Presentation of Renal Tumor Antigens by Human Dendritic Cells Activates Tumor-infiltrating Lymphocytes against Autologous Tumor: Implications for Live Kidney Cancer Vaccines

Peter Mulders, Cho-Lea Tso, Barbara Gitlitz, Randhir Kaboo, Andreas Hinkel, Stacey Frand, Sylvia Kiertscher, Michael D. Roth, Jean deKernion, Robert Figlin, and Arie Beldegrun

University of California at Los Angeles, Kidney Cancer Program, Immunotherapy Laboratory, Department of Urology [P. M., C.-L. T., R. K., A. H., S. F., J. d., A. B.]; and Divisions of Hematology-Oncology [B. G., R. F.] and Pulmonary Medicine [S. K., M. D. R.], Department of Medicine and Jonsson Comprehensive Cancer Center, UCLA School of Medicine, Los Angeles, California 90095-1738

ABSTRACT

The clinical impact of dendritic cells (DCs) in the treatment of human cancer depends on their unique role as the most potent antigen-presenting cells that are capable of priming an antitumor T-cell response. Here, we demonstrate that functional DCs can be generated from peripheral blood of patients with metastatic renal cell carcinoma (RCC) by culture of monocytes/macrophages (CD14+) in autologous serum containing medium (RPMI) in the presence of granulocyte macrophage colony-stimulating factor and interleukin (IL) 4. For testing the capability of RCC-antigen uptake and processing, we loaded these DCs with autologous tumor lysate (TuLy) using liposomes, after which cytometric analysis of the DCs revealed a markedly increased expression of HLA class I antigen and a persistent high expression of class II. The immunogenicity of DC-TuLy was further tested in cultures of renal tumor infiltrating lymphocytes (TILs) cultured in low-dose IL-2 (20 Biologic Response Modifier Program units/ml). A synergistic effect of DC-TuLy and IL-2 in stimulating a T cell-dependent immune response was demonstrated by: (a) the increase of growth expansion of TILs (9.4–14.3-fold; day 21); (b) the up-regulation of the CD3+CD56+ TcR+ (both CD4+ and CD8+) cell population; (c) the augmentation of T cell-restricted autologous tumor lysis; and (d) the enhancement of IFN-γ, tumor necrosis factor-α, granulocyte macrophage colony-stimulating factor, and IL-6 mRNA expression by TILs. Taken together, these data implicate that DC-TuLy can activate immuno-suppressed TIL via an induction of enhanced antitumor CTL responses associated with production of Th1 cells. This indicates a potential role of DC-TuLy vaccines for induction of active immunity in patients with advanced RCC.

INTRODUCTION

RCC affects ~30,000 Americans per year (1, 2). Thirty % of patients have metastases at the time of diagnosis, and the prognosis is very poor, with a 1-year survival rate of 26%. Although a change in the natural history can be obtained by immunotherapy, e.g., IL-2 administration or autoadaptive cellular infusion, the durable response rate is <20% (3, 4). Current treatment modalities lack specificity and are associated with significant toxicity (5). Innovative treatment options, therefore, are paramount.

DCs are the most potent cells for antigen presentation, are critical for eliciting T cell-mediated immune responses, and have initiated new directions for the treatment of cancer (6). The premise behind this approach is that DCs can be isolated from patients’ blood, armed with tumor antigens, and subsequently used to induce a specific antitumor response (7, 8). Recently, several human Phase I trials have been initiated using peptide/protein-loaded DCs, and in different metastatic tumors, promising results have been obtained, without significant side effects from the vaccinations (9–11). It is known that a defective immune response exists in patients with advanced cancer (12, 13). Although factors that contribute to tumor immunological escape are not well elucidated, inadequate presentation of tumor antigens by host APCs is one of potential mechanisms that renders a tumor progression (14). To activate T-cell mediated antitumor activity, APCs must be capable of processing tumor-associated antigens, present them in the context of MHC class I or II molecules, and provide costimulatory molecules (B7-1/B7-2) to interact with the T cell (15). The recent finding that mature DCs isolated from RCC tumors had a reduced capability...
of capturing soluble antigens indicate a close relationship between immunosuppression and defective DCs in situ (16). This hypothesis is further supported by the study demonstrating that pretreatment of DCs with transforming growth factor-β, a tumor-derived growth factor, could impair their antigen-presenting function (17). Lack of B7-1 and B7-2 expression by tumor cells was recently identified as an immunosuppressive factor that could block early stages of DC maturation from precursors (19). Therefore, the failure of RCC patients to elicit an antitumor response in situ, despite the presence of TILs and DCs, suggests that the antigen presentation system in situ in tumors is functionally suppressed.

The epidemiological correlation between the number of tumor-infiltrating DCs and survival (20, 21) further indicates that activation of DCs within the tumor site may be particularly important in the induction of a cellular immune response.

In this study, therefore, we investigated the feasibility to generate functional DCs from PB-derived macrophages/monocytes (CD14⁺) of patients with metastatic RCC. Because tumor growth is mainly regulated by the local immune status and, therefore, TILs, with their lack of immunoreactivity (22–24), reflect the tumor-host interaction more accurately than PBLs, we used the TIL culture system to test the tumor-specific immune response of these DCs. Via the stimulation of these TIL cultures by autologous TuLy loaded DCs combined with IL-2 (20 BRMP units/ml), we attempted to elucidate TILs under immunosuppressive conditions by reestablishing an accurate antigen-presenting system in culture.

MATERIALS AND METHODS

Generation of DCs from PBLS. We adopted a technique for the culture of DCs previously described by Romani et al. (7), with slight modifications (25). Briefly, PBMCs were isolated from PB of patients with RCC by a Ficoll-Hypaque gradient centrifugation (Pharmacia Biotech, Alameda, CA). Cells were resuspended in culture medium, either RPMI 1640 (BioWhittaker, Walkersville, MD) or AIM-V (Life Technologies, Inc., Gaithersburg, MD) supplemented with different concentrations of heat-inactivated human type AB or autologous serum (0, 1, 5, or 10%), 0.01 M N-2-hydroxyethylpiperazine-N'-ethanesulfonic acid buffer, and penicillin-streptomycin (50 units/ml; ICN Biomedical, Irvine, CA). Cells were plated in 25-cm² cultured flasks at 2.5 × 10⁶–5 × 10⁶ cells/ml. The cells were subsequently incubated at 37°C for 90–120 min, after which the nonadherent cells were removed with several gentle washes. Adherent cells were incubated at 37°C in complete medium supplemented with 800 units/ml human recombinant GM-CSF (Genetics Institute, Boston, MA) and 1000 units/ml human recombinant IL-4 (R&D Systems, Minneapolis, MN). After 7 days in culture, all free or loosely adherent cells were collected by vigorous rinsing. This resulted in a heterogeneous cell population containing DCs, B cells, T cells, and NK cells. DCs were further purified by negative depletion. The cell pellet was incubated for 30 min at 4°C with azide-free monoclonal anti-CD19, anti-CD3, and anti-CD56 antibodies (all from Immunotech, Westbrook, ME) at concentrations of 1 × 10⁶ cells per 2 μl of each. Antibody-labeled cells were removed using magnetic beads coated with goat antimouse IgG (Dynal, Lake Success, NY). To test the purity of the DCs, we also depleted these cells with anti-CD14 (Immunotech).

FACS Analysis. The phenotypic expression of DCs or TILs was determined by two-color fluorescence. Cells (5 × 10⁶) were resuspended in 50 μl of buffer (PBS, 2% newborn calf serum, and 0.1% sodium azide) and incubated with 10 μl of appropriate FITC- or PE-labeled mAbs for 30 min at 4°C. After incubation, the cells were washed twice and resuspended in 0.5 ml of assay buffer. The fluorescence was analyzed by a FACScan II flow cytometer (Immunocytometry System; Becton Dickinson, Mountain View, CA). Five thousand to 30,000 events were acquired for each sample using the FACScan Research Software that simultaneously acquires forward scatter, side scatter, FL1 (FITC label), and FL2 (PE label) data. The settings for all of these parameters were optimized at the initiation of the study and maintained constant during all subsequent analyses. Anti-HLA-DR (Immunocytometry System; Becton Dickinson), anti-HLA class I (W6/32, ATCC HB95), anti-CD14, anti-CD80 (B7-1; Caltag Laboratories, South San Francisco, CA), anti-CD86 (B7-2; PharMingen, San Diego, CA), anti-CD40 (Immunotech), and isotype control IgG1/IgG2a (Becton Dickinson) were used for characterization of DC phenotype. Anti-CD3, anti-CD56, anti-CD4, anti-CD8, anti-TcR (TcR-α/β), and control IgG1/IgG2a (Becton Dickinson) were used for characterization of the TIL phenotype.

Antigen Presentation Assay. Functional DCs were further defined by strong T-cell proliferative response to TT-pulsed DCs. From one of the patients, DCs were cultured, and from this same patient, T cells were purified. Briefly, TT-pulsed DCs or nonpulsed DCs were plated in triplicates in 96-well round-bottomed plates at concentrations of 1 × 10⁴, 2.5 × 10⁴, and 1 × 10⁵ cells per well per 100 μl of culture medium. Purified autologous T cells were then added to the wells at DC:T cell ratios of 1:10, 1:40, and 1:100, respectively. Cells were incubated for 6 days and pulsed with 1 μCi of [³H]thymidine (DuPont-NEN, Boston, MA) for an additional 24 h before harvesting (PhD Cell Harvester; Cambridge Technology, Cambridge, MA). The incorporated [³H]thymidine was measured by liquid scintillation counting. Results are shown as mean cpm of triplicates.

TuLy Pulsing of DC. RCC TuLy was prepared from 0–1–passage primary cell culture lines. Cells (5 × 10⁶) were harvested and resuspended in 200 μl of serum-free medium and were subjected to three freeze (dry ice)–thaw (37°C) cycles to obtain the crude lysate. The protein concentration of TuLy was determined by a protein assay (Bio-Rad DC₆, Protein Assay; Bio-Rad, Hercules, CA). TuLy delivery was carried out by incubating freshly cultured DCs with a mixture of TuLy and liposomes at a concentration of 30 μg of TuLy per 10⁶ DC. The liposomes (RPR GenCell, Palo Alto, CA) contain dimethyl-dioctadecyl-ammonium bromide (DDAB; cationic lipid) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE; neutral lipid) in a 1:1 molar ratio. The TuLy was first mixed with liposomes at 1.5 μg DDAB per 10⁶ cells. After incubation, the cells were washed twice and resuspended in 0.5 ml of assay buffer. The fluorescence was analyzed by a FACScan II flow cytometer (Immunocytometry System; Becton Dickinson, Mountain View, CA). Five thousand to 30,000 events were acquired for each sample using the FACScan Research Software that simultaneously acquires forward scatter, side scatter, FL1 (FITC label), and FL2 (PE label) data. The settings for all of these parameters were optimized at the initiation of the study and maintained constant during all subsequent analyses. Anti-HLA-DR (Immunocytometry System; Becton Dickinson), anti-HLA class I (W6/32, ATCC HB95), anti-CD14, anti-CD80 (B7-1; Caltag Laboratories, South San Francisco, CA), anti-CD86 (B7-2; PharMingen, San Diego, CA), anti-CD40 (Immunotech), and isotype control IgG1/IgG2a (Becton Dickinson) were used for characterization of DC phenotype. Anti-CD3, anti-CD56, anti-CD4, anti-CD8, anti-TcR (TcR-α/β), and control IgG1/IgG2a (Becton Dickinson) were used for characterization of the TIL phenotype.
37°C and 5% CO₂ for 1 h. TuLy-pulsed DCs were extensively washed and then irradiated (3000 rad) before being used or stored at −80°C.

Cultures of TILs. Resected RCC tumors were immediately dissected under sterile conditions. The tumors were enzymatically digested by overnight stirring in sterile RPMI containing collagenase (type IV, 0.1%), hyaluronidase (type V, 0.01%), and DNase (type I, 0.002%; Sigma Chemical Co., St. Louis, MO). After Ficoll-Hypaque density gradient centrifugation (LSM, Organon Teknika, Durham, NC), the tumor-lymphocyte mixture was washed and seeded at concentration of 0.5 × 10⁶ cells/ml in culture plates supplemented with 20 units/ml (= 60 IU/ml) of recombinant IL-2 (Hoffman-La Roche, Inc., Nutley, NJ). TILs were stimulated with autologous TuLy-pulsed DCs (DC:TIL = 1:10) or TuLy alone twice weekly, 10−14 days after start of the TIL culture. Cell counts were performed every 5−7 days. Cells were split back to 5 × 10⁵ cells/ml after each cell count. TIL expansion was calculated by multiplying each expansion index (E.I. = (cell counts per ml)/(5 × 10⁵ per ml)). The cell concentration was readjusted with fresh IL-2-containing complete medium.

Capture of CD8⁺ TILs. The autologous CD8⁺ TILs were enriched from early cultures (day 10−14) of bulk TILs by positive selection with a anti-CD8 mAb-coated culture flasks (CD8-CELLector; AIS Inc, Menlo Park, CA), and the purity of CD8⁺ cells was confirmed by flow cytometry analyses.

Cytotoxicity Assays. To enhance the detection of T cell-mediated cytotoxicity, the cytolytic activity of TILs was assayed for different target cells in a prolonged ⁵¹Cr release assay (18 h), as described previously (26). The assay was carried out in U-bottomed, 96-well microtiter plates. Target cells were prepared by incubating cells at 37°C for 1 h in the presence of 250 µCi of ⁵¹Cr:sodium chromate/10⁶ cells, washed four times, and counted. Five thousand target cells per well were mixed with TILs to yield several E:T ratios (40:1, 20:1, 10:1, and 5:1) and incubated for 18 h. Specific release of ⁵¹Cr was calculated by [specific ⁵¹Cr release = [(experimental counts − spontaneous counts)/(maximal counts − spontaneous counts)] × 100%]. To determine whether tumor lysis was T cell mediated, a blocking assay was performed in which TILs were pretreated with anti-CD3 or isotype control antibody for 30 min at 4°C prior to addition of cells to the cytotoxicity culture plates. Spontaneous release of tumor targets was <25%.

Quantitative PCR Analysis. Total RNA was extracted from cultured TILs 24 and 48 h after tumor restimulation by acid guanidine isothiocyanate-phenol-chloroform extraction. Reverse transcription of mRNA to cDNA was performed by incubation of 2 µg of RNA with avian myeloblastosis virus reverse transcriptase using a oligo(dT) primer, dNTPs, and RNase inhibitor for 1 h at 42°C (cDNA Synthesis Kit; Boehringer-Mannheim Biochemica, Indianapolis, IN). One µl of each cDNA sample was amplified by PCR in a total volume of 25 µl using the specific primers against the cytokines IFN-γ, GM-CSF, TNF-α, IL-4, IL-6, and IL-10. The PCR mixtures were then amplified by undergoing 25 cycles in a DNA Thermocycler (Perkin-Elmer Corp., Norwalk, CT). Each cycle consisted of denaturation at 94°C for 1 min and annealing/extension at 65°C for 2 min. The ³²P-labeled PCR products were visualized directly by acrylamide gel electrophoresis and autoradiography and then quantitated by excision of bands and subsequent scintillation counting. The signal intensity of each amplified product was calibrated to its corresponding β-actin mRNA expression as internal control for quantitation of expression levels. In addition, quantitative analysis was further elucidated by a serial dilution of mRNA (1:3, 1:10, 1:30, and 1:300) and coamplification of β-actin and cytokine mRNA.

RESULTS

Serum- and Cytokine-dependent Generation of DCs. During the period of the RCC study, blood was taken from 14 patients, and DCs were cultured. In one of the patients, the cultivation was unsuccessful because of contamination. With the addition of GM-CSF (800 units/ml) and IL-4 (1000 units/ml) in human AB serum containing RPMI medium, we were able to generate 1.2 × 10⁶ (± 0.3 × 10⁶) purified DCs from every 10 ml of PB, which corresponds to 5−12% of the PBMCs. We obtained more than 95% purity of DCs, as characterized by phenotypic analysis (as previously described by our group; Ref. 25). The number of cells remained the same after negative depletion with anti-CD14, which proved at least a >95% CD14 negative population. The number of obtained DCs was lower (0.9 × 10⁶ ± 0.4 × 10⁶) when we used autologous serum. A representative phenotype of DCs derived from patients with RCC is presented in Fig. 1. FACS analyses revealed that DCs cultivated in RPMI plus 10% autologous serum supplemented with GM-CSF and IL-4 express high levels of B7-2 (Fig. 2b; MRLFI = 2912), B7-1 (MRLFI = 1669), HLA-DR (MRLFI = 7870), HLA class
I (MRLFI = 4120), and CD40 (MRLFI = 504). However, the CD14 expression on the cells was negative (MRLFI = 91). In addition, the cultured cells did not express lineage-specific markers for T (CD3), B (CD19), or NK (CD56) cells (data not shown). In contrast, DC cultivation in serum-free medium (AIM V) led to a relatively high percentage of CD14-expressing cells with reduced expression of B7-2 (Fig. 2, a, e, and f). Serum dependence of CD14 differentiation into DCs was further confirmed by the phenotype of cells generated in RPMI containing a reduced percentage of serum. An increase percentage of CD14 cells with low expression of B7-2 was detected when only 5% or no serum was used (Fig. 2, c and d). Unlike DCs generated in RPMI, failure of generation of APCs in AIM V medium cannot be rescued by supplementing of AIM V medium with serum. In our DC culture technique, the observation of serum- and medium-dependent generation of DC is consistent in several healthy donors (n = 3) and RCC patients (n = 2).

Cytokine-cultured DCs Derived from PB of RCC Patients Are APCs. To further characterize the function of antigen presentation by DC obtained under different culture conditions in our system, we determined their capability to induce proliferation of patients’ memory T cells in vitro against TT presented by autologous DCs. The highest T-cell proliferative response (35,000 cpm) was detected in T-cell cultures stimulated with DC that had been derived from GM-CSF plus IL-4 cultures, at a ratio of 1:10 (DCs:T cells). On the other hand, DCs cultured with GM-CSF alone exhibited a reduced stimulatory effect (12,500 cpm). No stimulatory effect was observed when nonloaded DCs or free TT was added (Fig. 3). To demonstrate antigen processing capacity by the cytokine-cultured DCs, we further compared the levels of HLA antigen expression in DC before and after liposome-mediated loading of RCC TuLy that was prepared from autologous tumor cells. Compared to nonloaded DCs, an enhanced HLA class I antigen expression was determined in DCs loaded with crude TuLy (MRLFI = 6834 versus 4120; Fig. 4), whereas HLA class II retained its high level of expression (MRLFI = 7870 versus 6825). No significant increase of expression of HLA I was observed when the DCs were loaded with liposomes without TuLy (MRLF = 4855 versus 4120).

Fig. 2 Double-color flow cytometric analysis of cytokine cultured dendritic cells (GM-CSF + IL-4) grown in AIM V (serum free; a), RPMI + 10% autologous serum (b), RPMI + 5% autologous serum (c), RPMI alone (d), AIM V + 5% autologous serum (e), and AIM V + 10% autologous serum (f). Cells were labeled with FITC- and PE-conjugated antibodies (FL1-H and FL2-H, respectively) against cell surface markers of DCs, as indicated.

Fig. 3 Antigen presentation by DC cultures. DCs were loaded with TT protein (TT; 40 μg/ml). Following an overnight incubation period, the loaded DCs were added to purified autologous T cells (1 × 10⁶ cells/well) at the ratios indicated. Cells were incubated for 6 days and pulsed with 0.1 μCi of [³H]thymidine for an additional 24 h before harvesting. The proliferative response was measured as a function of thymidine uptake. Data points, means of three triplicates; bars, SD.

Fig. 4 Flow cytometric analysis of HLA antigens of DCs before and after loading of RCC TuLy. Cells were labeled with primary antibody (HLA class I or HLA class II) and FITC-conjugated secondary antibody. This analysis is representative of four different DCs derived from four RCC patients.
DC-mediated Growth Expansion of Autologous TILs.
The induction of cellular immunity appears to be a crucial step for the development of antitumor activity. To evaluate the efficacy of RCC tumor vaccination using unfractionated autologous TuLy presented by DCs, we examined the ability of autologous TuLy-loaded DCs to stimulate a cellular immune response in RCC-derived TILs. When autologous DCs were loaded with RCC TuLy (DC: TIL = 1:10), which were cultured in low-dose IL-2 (20 BRMP units/ml), an enhanced growth expansion of TILs was observed in the four patients tested, compared to cultures stimulated with TuLy (mean = 22.3 ± 6.2 versus 9.2 ± 3.1).

Table 1 Phenotypic modulation of TILs by DCs loaded with renal TuLy.*

<table>
<thead>
<tr>
<th>Specific mAb</th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>Patient 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3 CD56-</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>CD3 CD56+</td>
<td>48</td>
<td>31</td>
<td>82</td>
<td>14</td>
</tr>
<tr>
<td>CD3 CD56+</td>
<td>25</td>
<td>4</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>CD3 CD4+</td>
<td>4</td>
<td>11</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>CD3 CD8+</td>
<td>3</td>
<td>1</td>
<td>23</td>
<td>63</td>
</tr>
<tr>
<td>CD3 TcR+</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>CD4 CD8+</td>
<td>30</td>
<td>44</td>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>

*Values are percentages of TILs that are positive for a specific marker used in the cell staining. The cytometry analysis gates TILs based on their size and granularity. Isotype controls y1/2 were used to prove that the specific mAbs are not binding nonspecifically to TILs in the preparation. All TILs were grown in the presence of 20 BRMP units/ml IL-2. Culture stimulation was performed on days 7 and 14.

DC-mediated Phenotypic Modulation of Patient Immune Cells. To identify which subsets of TILs were regulated by DC stimulation, we compared the phenotype of TILs stimulated with and without RCC TuLy-loaded DCs by FACS analysis. Compared to TILs stimulated with TuLy in the presence of low-dose IL-2 (20 BRMP units/ml), all four TIL cultures stimulated with DC-TuLy exhibited a decreased percentage of the CD3^-CD56^- cell population (31, 14, 18, and 3% versus 48, 82, 40, and 15%, respectively), whereas an increased percentage of CD3^-CD56+ cell population (46, 76, 75, and 80% versus 32, 23, 53, and 48%, respectively) with a predominant increase in the CD3^-CD4+ cell population (46, 11, 63, and 66% versus 25, 3, 23, and 11%, respectively) was determined. A significant increased percentage of CD3^-CD8+ cell population, however, was only observed in one of four TIL cultures (Patient 2, 56% versus 11%). An increase of TcR-positive cells was also determined in all DC-TuLy-induced TILs, compared to non-DC-stimulated cultures (44, 28, 76, and 76% versus 30, 2, 64, and 43%, respectively; Table 1). Because CD3^-CD4+ cells were up-regulated by DC-TuLy, we asked, furthermore, whether DC-TuLy has any phenotypic effect on CD8+ cells. In these experiments, we used prepurified (>95%) CD8+ TILs for DC-TuLy stimulation. In comparison to cultures stimulated with TuLy, not only was a significant growth expan-
Dendritic Cells in Renal Cell Carcinoma

Table 2 Phenotypic modulation of purified CD8+ TILs by dendritic cells loaded with renal TuLy

<table>
<thead>
<tr>
<th>Specific mAb</th>
<th>Patient 1</th>
<th>Patient 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TuLy DC-TuLy</td>
<td>TuLy DC-TuLy</td>
</tr>
<tr>
<td>CD3+ CD56+</td>
<td>89 88</td>
<td>95 97</td>
</tr>
<tr>
<td>CD3+ CD56+</td>
<td>0 0</td>
<td>1 1</td>
</tr>
<tr>
<td>CD3+ CD56+</td>
<td>0 0</td>
<td>1 1</td>
</tr>
<tr>
<td>CD3+ CD4+</td>
<td>78 66</td>
<td>97 77</td>
</tr>
<tr>
<td>CD3+ CD8+</td>
<td>1 17</td>
<td>1 13</td>
</tr>
<tr>
<td>CD3+ TcR+</td>
<td>30 73</td>
<td>82 81</td>
</tr>
</tbody>
</table>

*Values are percentages of TILs that are positive for a specific mAb used in the cell staining. TILs were grown in IL-2 for 1 week prior to CD8+ purification. Culture stimulation was performed on days 9 and 16.

DISCUSSION

DCs play an important role in the immune system network as the most potent APCs (6). This unique function provides a fundamental concept and rationale for clinical applications in the treatment of patients with advanced cancer. Efficacy of peptide-pulsed DCs as APCs for the induction of antigen-specific CTLs in vivo has been demonstrated in a series of animal experiments using in vitro cultivated and cytokine-treated DCs (27–29). Experiments described in our research project provide evidence for a potent kidney cancer vaccine that may be generated using autologous TuLy-loaded DCs induced from adherent PBMCs using GM-CSF and IL-4. To develop a DC-based immunotherapy for the treatment of patients with RCC, we tried to optimize the DC culture technique suitable for clinical use. In our DC culture technique, the use of serum-free medium (RPMI or AIM V) was not suitable because it obtained a heterogeneous cell population with a significant number of CD14+ macrophages with a low B7-2 expression, a phenotype that is correlated with a lack of antigen uptake capacity and presenting function. Moreover, only with RPMI and 10% autologous serum were we able to generate adequate DCs from CD14+ progenitor cells (macrophage/monocytes; Fig. 1). A dose-dependent DC maturation by serum was only observed when DCs were cultured in RPMI medium but not in AIM V medium (Fig. 2). This medium- and serum-dependent DC maturation is obligatory in our culture technique in which, after the adherent step, the nonadherent cells are gently rinsed off and a significant number of lymphocytes are still present during the 7-day culture with IL-4 and GM-CSF. The combination of autologous serum and the presence of a small number of lymphocytes provide an adequate environment for monocytes to mature into potent APCs.

Finally, although GM-CSF is a crucial mediator of DC maturation and function, this method of DC maturation was also IL-4 dependent. In particular, the characteristic APC phenotype and function could only be demonstrated for DCs grown in the presence of both GM-CSF and IL-4 (Figs. 1 and 3).

In human RCC, T cell-defined epitopes have not yet been identified. Therefore, the use of TuLy as a source of tumor antigen is an attractive approach because it circumvents the requirement of identifying tumor-specific antigens (6, 30). The use of DCs loaded with tumor lysates has been explored in other tumors such as prostate carcinoma and sarcoma, and a T-cell proliferation was observed in vitro (31, 32). Moreover, mice vaccinated with DCs pulsed with unfractionated tumor peptides showed a reduced growth of s.c. established, weakly immunogenic tumors (33). The use of unfractionated tumor proteins, compared to a single peptide-loaded DC vaccination strategy,
may have advantages, although these advantages are still hypothetical. (a) Multiantigens loaded DCs may be able to present undefined but important epitopes, whereas approaches that use peptide-pulsed DCs require that the peptide is clearly defined. Therefore, multiantigen-loaded DCs are more likely to give multiple clonal expansion of T cells, which might have an enhanced antitumor effect. This effect has been shown in several human neoplasms, which have the capacity to elicit multiple specific immune responses in the autologous host (34). (b) Peptides processed by the DC from the unfractionated tumor proteins will mainly be presented in a MHC class II manner, inducing a CD4+ T-cell proliferation (32). Especially the induction of these T-helper 1 (Th1) cells has a proven stimulatory effect on the function of the DCs to induce CTLs (35, 36). Th1 cells express CD40L on the surface, which ligates to the CD40 expressed on DC and subsequently triggers the DC to produce extremely high levels of bioactive IL-12, a cytokine known to have a proliferative effect on CTL and an enhancement of the antigen-presenting function of the DC (35–37). Also other cytokines released by Th1 cells may give an environment neces-

Fig. 6 Cytotoxicity of TILs against autologous (a) and allogeneic (b) RCC tumor targets. Cytotoxicity activity of TILs was determined by 18-h 51Cr release assay that contained a titrated E:T ratio of 40:1, 20:1, 10:1, and 5:1. TILs were treated with two cycles of DC stimulation prior to assay. Spontaneous lysis for tumor target (5000 cells) was <25% of maximum lysis. ■, DC-TuLy-/IL-2-stimulated TILs; ●, IL-2-stimulated TILs.
Dendritic Cells in Renal Cell Carcinoma

sary for further maturation of DCs. This may be similar to the
effect accomplished by a recently described so-called mono-
cyte-conditioned medium, which generates fully mature and
stable DCs (38, 39). In our study protocol liposomes are used to
load the TuLy on the DCs. Therefore, although, in general, the
crude tumor extract-loaded DCs (surface-linked antigen) will
lead to an MHC class II-restricted antigen presentation to CD4
+ T, the cytoplasmic delivery of liposome-encapsulated antigen
from an endocytic compartment allows the exogenous antigen to
gain access to the class I presentation pathway (40, 41). Indeed,
an up-regulation of HLA class I expression was detected in
liposomal TuLy-loaded DCs compared to nonloaded DCs,
whereas the high expression of HLA class II was sustained (Fig.
4). This suggests that the liposome-mediated antigen presenta-
tion in current preparations may occur via both HLA class I and
class II pathways. Compared to non-DC stimulation, a down-
regulation of NK cells with up-regulation of CD3+CD8+ was
observed in all four DC-stimulated TIL cultures, which render a
positive shift in the CD4+CD8+ ratio (Table 1). The TILs of
patient 2, in which a significant outgrowth of CD3+CD8+ cells
was observed, are one exception. Even in the purified CD8+
cells, this positive shift in the CD4+CD8+ ratio could be
observed. In our in vitro studies, RCC-specific cytotoxicity was
detected in all cultures (Fig. 6). TILs grown in low-dose IL-2
expressed reduced cytotoxicity against autologous tumors com-
pared to TIL costimulation with DC-TuLy. The addition of
TuLy did not increase the cytotoxicity, suggesting a lack of
activated APCs in the TIL culture. The demonstration of a lower
cytotoxicity for both autologous and allogeneic tumor targets
(Fig. 6, a and b) in non-DC-cultured TILs further implicates a
loss of cytotoxic T-cell growth in IL-2 alone, without DC
stimulation. It appears that DC-TuLy-induced TILs do not rep-
sent single CTL clones because the phenotypic analysis re-
vealed a heterogeneous cell population in the cultures. Also the
cytokine profile of the restimulated TILs show patterns which
correlates with tumor-specific lysis capacity of T cells (TNF-
α and IFN-γ). Most likely, these cells represent multiple clones
induced by multiantigens presented by DCs using unfraction-
ated crude TuLy (Table 1, Fig. 8). In general, however, most of
the autologous tumor lytic killing capacity of the DC-TuLy-
stimulated TILs appeared to be cellular immunity mediated, as
demonstrated by an almost complete disappearance of this ca-
pacity with anti-CD3 blocking (Fig. 7).

In summary, from the PB of patients with advanced RCC,
we were able to obtain a significant number of DCs with an in
vitro GM-CSF-IL-4-based culture technique suitable for clini-
cal use. These cells have a profound morphological and pheno-
typic entity and a functional capacity characteristic for potent
APCs. When loaded with unfractionated tumor proteins using
liposomes, these cells were able to induce, from TILs obtained
from RCC tissue, a CTL with high autologous tumor cell-killing
capability. On the basis of the results obtained from this study, we
proposed a DC-based vaccination strategy in patients with ad-
vanced RCC. At present such a trial (Investigational New Drug application no. 7121) has been designed and is ongoing at our institution.

ACKNOWLEDGMENTS

We thank Negoita Neagos for FACS analysis and Ramilla Philip (RPR GenCell) for general support.

REFERENCES

35. Koch, F., Stanzl, U., Jennewein, P., Janke, K., Heufler, C., Kampgen, E., Romani, N., and Schuler, G. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 mol-
Presentation of Renal Tumor Antigens by Human Dendritic Cells Activates Tumor-infiltrating Lymphocytes against Autologous Tumor: Implications for Live Kidney Cancer Vaccines

Peter Mulders, Cho-Lea Tso, Barbara Gitlitz, et al.

Updated version Access the most recent version of this article at: http://clincancerres.aacrjournals.org/content/5/2/445

Cited articles This article cites 37 articles, 14 of which you can access for free at: http://clincancerres.aacrjournals.org/content/5/2/445.full#ref-list-1

Citing articles This article has been cited by 8 HighWire-hosted articles. Access the articles at: http://clincancerres.aacrjournals.org/content/5/2/445.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/5/2/445. Click on "Request Permissions" which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.