Effect of 67Cu-2IT-BAT-Lym-1 Therapy on BCL-2 Gene and Protein Expression in a Lymphoma Mouse Model

Linda A. Kroger, Sally J. DeNardo, Gerald L. DeNardo, Cheng Yi Xiong, Michelle D. Winthrop, and Paul H. Gumerlock
Molecular Cancer Institute, Sacramento, California 95816

Abstract

Radioimmunotherapy using monoclonal antibodies against tumor-associated antigens has been particularly promising in the treatment of radiosensitive malignancies such as lymphoma. 67Cu has excellent physical and biochemical properties for radioimmunotherapy. 67Cu-2IT-BAT-Lym-1 has been used in preclinical and clinical trials, where an exceptionally long residence time of 67Cu on tumor was observed. BCL-2, a proto-oncogene that promotes cell survival by blocking apoptotic cell death, is overexpressed in most B-cell lymphomas including Raji human Burkitt’s lymphoma cells. In this study, therapeutic efficacy and BCL-2 gene and protein expression levels were examined in Raji xenografts in mice after 67Cu-2IT-BAT-Lym-1 radioimmunotherapy. 67Cu-2IT-BAT-Lym-1 therapy induced a response rate (complete and partial responses) of \sim50%. BCL-2 gene expression was decreased 3 h after radioimmunotherapy, followed by a decrease in Bcl-2 protein by 24 h. Decreases in BCL-2 gene and protein expression preceded observations of 67Cu-2IT-BAT-Lym-1 therapeutic effect suggesting that down-regulation of BCL-2 leaves cells more likely to be killed by low dose-rate radiation from radioimmunotherapy.

Introduction

Despite advances in conventional therapy for NHL,40–70% of patients with intermediate and high grade NHL fail to achieve long-term disease-free survival, and no curative treatment has been established for patients with low grade NHL (1, 2). RIT using MoAbs against tumor-associated antigens to deliver cytotoxic radionuclides to tumors has been particularly promising in the treatment of radiosensitive malignancies such as lymphoma (3–8).

Materials and Methods

Cell Lines. The Raji human lymphoma cell line was obtained from American Type Culture Collection (Rockville, MD). The human renal carcinoma cell line, G2101, was isolated from a rib metastasis of a renal cell carcinoma and has been shown to be positive for BCL-2 expression (24). Cells were

67Cu has excellent physical and biochemical properties for RIT. Its half-life (62 h) is well matched to the uptake and residence time of antibodies in the tumor (9). 67Cu has β emissions (mean energy, 141 keV; $\epsilon_{\beta_{max}} = 577$ keV) for therapy, and γ emissions (185 keV, 47%; 93 keV, 17%) that are excellent for imaging but contribute minimal radiation exposure to medical personnel. An advantage of 67Cu is its enhancement of the therapeutic index compared with other radionuclides. 67Cu-radio labeled MoAbs have been shown in preclinical studies to deliver higher doses to tumor and higher tumor to nontumor dose ratios when compared with their iodinated counterparts (10, 11). These results have been substantiated by data from clinical trials of 67Cu-2IT-BAT-Lym-1, in which an exceptionally long residence time of 67Cu in tumors was observed (12, 13). The macrocyclic chelating agent, 1,4,7,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid, specifically designed to stably bind copper (14), is the chelating moiety in the immunoconjugate 2IT-BAT-Lym-1. Under well-characterized conditions, 2IT-BAT-Lym-1 binds 67Cu rapidly and selectively, providing 67Cu-2IT-BAT-Lym-1 with high specific activity and complete retention of structural and functional integrity (15). 67Cu-2IT-BAT-Lym-1 radio labeling has been optimized to the extent that product yield and quality are comparable to those for iodinated MoAbs.

BCL-2 is the acronym for the B-cell lymphoma/leukemia-2 gene, which was first discovered in association with B-cell malignancies in which chromosomal translocations were found to activate the gene in the majority of follicular NHLs (16). BCL-2 is a proto-oncogene that regulates cell survival by blocking a common pathway leading to apoptotic cell death (17). It is overexpressed, and thus oncogenic, in most B-cell lymphomas, including Raji human Burkitt’s lymphoma cells (18). Cells blocked at the G2-M interface appear to be much more radiosensitive to radiation (19–22). Macklis et al. (23) studied radiation-induced cell cycle changes and demonstrated that Raji cells are efficiently blocked at the G2-M interface despite overexpression of BCL-2.

The goal of this study was to examine modulation of BCL-2 in the response of Raji xenografts to 67Cu-2IT-BAT-Lym-1 therapy. In these studies, nude mice bearing Raji tumors were treated with 335, 400, and 500 μCi of 67Cu-2IT-BAT-Lym-1 and were followed for efficacy and toxicity (10). Selected mice that received 335 μCi of 67Cu-2IT-BAT-Lym-1 were sacrificed, and their tumors were analyzed for BCL-2 gene expression and Bcl-2 protein levels.

2 To whom requests for reprints should be addressed, at Molecular Cancer Institute, 1508 Alhambra Boulevard, Room 3100, Sacramento, CA 95816.
3 The abbreviations used are: NHL, non-Hodgkin’s lymphoma; RIT, radioimmunotherapy; MoAb, monoclonal antibody; 2IT, 2-iminothiolane; BAT, 6-[[p-(bromoacetamido)benzyl]-1,4,7,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid; RT-PCR, reverse transcription-PCR.
jugate 2IT-BAT-Lym-1 was prepared by conjugating BAT to treatment with ~'7Cu-2IT-BAT-Lym-1 or until tumors were harvested dimensions using calipers two times per week for 84 days after Lyre-1 (335,400, or 500 pCi). Tumors were measured in three dimensions using calipers two times per week for 84 days after tumor implantation, mice received a total body radiation dose of 400 rad to suppress B-cell function. Three days later, each mouse received bilateral s.c. injection of Raji cells in the lower abdomen. Once the tumors were ≥20 mm³, mice were sorted and either left as free conditions. Prior to tumor implantation, mice received a care guidelines on a normal diet and water. Animals were maintained according to University of California Animal Care guidelines on a normal diet ad libitum and under pathogen-free conditions. Prior to tumor implantation, mice received a total body radiation dose of 400 rad to suppress B-cell function. Three days later, each mouse received bilateral s.c. injection of Raji cells in the lower abdomen. Once the tumors were ≥20 mm³, mice were sorted and either left as untreated controls or injected by tail vein with 67Cu-2IT-BAT-Lym-1 (335, 400, or 500 μCi). Tumors were measured in three dimensions using calipers two times per week for 84 days after treatment with 67Cu-2IT-BAT-Lym-1 or until tumors were harvested for molecular biology studies but never beyond the size stipulated in the approved animal protocol. Death within 30 days of therapy was attributed to the radiation side effects of the treatment. Subgroups of mice treated with 335 μCi of 67Cu-2IT-BAT-Lym-1 had tumors harvested at 3 and 24 h after treatment for BCL-2 analysis. Harvested tumors were flash frozen and stored at −70°C until analyzed.

RNA Extraction and cDNA Synthesis. Total cellular RNA was extracted from Raji tumor specimens and the G2101 cell line by guanidine thiocyanate extraction followed by cesium chloride purification as described previously (28, 29). The RNA was removed from the gradient and precipitated twice at −20°C by the addition of 5 M NaCl (to a concentration of 0.3 M) and twice the volume of ice-cold 100% ethanol. The RNA was pelleted by microcentrifugation and resuspended in Tris-HCl pH 8.0, 0.125 M NaCl, 0.025% Tween 20 for 1 h and incubated with a 1:800 dilution of hamster anti-Bcl-2 antibody (PharMingen, San Diego, CA) for 16 h at 4°C. The membrane was washed in Tris-buffered saline, incubated with horseradish peroxidase-conjugated antihamster IgG for 1 h at room temperature followed by incubation with streptavidin peroxidase (Boehringer Mannheim, Indianapolis, IN) for 30 min. Signal was detected by chemiluminescence (ECL reagents; Amersham, Arlington Heights, IL). The membrane was exposed to X-ray film (XAR; Kodak, Rochester, NY), developed, and scanned with a laser densitometer supported by ImageQuaNT software.

Results

Tumor Response to 67Cu-2IT-BAT-Lym-1. Tumor volume in untreated mice increased rapidly, whereas tumor volume in treated mice characteristically decreased after 5 days. The overall response rate (complete and partial response and cure) for tumors in all three treated groups of mice was 47%, and 33% of the tumors were cured (Fig. 1). In mice that received 335 μCi of 67Cu-2IT-BAT-Lym-1, 5 of 18 (28%) tumors disappeared and did not regrow during the 84-day study (Fig. 1, Cure), 1 of 18 (6%) tumors disappeared but later regrew (complete response; Fig. 1, CR) and 3 of 18 (17%) tumors decreased by at least 50% (partial response; Fig. 1, PR). In mice that received 400 μCi of 67Cu-2IT-BAT-Lym-1, 5 of 12 (42%) tumors were cured. In mice that received 500 μCi of 67Cu-2IT-BAT-Lym-1, two of six (33%) tumors were cured, and one of six (17%) tumors decreased by at least 50%. Toxicity was modest at all three dose levels of 67Cu-2IT-BAT-Lym-1 (335, 400, or 500 μCi) with 11, 20, and 9% mouse mortality occurring within 30 days of therapy, respectively.

Modulation of BCL-2 Expression following RIT. To study the effect of RIT on BCL-2 expression, 4–5 Raji xenografts were harvested at each time point (3 and 24 h) after 67Cu-2IT-BAT-Lym-1 therapy and were evaluated for changes in gene expression. Untreated tumors were used as controls for gene expression. BCL-2 expression was significantly decreased.
BCL-2 in Raji Xenografts after 67Cu-2IT-BAT-Lym-1

Fig. 1 Tumor responses to 67Cu-2IT-BAT-Lym-1 (335, 400, or 500 μCi) or no treatment. The response rates were similar at all dose levels. Overall response rate for all treated groups and cure rate were 47 and 33%, respectively.

Fig. 2 Gene expression of BCL-2 by untreated tumors and tumors obtained from mice 3 and 24 h after 335 μCi of 67Cu-2IT-BAT-Lym-1. mRNA expression was obtained by scanning the photographic negative of the ethidium bromide-stained agarose gels and normalizing to N-RAS and G2101 cell expression levels. Decreased expression of BCL-2 is seen at 3 h with diminished expression persisting at 24 h. Bars, SD.

3 h after RIT ($P = 0.006$) and remained decreased at 24 h ($P = 0.005$) when compared with the BCL-2 expression of the control tumors (Fig. 2).

Bcl-2 Protein Expression. Four Raji xenografts harvested at 3 and 24 h after 67Cu-2IT-BAT-Lym-1 therapy were evaluated for Bcl-2 protein expression by Western blotting and compared to Bcl-2 protein levels in untreated tumors. Western blot analysis revealed that Bcl-2 protein expression in xenografts treated with 67Cu-2IT-BAT-Lym-1 was unchanged at 3 h but decreased to 64% of the control level at 24 h (Fig. 3).

Fig. 3 Protein concentration of Bcl-2 determined using Western blot analysis for untreated tumors and tumors treated with 67Cu-2IT-BAT-Lym-1 (335 μCi). Protein expression expressed as percentage of untreated tumor protein expression, which was arbitrarily set at 100%. Protein expression was unchanged at 3 h with subsequent decrease at 24 h. The decrease in Bcl-2 protein followed the decrease in BCL-2 gene expression observed at 3 h. Bars, SD.

Discussion

BCL-2 is a proto-oncogene that regulates cell survival by blocking a common pathway leading to apoptotic cell death (17). BCL-2 is overexpressed in most B-cell lymphomas, including the Raji cells used for these studies (18). Additionally, Burkitt’s lymphoma cells have p53 mutations that cluster in two regions (codons 209–216 and 234–243). Raji Burkitt’s cells harbor two abnormal p53 alleles, one at codon 213 and one at codon 234 (32). p53 protein promotes apoptosis in DNA-damaged cells, such as those that might be induced by radiation.

To assess therapeutic efficacy, mice bearing Raji tumors were treated with 67Cu-2IT-BAT-Lym-1. At doses translatable to patients, 67Cu-2IT-BAT-Lym-1 provided a therapeutic, and frequently curative (33%), dose of radiation to tumor mice with modest toxicity (10). Lym-1 antibody by itself has no therapeutic effect on lymphoma in patients (27). A major low dose-rate radiation effect, such as that induced by 67Cu-2IT-BAT-Lym-1 RIT, is abrupt intermitotic cell death, referred to as apoptosis, through mediation of cell cycle processes and the activation of endogenous endonucleases (19, 33-35). Although some have observed this effect in response to antibody alone (36), the combination of antibody binding and low dose-rate radiation appear to be synergistic in inducing this effect (19, 37). In studies on human B-lymphoma cells, low dose-rate radiation has been associated with arrest of cells in the G2-M phase of the cell cycle and ultimately cell death by necrosis or apoptosis (19, 23, 38).

To examine a potential factor contributing to RIT efficacy, BCL-2 gene and protein expression was determined in Raji
tumors after 335 µCi of 67Cu-2IT-BAT-Lym-1, a dose associated with substantial efficacy and minimal toxicity. BCL-2 gene expression was decreased at 3 h with a subsequent decrease in Bcl-2 protein by 24 h. This orderly decrease in BCL-2 gene and protein expression after 67Cu-2IT-BAT-Lym-1 RIT suggests that the events were related. These gene and protein expression events occurred within 24 h of administration of the 67Cu-2IT-BAT-Lym-1 and preceded evidence of tumor regression. Additional evidence that the decrease in BCL-2 proto-oncogene represented a significant mechanism for the therapeutic effect of RIT on the tumor is provided by the description of an analogous decrease in BCL-2 expression associated with response to RIT in a breast cancer model (30).

The oncogene BCL-2 acts to decrease the probability of apoptosis because the protein encoded by the BCL-2 gene blocks programmed cell death. Despite inherent overexpression of BCL-2 and mutant p53 in Raji cells, we found decreases in BCL-2 and subsequent decreases in Bcl-2 protein after RIT with 67Cu-2IT-BAT-Lym-1 that induced responses and even cures of Raji tumors. In the absence of an alternative explanation, we speculate that the mutant p53 gene maintained some functional capacity to produce p53 protein.

In summary, decreases in BCL-2 gene and protein expression preceding observations of 67Cu-2IT-BAT-Lym-1 therapeutic effect suggest that down-regulation of BCL-2 leaves cells more likely to be killed by low dose-rate radiation from radioimmunotherapy. This mechanism may play a significant role in the effect of low dose-rate radiation on cancer.

Acknowledgments

We would like to acknowledge David Kukis and Laird Miers for assistance in generating data.

References

Effect of 67Cu-2IT-BAT-Lym-1 Therapy on BCL-2 Gene and Protein Expression in a Lymphoma Mouse Model

Linda A. Kroger, Sally J. DeNardo, Gerald L. DeNardo, et al.

Clin Cancer Res 1999;5:3010s-3014s.

Updated version

Access the most recent version of this article at:

http://clincancerres.aacrjournals.org/content/5/10/3010s

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/5/10/3010s. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.