Heregulin and Agonistic Anti-p185c-erbB2 Antibodies Inhibit Proliferation But Increase Invasiveness of Breast Cancer Cells That Overexpress p185c-erbB2: Increased Invasiveness May Contribute to Poor Prognosis1

Feng-Ji Xu, Sharon Stack, Cinda Boyer, Kathy O’Briant, Regina Whitaker, Gordon B. Mills, Yin Hua Yu, and Robert C. Bast, Jr.2

Division of Medicine, University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030 [F-J. X., G. B. M., Y. H. Y., R. C. B.]; Northwestern University Medical School, Chicago, Illinois 60611 [S. S.]; and Duke University Medical Center, Durham, North Carolina 27710 [C. B., K. O., R. W.]

ABSTRACT

Overexpression of p185c-erbB2 (p185/NEU/HER2) by tumor cells is associated with a poor prognosis in many but not all studies of breast and ovarian cancer. The poor prognosis associated with overexpression of p185c-erbB2 could result from an increased growth rate or increased invasive potential. The p185c-erbB2 tyrosine kinase receptor can be activated with agonistic antibodies directed against p185c-erbB2 or with the ligand heregulin through a combinatorial interaction with erbb3 or erbb4. Consequently, we have asked whether heregulin or agonistic antibodies increase anchorage-independent growth or invasiveness of the SKBr3 breast cancer cell line, which overexpresses p185c-erbB2. Incubation of SKBr3 breast cancer cells with heregulin inhibited anchorage-independent growth while enhancing tyrosine phosphorylation of p185c-erbB2. Heregulin treatment also increased adhesion of SKBr3 cells to plastic and increased invasiveness of tumor cells into Matrigel membranes while increasing expression of the CD44 (HCAM) and CD54 (ICAM-1) adhesion molecules. Tumor cell invasion of Matrigel membranes was partially blocked by either anti-CD44 or anti-CD54 antibodies, indicating a role for these adhesion molecules in the invasion process. Compatible with the increased invasiveness, heregulin increased expression of the matrix metalloproteinase 9. In contrast, the agonistic anti-p185c-erbB2 antibody ID5 induced only a subset of the responses induced by heregulin. ID5 induced tyrosine phosphorylation of p185c-erbB2, increased invasiveness, and increased expression of CD44. Despite the similarity of effects of ID5 and heregulin on some outcomes, the ID5 antibody failed to increase adhesion to plastic, expression of CD54, or production of matrix metalloproteinase 9. Thus, the ID5 agonistic anti-p185c-erbB2 antibody mimics rather than antagonizes some but not all of the actions of heregulin. Moreover, the poor prognosis of breast and ovarian cancers that overexpress p185c-erbB2 could relate in part to enhanced invasiveness rather than to increased proliferative capacity.

INTRODUCTION

The c-erbB2 (Her-2/neu) proto-oncogene encodes a transmembrane tyrosine kinase, p185c-erbB2, that is structurally homologous to the receptor for epidermal growth factor receptor (1, 2). Although somewhat controversial (3, 4), overexpression of p185c-erbB2 has been associated with a poor prognosis in several studies of patients with breast and ovarian cancer (5, 6). Monoclonal antibodies raised against the p185c-erbB2 protein can inhibit growth of tumor cells that overexpress p185c-erbB2, a process that is associated with increased tyrosine phosphorylation of p185c-erbB2 (7). Several different ligand have been described that can also stimulate tyrosine phosphorylation of p185c-erbB2, including the rat NDF3 and human heregulin (8, 9). These ligands have been reported to stimulate growth of cells that express p185c-erbB2 (10), but the impact of heregulin and NDF on cell growth may depend on the coexpression of other related receptors (c-erbB3 and c-erbB4) as well as on the relative levels of receptor expression (11–14). Furthermore, the response of cells that overexpress p185c-erbB2 may differ from that of cells with normal p185c-erbB2 levels. Monoclonal antibodies against the extracellular domain of the mutated rat neu membrane receptor have been demonstrated to suppress tumorigenesis by neu-transformed NIH3T3 cells (15, 16). In related studies, monoclonal antibodies against portions of the extracellular domain of the nonmutated human gene product can specifically inhibit the growth of human breast carcinoma cells that overexpress p185c-erbB2 (17). These antibodies might accomplish their growth-inhibitory effects by blocking a putative autocrine/paracrine growth-stimulatory loop involving the

3The abbreviations used are: NDF, neu differentiating factor; MMP, matrix metalloproteinase; PA, plasminogen activator; FBS, fetal bovine serum; TCM, tissue culture medium; VLKpNA, β-Val-Leu-Lys-p-nitroanilide; ICAM, intercellular adhesion molecule.

Received 9/13/96; revised 5/15/97; accepted 6/5/97.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1This work was supported by NIH Research Grant 39930.

2To whom requests for reprints should be addressed, at the Division of Medicine, University of Texas M. D. Anderson Cancer Center, Box 902, 1515 Holcombe Boulevard, Houston, TX 77030.
p185^{erbB2} receptor (18, 19) or, alternatively, might mimic the activity of the ligand if heregulin or NDF inhibited, rather than stimulated, growth of cells that overexpress p185^{erbB2}. Most studies of p185^{erbB2} have focused on the potential growth-regulatory effects of the receptor. The prognostic impact of p185^{erbB2} overexpression could, however, relate to an increased potential for invasion and metastasis or to increased expression of cell surface adhesion molecules and their receptors such as CD54 (ICAM-1) and CD44 (HCAM) appear important for metastasis. Indeed, heregulin has been demonstrated to increase expression of ICAM-1 (20). Motility and proteinase expression are also required for invasion of the extracellular matrix and penetration of the lymphatic or blood vessel wall. Proteinases produced by invading tumor cells include PAs and matrix and penetration of the lymphatic or blood vessel wall.

In our earlier studies, we demonstrated that some, but not all, murine monoclonal antibodies reactive with the extracellular domain of p185^{erbB2} inhibited anchorage-independent growth of the SKBr3 breast cancer cell line that overexpressed p185^{erbB2} (7). In the present report, we have compared the effects of heregulin to the effects of agonistic anti-p185^{erbB2} antibodies on clonogenic growth of SKBr3, adherence to plastic, invasion of Matrigel membranes, expression of the CD44 and CD54 adhesion molecules, and production of MMP-9. In this p185^{erbB2}-overexpressing breast cancer cell line, heregulin inhibited anchorage-independent growth but increased adherence and invasiveness associated with enhanced expression of MMP-9, CD44, and CD54. Agonistic antibodies to p185^{erbB2} mimicked a subset of the responses induced by heregulin.

MATERIALS AND METHODS

Cell Lines. SKBr3 (24), a human breast cancer cell line, was maintained in RPMI 1640 supplemented with 15% FBS and 2 mM L-glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin. For all experiments, cells were detached with 0.25% trypsin-0.02% EDTA. Cells were washed once in TCM before use.

Monoclonal Antibodies. Murine monoclonal antibodies (TA1 and IDS) that react with the extracellular domain of p185^{erbB2} were obtained from Applied BioTechnology/Oncogene Science (Cambridge, MA; Ref. 25). Both monoclonal antibodies were of the IgG1 isotype. MOPC21 (IgG1), obtained from a hybridoma-induced ascites fluid using protein A-Sepharose chromatography (Pharmacia LKB, Uppsala, Sweden). Fractions containing protein measured by absorbance at 280 nm were dialyzed for 24 h against 50 mm phosphate buffer (pH 7.2) and concentrated using an Amicon filter and compressed nitrogen gas. Immunoglobulin concentration was calculated by dividing absorbance at 280 nm by the extinction coefficient for IgG. Immunoglobulin purity was confirmed by SDS-PAGE. Purified immunoglobulin was aliquoted and stored at −70°C.

Heregulin. Heregulin was obtained from Genentech, Inc. (South San Francisco, CA).

Assay of Anchorage-independent Growth. Anchorage-independent cell growth was measured in 35-mm tissue culture dishes (Nunc, Inc., Naperville, IL). A 1-ml layer of 0.6% agar (DIFCO Laboratories, Detroit, MI) in TCM was solidified in the bottom of each dish. Cells to be assayed were suspended at 37°C in 1 ml 0.3% agar in TCM supplemented with different antibodies or heregulin. From 10⁴ to 2 × 10⁵ SKBr3 cells were seeded in each dish. After 2 weeks of incubation at 37°C in 5% CO₂ and 95% humidified air, colonies were counted with an inverted phase microscope. Colonies were scored that contained 30 or more cells.

Adherence Assay. To measure adherence, SKBr3 cells (2 × 10⁵/well) were suspended in TCM, seeded in 96-well flat-bottomed plastic tissue culture plates, and incubated at 37°C in 5% CO₂ and 95% humidified air for 1–4 h. Plates were washed three times with TCM, and additional medium was added that contained Alamar blue indicator (Alamar, Sacramento, CA). After an additional 3-h incubation, absorbance of the stained cells was read at 600 nm using an ELISA plate reader (DuPont, Wilmington, DE).

Immunofluorescence Assays. Cells were seeded in the 75-cm² flask and incubated for 2–5 days with TCM that contained or lacked heregulin. Cells (5 × 10⁴) were incubated in microcentrifuge tubes (1.5 ml) with anti-CD44 antibody or anti-CD54 antibody (50 μl of a 10-μg/ml solution) for 1 h on ice and were washed twice with PBS containing 1% FBS. Washed cells were incubated for 30 min on ice with sheep antimouse antibody-FITC conjugate (50 μl of a 20-μg/ml solution) and washed twice with PBS containing 1% FBS. All cells were analyzed in an Epics 753 flow cytometer (Coulter Electronics, Hialeah, FL). The percentage of cells that expressed CD44 and CD54 was measured, as were the mean and peak fluorescence intensity.

Assay of Invasiveness. A 48-well chemotaxis chamber (Neuro Probe, Cabin John, MD) was used to measure the invasive potential of tumor cells in culture. A polyvinylpyrrolidone membrane (25 × 80 mm, 8.0-μm pore; Neuro Probe) was coated with fibronectin (Boehringer Mannheim, Indianapolis, IN). Membranes were soaked in a solution of fibronectin [6.7 μg/ml in 50 mM phosphate buffer (pH 7.4)] for a minimum of 30 min, transferred to a clean Petri dish, dried at room temperature, and treated with 600 μl of Matrigel solution (0.8–1.0 mg/ml) and Becton Dickinson Labware, Lincoln Park, NJ). A 28-μl portion of serum-free TCM was added to each well in the lower portion of the chemotaxis chamber. Wells were then covered with a coated membrane, and the upper portion of the chamber was put in place. Wells in the upper chamber were filled with 10-μl portions of TCM with 10% FBS supplemented with antibodies, heregulin, or diluent. An additional 40 μl of TCM with 10% FBS containing 3 × 10⁴ SKBr3 breast cancer cells were added to each well. Chambers were incubated for 16 h at 37°C in 5% CO₂ and 95% humidified air. Filters were removed, fixed in
100% methanol, and stained using the Hema 3 stain set (Biochemical Science, Inc., Bridgeport, NJ). Filters were transferred to microscope slides in the same orientation used in the chamber. Cells that had failed to invade were wiped away with wet cotton swabs. After drying, filters were embedded in Permount and sealed with coverslips. All assays were performed in triplicate. Stained cells were visualized by light microscopy at X100. Cells in three fields were counted, and the mean and SD were calculated.

Proteinase Analysis. To detect the presence of MMPs in conditioned media, samples were analyzed by gelatin zymography. Zymograms demonstrating gelatinolytic activity in nonreduced samples were prepared by incorporating 0.1% gelatin into 9% polyacrylamide gels according to the method of Heussen and Dowdle (26). Prior to electrophoresis, latent metalloproteinases in serum-free conditioned medium samples (20 µl) were activated by incubation with 1.5 mM amino-phenylmercuric acetate for 1 h at 37°C. Additionally, 100 µM a-phenanthroline was added to control samples during incubation to inhibit metalloproteinase activity. Samples were incubated with nonreducing Laemmli sample dilution buffer containing 2.5% SDS for 30 min at 25°C and electrophoresed. Following electrophoresis, gels were incubated with 2.5% Triton X-100 for 30 min at room temperature to remove SDS, and incubated for 18 h at 37°C in 0.1 M glycine, 10 mM CaCl₂, and 1 M ZnCl₂ (pH 8.3). In control experiments, a-phenanthroline (100 µM) was also included in the overnight incubation buffer. Following staining with Coomassie blue, regions of proteolytic activity were visualized as clear zones against a blue background. Zymograms demonstrating PA activity in unreduced samples were prepared by incorporating 0.1% gelatin and 13 µg/ml plasminogen into 9% polyacrylamide gels (26). Prior to electrophoresis, samples were incubated with nonreducing Laemmli sample dilution buffer containing 2.5% SDS for 30 min at 25°C and electrophoresed. Following electrophoresis, gels were incubated for 30 min with 2.5% Triton X-100, incubated for 18 h at 37°C in 20 mM Hepes (pH 7.4), and stained with Coomassie blue. Plasminogen activation was also quantitated spectrophotometrically with a coupled assay that monitors the amidolytic activity of generated plasmin using the synthetic plasmin substrate D-Val-Leu-Lys-p-nitroanilide (Sigma Chemical Co.). Plasminogen (0.3 µM) was incubated in 96-well microtiter plates in 20 mM Hepes (pH 7.4) in the presence of 20 µl of serum-free conditioned medium, the plasmin substrate VlKpNA was added, and plasminogen activation was quantitated based on the plasmin hydrolysis of VlKpNA by monitoring the absorbance of 405 nm in a Molecular Devices Thermomax plate reader.

RESULTS

Inhibition of Anchorage-independent Growth. Anchorage-independent growth of cancer cells is thought to be one of the best in vitro correlates of the ability of cancer cells to grow in vivo, although concordance is not always precise. In previous studies (7), we have shown that some, but not all, antibodies that bind to the extracellular domain of p185erbB2 can activate p185erbB2 (27) and inhibit anchorage-independent growth of breast and ovarian cancer cells that overexpress p185erbB2. In confirmatory experiments, the ID5 antibody, demonstrated previously to inhibit anchorage-independent growth (7) and to activate p185erbB2 (27), decreased colony formation in semisolid agar of the SKBr3 breast cancer cell line, which overexpresses p185erbB2 (Fig. 1). In contrast, the TA1 antibody, which does not activate p185erbB2 (27), did not inhibit anchorage-independent growth of SKBr3 breast cancer cells. The ID5 and TA1 antibodies were used throughout to represent antibodies that did and did not inhibit anchorage-independent growth and activate p185erbB2, respectively. Herregulin, which in combination with erbB3 or erbB4 activates p185erbB2, induced a dose-dependent inhibition of anchorage-independent growth of SKBr3 breast cancer cells (Fig. 1). Indeed, from our assays, we were unable to identify a concentration of heregulin (between 10 ng/ml and 0.001 ng/ml) that would increase the anchorage-independent growth of SKBr3 cancer cells (data not shown). Thus, the ID5 antibody and heregulin both induce dose-dependent inhibition of anchorage-independent growth of SKBr3 cells, whereas the TA1 antibody did not alter anchorage-independent growth. Because antibodies to p185erbB2 and heregulin both decrease anchorage-independent growth of the SKBr3 breast cancer cell line, which overexpress p185erbB2, it is difficult to equate the poor prognosis associated with overexpression of p185erbB2 with alterations in cell proliferation rates, at least as indicated by anchorage-independent growth. To further explore the mechanisms potentially contributing to the poor prognosis associated with overexpression of p185erbB2, we examined whether overexpression of p185erbB2 may alter the ability of breast cancer cells that overexpress p185erbB2 to undergo in vitro correlates of adhesion and invasion, which could potentially contribute to patient outcome.

Increased Adhesion to Plastic. An increased ability of cells to adhere and invade could contribute to the poor prognosis associated with overexpression of p185erbB2. To test this possibility, we explored the ability of SKBr3 cells to adhere to plastic as a model for increased adhesiveness in vivo. Treatment of SKBr3 cells with heregulin (1–10 ng/ml) significantly in-
increased their ability to adhere to plastic (Fig. 2). In contrast, neither the ID5 nor the TA1 antibody increased the ability of SKBr3 cells to adhere to plastic. Inasmuch as incubation of SKBr3 cells with heregulin is able to increase adhesion, activation of breast cancer cells to adhere to plastic. Inasmuch as incubation of SKBr3 cells with heregulin (10 ng/ml) induced an approximately 5-fold increase in the number of cells invading into Matrigel membranes (Fig. 3). In a separate experiment, heregulin induced a dose-dependent stimulation of invasiveness over the range of 10 ng/ml to 1 ng/ml (data not presented). The ID5 anti-p185
\(^{erbB2}\) antibody also significantly enhanced the ability of SKBr3 tumor cells to invade Matrigel membranes. Invasion of Matrigel by SKBr3 cells in the presence of ID5 was significantly greater than that observed in the presence of TA1 or MOPC21 (P < 0.01; Student's t test). Similar to the concordant effects on anchorage-independent cell growth, heregulin and ID5 both increased invasiveness.

Anti-CD44 or Anti-CD54 Antibodies Inhibit Invasion. Because both heregulin and ID5 induced invasion into Matrigel and invasion requires an initial adhesion step perhaps mediated by the adhesion molecules induced by heregulin and ID5, we assessed whether heregulin-induced or ID5-induced invasion required an interaction of CD44 and CD54 on the surface of SKBr3 cells with coreceptor molecules present in the Matrigel membranes. It is important to note that although both heregulin and ID5 increased expression of the CD44 and heregulin increased expression of CD44, untreated SKBr3 cells still expressed readily detectable levels of these adhesion molecules. Heregulin-induced invasion of Matrigel membranes was inhibited approximately 50% by both anti-CD44 or anti-CD54 (\(\mu g/ml\) antibodies, consistent with the hypothesis that heregulin-induced expression of CD44 and CD54 plays a role in the increased invasiveness induced by heregulin (Fig. 4).

Increased Expression of MMP-9. Increased expression of proteases capable of degrading the extracellular matrix is a critical component of the invasion and metastasis cascade. Compatible with the observation that heregulin increased invasion into Matrigel membranes, incubation of SKBr3 breast cancer cells with heregulin (1 or 10 ng/ml) markedly increased the expression of 92 kD MMP-9 (Fig. 5). Despite inducing increased invasiveness into Matrigel membranes, incubation of SKBr3 cells with ID5 failed to

Table 1 Immunofluorescence analysis of SKBr3 cells treated with 10 ng/ml heregulin

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CD44</th>
<th>CD54</th>
<th>CD44</th>
<th>CD54</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>3.49 ± 0.31</td>
<td>5.98 ± 0.34</td>
<td>6.30 ± 0.28</td>
<td>8.14 ± 0.25</td>
</tr>
<tr>
<td>Heregulin</td>
<td>8.24 ± 0.58</td>
<td>61.80 ± 12.26</td>
<td>10.88 ± 0.45</td>
<td>48.76 ± 7.94</td>
</tr>
<tr>
<td>5 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>4.44 ± 0.33</td>
<td>8.88 ± 0.91</td>
<td>7.77 ± 1.00</td>
<td>9.44 ± 0.38</td>
</tr>
<tr>
<td>Heregulin</td>
<td>25.48 ± 0.07</td>
<td>74.03 ± 0.41</td>
<td>23.46 ± 0.74</td>
<td>54.11 ± 1.16</td>
</tr>
</tbody>
</table>

Table 2 Immunofluorescence analysis of SKBr3 cells treated with 10 \(\mu g/ml\) ID5

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CD44</th>
<th>CD54</th>
<th>CD44</th>
<th>CD54</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>9.41 ± 1.45</td>
<td>24.02 ± 3.20</td>
<td>9.52 ± 0.42</td>
<td>35.92 ± 2.74</td>
</tr>
<tr>
<td>ID5</td>
<td>24.96 ± 3.10</td>
<td>19.74 ± 0.33</td>
<td>15.63 ± 1.09</td>
<td>32.83 ± 2.50</td>
</tr>
<tr>
<td>5 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>3.46 ± 0.15</td>
<td>24.65 ± 1.52</td>
<td>7.50 ± 0</td>
<td>13.82 ± 5.64</td>
</tr>
<tr>
<td>ID5</td>
<td>18.42 ± 1.14</td>
<td>20.80 ± 1.52</td>
<td>13.44 ± 1.45</td>
<td>12.15 ± 0.13</td>
</tr>
</tbody>
</table>

Fig. 2 Effect of heregulin and anti-p185
\(^{erbB2}\) antibodies (10 \(\mu g/ml\)) on the adherence of SKBr3 breast cancer cells to plastic. Data are means: bars, SD. *, statistically significant difference from controls (\(P < 0.05\)).
increase MMP-9 levels (Fig. 5). ID5 may, however, induce expression of other proteinases not detected by gelatin zymography as performed herein. In addition, PA activity was not detectable in control or treated samples using either zymography or a spectrophotometric assay (data not shown).

DISCUSSION

In other studies, we have shown that both heregulin and the ID5 antibody, but not the TA1 antibody, increase autophosphorylation of p185c-erbB2, concomitant with growth inhibition of cells that overexpress p185c-erbB2 (23). The ID5 and TA1 antibodies bind to rodent cells that express human p185c-erbB2 but not to cells engineered to overexpress human epidermal growth factor receptor, c-erbB3 or c-erbB4, demonstrating the specificity of ID5 and TA1 for p185c-erbB2 (data not shown). Thus, ID5 but not TA1 represents an agonistic antibody able to stimulate directly p185c-erbB2. Heregulin, although cloned initially as a ligand for p185c-erbB2, likely does not bind to p185c-erbB2 alone but rather activates p185c-erbB2 through formation of a ternary complex with erbB3 or erbB4, both of which are expressed on SKBr3 cells (28, 29). Strikingly, both heregulin and agonistic antibodies to p185c-erbB2 inhibited the anchorage-independent growth of SKBr3 cells. Indeed, we were unable to identify a concentration of heregulin or ID5 that increased the growth of SKBr3 in semisolid agar. Thus, it is difficult to equate the poor prognosis associated with overexpression of p185c-erbB2 observed in several different studies of breast and ovarian cancer with increased proliferative rates.

Strikingly, heregulin increased a number of in vitro correlates of increased invasiveness and metastatic potential, including adhesion to plastic, increased expression of the CD44 and CD54 adhesion molecules, and increased production of the proteinase MMP-9. ID5, despite inducing similar decreases in anchorage-independent growth, invasion into Matrigel membranes, and expression of CD44 as did heregulin, failed to induce increases in adhesion to plastic, expression of CD54, and production of MMP-9. Thus, the agonistic ID5 antibody mimics some but not all aspects of activation of SKBr3 cells with heregulin.

Overexpression of p185c-erbB2 by cancer cells has been associated with a poor prognosis in some but not all studies of breast and ovarian cancer (5, 6). Prognosis, however, may not relate simply to the proliferative capacity of cancer cells but could also depend on the ability of cancer cells to invade, metastasize, or resist cytotoxic chemotherapy. Data presented in this communication suggest that heregulin can, in fact, enhance the adhesive and invasive potential of tumor cells that overexpress p185c-erbB2. Molecular correlates of this increased adhesive and invasive potential included up-regulation of the adhesion molecules CD44 and CD54, as well as increased secretion of the 92 Kd collagenase MMP-9. The functional importance of CD44 and CD54 in this setting was suggested by inhibition of heregulin-stimulated invasion by anti-CD44 and anti-CD54 antibodies. The anti-p185c-erbB2 antibody ID5 also increased invasive potential and up-regulated CD44 but failed to augment MMP-9 secretion, consistent with the potential role of other proteases in the invasion of Matrigel membranes.
The ID5 anti-p185^{erbB2} antibody stimulated invasion of Matrigel by SKBr3 breast cancer cells. The TA1 anti-p185^{erbB2} antibody and the MOPC21 control antibody were significantly less active. As p185^{erbB2} is currently being assessed as a target for serotherapy with monoclonal antibodies (27), serotherapy with antibodies that have little impact on invasiveness and potentially lack other agonistic activities may maximize their therapeutic activity. In this regard, the TA1 antibody that fails to affect tumor growth when unconjugated serves as an optimal carrier for the A chain of ricin when used to prepare immunotoxins (27). The TA1-RTA immunotoxin can eliminate more than 99.99% of doxorubicin-resistant SKBr3 cells that overexpress p185^{erbB2}, but have little activity against normal cells with lower levels of p185^{erbB2} (27). Consequently, such immunotoxins may have a favorable therapeutic index compared to immunotoxins derived from agonistic anti-p185^{erbB2} antibodies.

REFERENCES

Heregulin and agonistic anti-p185(c-erbB2) antibodies inhibit proliferation but increase invasiveness of breast cancer cells that overexpress p185(c-erbB2): increased invasiveness may contribute to poor prognosis.

F J Xu, S Stack, C Boyer, et al.

Updated version Access the most recent version of this article at: http://clincancerres.aacrjournals.org/content/3/9/1629

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.