (Dakopatts, Copenhagen, Denmark) in frozen sections. The nuclear accumulation of p53 was detected by PAb 1801 (Oncogene Science, Manhasset, NY), which recognizes an epitope between amino acids 32 and 79. The avidin-biotin-peroxidase complex method (Vectastain ABC kit; Vector Laboratories, Burlingame, CA) was used for each antibody, after overnight incubation with each primary antibody at the different dilutions (1:100 for MLuC5, 1:200 for PAb 1801, and 1:50 for Ki-67, respectively).

Immunohistochemical Evaluation. MLuC5 immunoreactivity was evaluated by a semiquantitative method, counting the percentage of positive cells in a minimum of 1000 neoplastic cells. The same method was used to evaluate PAb 1801 and Ki-67 immunoreactivity.

Flow Cytometry. Flow cytometry was performed on nuclear suspension prepared from 50-μm sections of formalin-fixed, paraffin-embedded tissue of primary lung cancers. To determine the percentage of tumor cells in the analyzed tissue, adjacent 4-μm-thick histological sections were cut before and after the 50-m sections used for flow cytometry. We considered the value of 25-30% as a good percentage of neoplastic cells. Briefly, the sections were dewaxed by xylene, rehydrated through a sequence of 90, 80, 70, and 50% ethanol, washed twice in H2O, and minced in 1 ml of 0.5% pepsin (Sigma Chemical Co., St. Louis, MO) in 0.9% NaCl (pH 1.5) at 37°C for 30 min. Samples were filtered through a 30-mm-pore polyester filter and stained in a propidium iodide solution (50 mg propidium iodide/liter in PBS plus 0.1% v/v of NP40) for 30 min in the dark. Before analysis, the samples were syringed 2–3 times through a 25-gauge needle to avoid nuclear clumps. All samples were analyzed by a FACSscan flow cytometer (Becton & Dickinson, San Jose, CA) coupled with a CONSORT 30 microcomputer (Becton & Dickinson and Hewlett-Packard). For each sample, at least 35,000 events were acquired using the Cell Fit software (Becton & Dickinson). Cell cycle analysis was performed by the Dean method, with no background subtraction. The two major drawbacks of paraffin-embedded material as a source of nuclei for DNA flow cytometry are the relatively poor resolution and the higher amount of cellular debris, which may affect the real percentage of S-phase fraction. Despite these potential limitations, in our study the histogram resolution was good, with 5% as the coefficient of variation median value of the diploid G0-G1 peak. Moreover, to reduce the risk of missing some near-diploid tumors, histograms were considered interpretable only if the coefficient of variation of the diploid G0-G1 peak was equal to or less than 7%. For each series of measurement, normal DNA fluorescence was adjusted to channel 200 by using nonneoplastic, paraffin-embedded lung tissue. In each measurement session (12–15 samples), we found that all tumor samples contained a stemline with normal DNA content. Aneuploidy was characterized by the presence of one or more additional stemlines, all with higher DNA content.

Statistical Analysis. Statistical analysis was performed by StatView II software. Unpaired t test and/or nonparametric

Table 1 MLuC5 immunoreactivity in NSCLC: relation to clinicopathological parameters

<table>
<thead>
<tr>
<th>Variables</th>
<th>No. of cases (%)</th>
<th>Mean ± SD</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>67 (93.1)</td>
<td>28.5 ± 22.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Females</td>
<td>5 (6.9)</td>
<td>14.1 ± 31</td>
<td></td>
</tr>
<tr>
<td>Histotype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous</td>
<td>45 (62.5)</td>
<td>28.4 ± 21.1</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>24 (33.3)</td>
<td>25.5 ± 27.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Anaplastic large cells</td>
<td>3 (4.2)</td>
<td>21.6 ± 18</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Relationship between MLuC5 immunoreactivity and biological parameters

<table>
<thead>
<tr>
<th>Variables</th>
<th>No. of cases (%)</th>
<th>Mean ± SD</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ploidy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aneuploid</td>
<td>38 (71.6)</td>
<td>23.4 ± 21.1</td>
<td>0.08</td>
</tr>
<tr>
<td>Diploid</td>
<td>15 (28.4)</td>
<td>35.5 ± 27.1</td>
<td></td>
</tr>
<tr>
<td>Ki-67 score ≤13</td>
<td>38 (52.8)</td>
<td>20.3 ± 20.8</td>
<td>0.004</td>
</tr>
<tr>
<td>>13</td>
<td>34 (47.2)</td>
<td>35.6 ± 23.4</td>
<td></td>
</tr>
<tr>
<td>p53 score Negative</td>
<td>19 (29.2)</td>
<td>19.7 ± 22.2</td>
<td>0.05</td>
</tr>
<tr>
<td>Positive</td>
<td>46 (70.8)</td>
<td>30.1 ± 23.4</td>
<td></td>
</tr>
</tbody>
</table>

* Unpaired t test.

Table 3 Relationship between MLuC5 immunoreactivity and BV1 in NSCLCs

<table>
<thead>
<tr>
<th>Variables</th>
<th>No. of cases (%)</th>
<th>Mean ± SD</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>63 (87.5)</td>
<td>25.2 ± 21.6</td>
<td>0.02</td>
</tr>
<tr>
<td>Positive</td>
<td>9 (12.5)</td>
<td>43.8 ± 28.6</td>
<td></td>
</tr>
</tbody>
</table>

* Unpaired t test.
RESULTS

Clinicopathological and Biological Parameters. The mean age of the patients was 62.8 ± 6.3 (range, 46–79). As shown in Table 1, the most common histological type was squamous cell carcinoma (62.5%); 50 of 72 (69.5%) tumors were classified as T₂ (more than 3 cm on the greatest dimension), and 19 of 72 (26.3%) tumors showed metastatic nodal involvement of hilar and/or mediastinal lymph nodes. 71.6% of the tumors had an aneuploid DNA content (Table 2). With regard to proliferative activity and p53 expression, 52.8% of the tumors showed a low Ki-67 immunoreactivity (≤13% of positive cells), and 70.8% expressed p53 protein product (Table 2). Moreover, 9 of 72 (12.5%) tumors harbored tumor emboli in their vessels, whereas 63 did not (Table 3).

MLuC5 Immunoreactivity According to Clinicopathological Parameters. MLuC5 positivity was mostly localized in the membrane of the neoplastic cells, although slight immunoreactivity was also observed in the cytoplasm.
noreactivity was also observed in the cytoplasm of the neoplastic cells (Fig. 1A). Sixty-one of the tumors (84.7%) were positive for MLuC5 monoclonal antibody (mean, 32.8 ± 22.2; range, 1–80). The relationship between laminin receptor expression and clinicopathological parameters is reported in Table 1. Mean MLuC5 positivity was higher in tumors with metastatic nodal involvement than in those without metastases (P = 0.02) at surgery. No correlations were found between MLuC5 immunoreactivity and other clinicopathological parameters such as histology, grading, and T status.

MLuC5 Immunoreactivity and Proliferative Activity. The kinetic pattern of the tumors was evaluated by detecting the Ki-67 immunoreactivity of neoplastic cells. Positivity was confined to nuclei of neoplastic cells (mean, 16.6 ± 14; range, 0.1–60%; Fig. 1B). We assumed the median value (13% of positive cells) as a cutoff value to distinguish tumors with low proliferative activity from tumors with high proliferative activity. Thirty-eight of the 72 neoplasms showed a Ki-67 immunoreactivity equal to or lower than the cutoff value, whereas 34 tumors presented a higher percentage of Ki-67-positive cells. As shown in Table 2, a good statistical association was observed between laminin receptor expression and proliferative activity, because the tumors with a high percentage of Ki-67 immunoreactive cells displayed a higher mean laminin receptor expression (P = 0.004; Table 2).

MLuC5 Immunoreactivity and p53 Protein Expression. p53 expression was detected in 46 (70.8%) of the 72 tumors analyzed (mean, 44.7 ± 27; range, 1–90%; Fig. 1C). A higher laminin receptor expression was observed in p53-positive tumors compared with p53-negative ones, although a strong statistical association was not underlined.

MLuC5 Immunoreactivity and Blood Vessel Invasion. Vessels in tumor samples were highlighted using a monoclonal antibody specific for the FVIII endothelial antigen (Fig. 1D). The presence of tumor emboli in endothelial-lined channels and their location in the specimen were assessed as follows: (a) intratumoral lymphatic vessel invasion or BVI, reflecting the presence of tumor emboli within the primary tumor; and (b) peritumoral lymphatic vessel invasion or BVI, which encompassed BVI peripheral to or at the advancing edge of the primary tumor. Lymphatic vessel invasion was distinguished from BVI, based on morphological characteristics reported previously (14). Tumors with BVI showed a significantly (P = 0.02) higher laminin receptor expression (mean, 43.8 ± 28.6) than those without (mean, 25.2 ± 21.6; Table 3).

DISCUSSION

The interaction of tumor cells with the basement membrane of different tissue types is one of the main determinants in local and distant dissemination (15). Cellular adhesion molecules, which mediate adhesion between cells and between cells and matrix, were identified. Laminin, a major component of the extracellular matrix, exhibits several biological properties including attachment, spreading, migration, proliferation, and differentiation of normal and neoplastic cells (16), as well as interactions between laminin and malignant cells, representing a crucial step during metastatic cascade. A growing number of identified cell surface proteins designed as laminin-binding proteins and/or laminin receptors were characterized, and the 67-kDa is a cell surface protein binding laminin with high affinity. MLuC5 monoclonal antibody was seen to recognize the 67-kDa laminin-binding protein (5) and was used to evaluate immunohistochemically different types of human solid cancers (1, 17–20).

In this study, we examined the laminin receptor expression together with some other clinicopathological and biological parameters that show a prognostic impact in NSCLC. Our results confirm the data obtained in other solid cancers (breast and colon; Refs. 1, 17, and 20) concerning the role of the laminin receptor in tumor development and metastatic progression. The association between laminin receptor expression and hilar and/or mediastinal nodal metastasis agree with the data by Martignone et al. (1) and by Liotta et al. (3), confirming that the laminin receptor may be considered a metastasis-associated protein. The influence of this protein on the metastatic process can also be inferred from the BVI results. As a matter of fact, a statistical association was observed between the laminin receptor expression and the presence of tumor emboli in the tumor blood vessel. This data agrees with a study by Martignone et al. (1) in which an association was detected between MuC5 immunoreactivity and peritumoral lymphatic invasion, and it strongly supports the previous in vitro results of an involvement of this receptor in the invasive process (3).

The correlation between laminin receptor, proliferative activity, and p53 protein overexpression underlines the role of this protein in the metastatic progression of NSCLC. Because several studies have shown an association between bad prognosis and both high proliferative activity (21–23) and p53 protein alteration (9, 10) in different types of cancer including NSCLC, our results support the evidence that laminin receptors may identify a subset of cancers with a more aggressive behavior.

REFERENCES

8. Macchiari, P., Fontanini, G., Hardin, J. M., Pingitore, R., and Angeletti, C. A. Most peripheral, node-negative non-small cell lung cancers have low proliferative rates and no intratumoral and peritumoral
blood and lymphatic vessel invasion: rationale for treatment with wedge
9. Fontanini, G., Bigini, D., Vignati, S., Macchiariini, P., Pepe, S.,
Angeletti, C. A., Pingitore, R., and Squariti, F. p53 expression in non
small cell lung cancer: clinical and biological correlations. Anticancer
10. Quinlan, D. C., Davidson, A. S., Summers, C. L., Warden, H. E.,
and Doshi, H. M. Accumulation of p53 correlates with a poor prognosis
13. Tagliabue, E., Martignone, S., Mastroianni, A., Menard, S.,
Pellegrini, R., and Colnaghi, M. I. Laminin receptors on SCLC cells.
14. Rosen, P. P. Tumor emboli in intramammary lymphatics in breast
cancer: pathological criteria for diagnosis and clinical significance.
basement membrane components by invasive tumours but not by their
Aumaielley, M., Terranova, V. P., Martin, G. R., and Dubois-Alco,
M. Biological activities of laminin. J. Cell. Biochem., 27: 317–325,
1985.
17. Mafune, K., Ravikumar, T. S., Wong, J. M., Yow, H., Chen, L. B.,
and Steele, G. D. Expression of a Mr 32,000 laminin binding protein
messenger RNA in human colon carcinoma correlates with disease
Tumor basement membrane laminin in adenocarcinoma of rectum: an
immunohistochemical study of biological clinical significance. Int. J.
Stevenson, W. G., and Grigioni, W. F. Augmentation of type IV colla-
genase laminin receptor and Ki-67 proliferation antigen associated with
human colon, gastric, and breast carcinoma progression. Mod. Pathol.,
20. Daidone, M. G., Silvestrini, R., D’Arrico, A., Di Fronzo, G., Belini,
Laminin receptors, collagenase IV and prognosis in node negative breast
21. Scagliotti, G. V., Micela, M., Gubetta, L., Leonardo, E., Cappia, S.,
Borasio, P., and Pozzi, E. Prognostic significance of Ki-67 labeling in
22. Fontanini, G., Macchiariini, P., Pepe, S., Ruggiero, A., Hardin, M.,
Bigini, D., Vignati, S., Pingitore, R., and Angeletti, C. A. The expres-
sion of proliferating cell nuclear antigen in paraffin sections of periph-
eral, node-negative, non-small cell lung cancer. Cancer (Phila.), 70:
Marks, J. R. A prognostic model of recurrence and death in stage I
non-small cell lung cancer utilizing presentation and oncoprotein ex-
67-Kilodalton laminin receptor expression correlates with worse prognostic indicators in non-small cell lung carcinomas.

G Fontanini, S Vignati, S Chiné, et al.

Updated version Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/3/2/227

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.