Paclitaxel Steady-State Plasma Concentration as a Determinant of Disease Outcome and Toxicity in Lung Cancer Patients Treated with Paclitaxel and Cisplatin

Eric K. Rowinsky, Michaell Jiroutek, Philip Bonomi, David Johnson, and Sharyn D. Baker

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked

ABSTRACT

The principal purpose of this study was to evaluate relationships between paclitaxel plasma steady-state concentration (Css) and both disease outcome and toxicity in patients with non-small cell lung cancer (NSCLC) treated with paclitaxel and cisplatin in an Eastern Cooperative Oncology Group (ECOG) Phase III study E5592. Chemotherapy-naive patients with stage IIIb and IV NSCLC were randomized to treatment with either 75 mg/m² cisplatin i.v. on day 1 and 100 mg/m² etoposide i.v. on days 1–3 (EC arm) or 75 mg/m² cisplatin i.v. combined with either a low dose of paclitaxel (135 mg/m², 24-h i.v. infusion; PC arm) or a higher dose of paclitaxel (250 mg/m² i.v., 24-h i.v. infusion) with granulocyte colony-stimulating factor (PCG arm). End-of-24-h-infusion paclitaxel concentrations, which have been demonstrated to be nearly equal to Css on this schedule, were obtained during the first and second courses in patients on the PC and PCG arms. Relationships between the average paclitaxel Css (Css,avg) and the best response to treatment, time to treatment failure (TTF), survival, and worst grade of leukopenia and neurotoxicity were evaluated by univariate analysis. A multivariate model was used to assess the influence of paclitaxel Css in conjunction with other potentially relevant patient variables that may affect disease outcome, including the paclitaxel treatment arm, age, sex, performance status, weight loss during the previous 6 months, and disease stage. Paclitaxel Css in both courses 1 and 2 were obtained in 71 patients treated with PC and 75 patients treated with PCG. Although Ccss,avg in patients treated with PC and PCG were significantly different (median, 0.32 versus 0.81 µmol/liter; P < 0.0001), response rates were not (33.8 versus 26.7%; P = 0.3719). In addition, there were no differences between the PC and PCG arms in TTF (median, 5.1 versus 5.5 months, P = 0.6201) or survival (median, 11.6 versus 11.3 months, P = 0.7173). Combined analysis of paclitaxel concentrations from both treatment arms revealed no significant difference in paclitaxel Ccss,avg between responders and nonresponders [median, 0.40 (range, 0.11–1.6) versus 0.55 (range, 0.11–3.6)], and Ccss,avg were similar in patients segregated according to whether they had a complete response, partial response, stable disease, or progressive disease as their best response to treatment (P = 0.7612). In addition, the relationship between Ccss,avg and TTF was weak (r² = 0.00003, P = 0.94), as was the relationship between Ccss,avg and survival (P = 0.1267). With regard to the principal toxicities, neither the propensity to develop neuromuscular and neurosensory toxicity nor the worst grade of these adverse effects were related to Ccss,avg (P = 0.5000 and 0.2033, respectively); however, the relationship between Ccss,avg and the worst grade of leukopenia experienced was marginally significant (P = 0.0796). In a multivariate model, neither the combined effect of relevant demographic and stratification variables nor paclitaxel Ccss,avg predicted for either response (P = 0.1544) or TTF (P = 0.2574), whereas the combined effect of all covariates predicted for survival (P = 0.0249). With regard to individual covariates, a lower disease stage (stage IIIb) was the only significant positive determinant of response (P = 0.0173), female sex was the only significant favorable predictor for TTF (P = 0.0195), and a lower ECOG performance status (= 0) was the only significant positive determinant of survival (P = 0.0121) in the multivariate model. In summary, paclitaxel Ccss,avg was not a determinant of response, TTF, or survival in patients with advanced NSCLC treated with paclitaxel as a 24-h i.v. infusion combined with cisplatin. On the basis of both the clinical and pharmacodynamic results of E5592, there is no compelling reason to treat patients with advanced NSCLC with paclitaxel on a 24-h i.v. schedule at doses of >135 mg/m² in combination with cisplatin, although higher doses are associated with higher paclitaxel Css.

INTRODUCTION

Paclitaxel has become one of the most commonly used anticancer agents due to its broad spectrum of antitumor activity and high therapeutic indices in many clinical settings (1). Still, as with many other anticancer agents, clinical and pharmacoki-
netic determinants of therapeutic outcome with paclitaxel have not been identified. In addition, there has been substantial interindividual variability in therapeutic outcome in practically all clinical settings in which paclitaxel has demonstrated utility, despite the fact that patients have been similar with respect to tumor type, extent of prior therapy, and sensitivity to prior chemotherapy.

The identification of pharmacological determinants of drug effect may enhance the therapeutic index of any anticancer agent. For example, the clearance rates of methotrexate, teniposide, and cytarabine appear to be principal determinants of therapeutic outcome in childhood acute lymphocytic leukemia (2). Furthermore, the results of prospective evaluation suggests that therapeutic monitoring of the plasma concentrations of these agents and “real time” adaptive dosing may lead to improved outcome (2). For carboplatin, retrospective analyses of therapeutic and toxicological results in both untreated and previously treated women with ovarian cancer have indicated that plasma AUC may be an accurate determinant of both therapeutic outcome and toxicity (3, 4). Accordingly, the use of this determinant for carboplatin dosing has been incorporated into general clinical practice. Identifying pharmacokinetic determinants of drug effect may also lead to a greater understanding of the influence of dose and schedule on both disease outcome and toxicity in the clinic.

For paclitaxel, treatment duration appears to be the most important pharmacological determinant of drug effect in vitro (5–15). Prolonging the duration of drug exposure in vitro generally produces much greater cytotoxicity than increasing drug concentration, although paclitaxel concentration is also an important variable until a threshold level is exceeded (5–15). In clinical practice, the principal pharmacokinetic determinants of paclitaxel effect have not been determined prospectively; however, the influences of paclitaxel dose and schedule on clinical efficacy are being addressed in Phase III evaluations in many disease settings (16–22). In early clinical trials, the principal toxicities of the taxanes have been related to several pharmacokinetic parameters, including peak plasma concentration, plasma Cmax, AUC, and the duration that plasma concentrations exceed relevant threshold levels (23–30). For example, the results of several studies of paclitaxel on 3- and 24-h schedules have indicated that the severity of myelosuppression is related to the duration that plasma concentrations exceed 0.05–0.1 μmol/liter (23–27). In other studies, the severity of neuromuscular effects and mucositis has been demonstrated to correlate with AUC or Cmax (24, 25, 29–31).

Encouraged by the 1-year survival rates observed in single-agent trials of paclitaxel in patients with stage IIIb–IV NSCLC, ECOG designed a Phase III study (E5592) to evaluate the effect of paclitaxel on survival (19, 31). Chemotherapy-naive stage IIIb–IV NSCLC patients were randomized to treatment with 75 mg/m² cisplatin i.v. on day 2 preceded by 135 mg/m² paclitaxel over 24 h i.v. on day 1; PCG, 75 mg/m² i.v. cisplatin on day 2 preceded by 250 mg/m² paclitaxel i.v. over 24 h on day 1 plus 5 μg/kg G-CSF starting on day 3.

Table 1

| Patient demographic characteristics, stratification variables, paclitaxel Cmax, and disease outcome by treatment arm |
|---|---|---|
| No. of patients | 75 | 71 |
| Median age (range) | 60.9 (37.9–75.6) | 59.4 (39.8–76.3) |
| ECOG performance status (0:1) | 28:43 | 24:51 |
| Sex (male:female) | 47:24 | 47:28 |
| Weight loss (<5%:≥5%) | 56:15 | 54:21 |
| Disease stage (IIIb:IV) | 11:60 | 12:63 |
| Cmax (μmol/liter)b | 0.32 (0.12–2.7) | 0.81 (0.11–3.6) |
| TTF (months)b | 5.5 (1.4–27.0) | 5.1 (0.62–31.6) |
| Survival (months)b | 11.3 (2.4–32) | 11.6 (1.6–33) |

PATIENTS AND METHODS

Clinical Study Design

This study was performed in conjunction with an ECOG-sponsored Phase III trial in which the following combination chemotherapy regimens in patients

3 The abbreviations used are: AUC, area under the time versus concentration curve; NSCLC, non-small cell lung cancer; ECOG, Eastern Cooperative Oncology Group; G-CSF, granulocyte colony-stimulating factor; TTF, time to treatment failure; STD, stable disease; PD, progressive disease; CR, complete response; PR, partial response.
with stage IIIb and IV NSCLC were used: (a) 75 mg/m² cisplatin i.v. on day 2 preceded by 135 mg/m² paclitaxel as a 24-h i.v. infusion on day 1 (PC arm); (b) 75 mg/m² i.v. cisplatin on day 2 preceded by 250 mg/m² i.v. paclitaxel as a 24-h infusion on day 1 plus 5 mg/kg Filgrastim (G-CSF; Amgen, Thousand Oaks, CA) s.c. beginning on day 3 and continuing until the absolute neutrophil count was at least 10,000/μl (PCG arm); and (c) 75 mg/m² cisplatin i.v. on day 1 plus 100 mg/m² etoposide i.v. on days 1, 2, and 3 (EC arm). Each of the regimens was repeated every 3 weeks, providing toxicity was acceptable and there was no disease progression. Patients were stratified according to the following parameters: (a) ECOG performance status 0 versus 1; (b) <5% versus ≥5% weight loss during the previous 6 months; (c) stage IIIb versus stage IV disease; and (d) bidimensional measurable disease versus evaluable disease. Medical or interval histories, physical examinations, tumor measurements, and routine chemistry and electrolyte studies were performed before each course of treatment. Complete blood counts and differential WBC counts were performed at least weekly. Grading and tumor response were according to ECOG criteria (32).

Patient demographic, toxicity, response, and survival data were obtained from the ECOG statistical office using the central study database used for the principal analysis of the clinical study results (19).

Table 2 Numbers of patients and paclitaxel C_{ss} according to paclitaxel treatment arm

<table>
<thead>
<tr>
<th>Paclitaxel treatment arm</th>
<th>PC</th>
<th>PCG</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients randomized in ECOG study</td>
<td>559 (eligible and treated)</td>
<td>201 (187)</td>
<td>198 (190)</td>
</tr>
<tr>
<td>No. of patients with plasma samples in course 1</td>
<td>101</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Mean (SD) paclitaxel C_{ss} (μmol/liter)</td>
<td>0.44 ± 0.55</td>
<td>0.32 (0.10–4.63)</td>
<td>0.85 (0.15–4.53)</td>
</tr>
<tr>
<td>Median (range)</td>
<td>1.03 ± 0.69</td>
<td>78</td>
<td>87</td>
</tr>
<tr>
<td>No. of patients with plasma samples in course 2</td>
<td>78</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Mean (SD) paclitaxel C_{ss} (μmol/liter)</td>
<td>0.41 ± 0.56</td>
<td>0.25 (0.04–3.64)</td>
<td>0.91 ± 0.75</td>
</tr>
<tr>
<td>Median (range)</td>
<td>0.91 ± 0.56</td>
<td>87</td>
<td>75</td>
</tr>
<tr>
<td>No. of patients with plasma samples in courses 1 and 2</td>
<td>71</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Mean (SD) paclitaxel $C_{ss,avg}$ (μmol/liter)</td>
<td>0.44 ± 0.45</td>
<td>0.44 ± 0.45</td>
<td>0.94 ± 0.59</td>
</tr>
<tr>
<td>Median (range)</td>
<td>0.32 (0.12–3.70)</td>
<td>0.32 (0.12–3.70)</td>
<td>0.81 (0.11–3.60)</td>
</tr>
</tbody>
</table>

* Treatment arms: PC, 75 mg/m² i.v. cisplatin on day 2 preceded by 135 mg/m² paclitaxel over 24 h i.v. on day 1; PCG, 75 mg/m² i.v. cisplatin on day 2 preceded by 250 mg/m² i.v. paclitaxel over 24 h on day 1 plus G-CSF 5 μg/kg starting on day 3.

Paclitaxel Plasma Sampling and Analytical Assay.

Blood samples (7–10 ml) were collected in heparinized tubes from patients who were treated with paclitaxel during the last hour of the 24-h i.v. infusion of paclitaxel during the first and second courses of treatment. Treating physicians and their staff were instructed to centrifuge the samples immediately, store the plasma at −20°C, and ship the sample on dry ice to the central analytical pharmacology laboratory. Paclitaxel concentrations were measured by a high-performance liquid chromatography assay, as described previously (25). Using the mean kinetic parameters for paclitaxel disposition on the 24-h schedule, end-of-infusion paclitaxel concentrations have been demonstrated to be nearly equal, on average, to C_{ss}, using the formula derived by Weiss (33, 34). Paclitaxel C_{ss} exceeding 5 μmol/liter (five patients) were excluded from the analyses because they were mostly due to plasma sampling proximal to the drug infusion and represented more than three SDs above the mean C_{ss} in this and other studies that used identical paclitaxel dose schedules (23, 25, 27). In all of these subjects, paclitaxel C_{ss} were at least 8–596-fold higher than the paired sample.

Demographic and Outcome Comparisons: Univariate Analysis. Both nonparametric and parametric statistical tests were used to assess whether there were differences in relevant demographic characteristics or indices of outcome between patients in the low- and high-dose paclitaxel treatment arms (PC...
versus PCG arm). Descriptive statistics were used to describe relevant demographic characteristics, stratification variables, paclitaxel Css, and disease outcome parameters (mean, median, SD, and range). The paired t test was used to compare Css between courses 1 and 2 in those patients whom had matched pairs. The Fisher’s exact test was used to compare each of the following categorical parameters between the treatment arms: ECOG performance status (0 or 1), sex (male or female), weight loss (<5% or ≥5%) in the previous 6 months, disease stage (IIIb or IV), disease measurability (bidimensional or evaluable), response (STD/PR or CR/PR), and survival status (alive or dead). The Wilcoxon rank sums test was used to compare median values for the following data between the PC and PCG treatment arms: Css during course 1, Css during course 2, average Css for courses 1 and 2 (Css,avg), age, TTF [time from study arm randomization to the first evidence of treatment failure, death, or last follow-up evaluation (censored)], and survival (time from study arm randomization to the time of death or last follow-up, which was censored).

The Kruskal-Wallis Rank Sum test was used evaluate differences in paclitaxel Css during course 1, Css during course 2, and Css,avg in patients who achieved the following as their best responses to treatment with PC or PCG: CR, PR, STD, or SD, and range. The paired regression analyses. The logistic and phreg procedures in SAS (SAS Institute, Cary, NC) were used to assess the degree of association of paclitaxel treatment arm (PC versus PCG), Css,avg, age, ECOG performance status (0 versus 1), sex (male versus female), weight loss (<5% versus ≥5%), and stage (IIIb versus IV) with response, TTF, and survival (35, 36).

RESULTS

Plasma Sampling. The total numbers of patients who were randomized and received treatment in the PC, PCG, and EC arms of this study were 187, 190, and 194, respectively. Plasma sampling was performed and paclitaxel Css was determined in at least one course in 101 and 102 patients treated with PC and PCG, respectively, and in 71 and 75 patients treated with PC and PCG, respectively, during both courses 1 and 2. A paired analysis revealed no significant difference in Css between courses 1 and 2 (P = 0.6509).

Patient Demographics and Paclitaxel Css. Demographic characteristics and relevant parameters of disease outcome in patients who were treated with PC and PCG and had plasma sampling during both courses are depicted in Table 1. There were no significant differences between the PC and PCG arms with regard to age, ECOG performance status, disease stage, or weight loss. However, paclitaxel Css in courses 1 and 2 as well as Css,avg differed significantly between patients treated with the low- and high-dose paclitaxel regimens, as shown in Tables 1 and 2. The median (range) paclitaxel Css in course 1 were 0.32 μmol/liter (0.10–4.63 μmol/liter) and 0.85 μmol/liter (0.15–4.53 μmol/liter) in patients in the PC and PCG treatment arms, respectively (P < 0.0001), and corresponding values in course 2 were 0.25 μmol/liter (0.04–3.64 μmol/liter) and 0.75 μmol/liter (0.07–4.97 μmol/liter), respectively (P < 0.0001). Similarly, median (range) paclitaxel Css,avg in patients with plasma sampling performed during both courses 1 and 2 differed significantly between patients in the PC and PCG treatment arms [0.32 μmol/liter (0.12–3.70 μmol/liter) versus 0.81 μmol/liter (0.11–3.60 μmol/liter), P < 0.0001].

Relevant Disease Outcome Parameters: PC versus PCG. The major response (PR/CR) rates in patients treated in the PC and PCG arms in whom paclitaxel Css were measured during both courses and paclitaxel Css,avg could be calculated were 33.8 and 26.7%, respectively. Although paclitaxel Css,avg differed significantly between the PC and PCG arms, the difference in response rates was not significant (P = 0.3719). Similarly, there were no differences between the PC and PCG

Table 3 Multivariate analysis of the effects of patient demographics, stratification variables, and paclitaxel Css,avg on disease outcome

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Response</th>
<th>TTF</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.7051</td>
<td>0.4401</td>
<td>0.1791</td>
</tr>
<tr>
<td>Performance status</td>
<td>0.6564</td>
<td>0.8735</td>
<td>0.0121</td>
</tr>
<tr>
<td>Female sex</td>
<td>0.5901</td>
<td>0.0195</td>
<td>0.0798</td>
</tr>
<tr>
<td>Weight loss</td>
<td>0.9711</td>
<td>0.8906</td>
<td>0.5811</td>
</tr>
<tr>
<td>Disease stage</td>
<td>0.0173</td>
<td>0.0544</td>
<td>0.6016</td>
</tr>
<tr>
<td>Paclitaxel Css,avg</td>
<td>0.9971</td>
<td>0.9103</td>
<td>0.0971</td>
</tr>
<tr>
<td>Treatment arm</td>
<td>0.9288</td>
<td>0.7778</td>
<td>0.6416</td>
</tr>
<tr>
<td>All covariates</td>
<td>0.1544</td>
<td>0.2574</td>
<td>0.0249</td>
</tr>
</tbody>
</table>

Fig. 2 Scatterplot depicting TTF (months) as a function of paclitaxel Css,avg in patients in the PC and PCG treatment arms.
arms with regard to TTF (median, 5.5 versus 5.1 months, P = 0.6201) or survival (median, 11.3 versus 11.6 months, P = 0.7173).

Relationship between Paclitaxel Css and Disease Outcome. Relationships between paclitaxel Css and disease outcome were evaluated using univariate methods. There was no difference between responders (i.e., patients who had either CR or PR as their best response) and nonresponders (i.e., patients who had either STD or PD as their best response) in the magnitude of paclitaxel Css,avg [median, 0.40 μmol/liter (range, 0.16–1.6 μmol/liter) versus 0.55 μmol/liter (range, 0.11–3.6 μmol/liter), P = 0.15]. Median paclitaxel Css,avg.s were also similar in patients segregated according to whether they experienced CR, PR, STD, or PD as their best response (0.47, 0.39, 0.66, and 0.48 μmol/liter, respectively). Scatterplots depicting individual paclitaxel Css,avg.s according to categorical response are depicted in Fig. 1. The relationship between paclitaxel Css,avg and TTF was also evaluated. As shown in Fig. 2, this relationship was weak (r² = 0.00003, P = 0.94). The results are nearly identical if categorical response and TTF are related to paclitaxel Css achieved during either course 1 or course 2 (results not shown).

A multivariate analysis was performed to assess the effect of relevant demographic (age, performance status, and sex) and stratification variables (e.g., weight loss, disease stage, and paclitaxel-cisplatin treatment arm), and paclitaxel Css,avg on disease outcome (Table 3). The overall combined effect of all covariates in the model did not predict significantly for either response (P = 0.1544) or TTF (P = 0.2574), whereas the combined effect of all covariates predicted significantly for survival (P = 0.0249). Analysis of individual variables demonstrated that a lower disease stage (stage IIIb) was the only significant positive determinant of response (P = 0.0173), female sex was the only significant favorable predictor of TTF (P = 0.0195), and a lower ECOG performance status (0 = 0) was the only significant positive determinant of survival (P = 0.0121). Several of the covariates predicted marginally, albeit not significantly, for response [Css,avg (P = 0.0971)], longer TTF [stage IIIb (P = 0.0544)], and longer survival [female sex (P = 0.0798)].

Relationships between Paclitaxel Css and Toxicity. Scatterplots of paclitaxel Css,avg as a function of the highest grade of neuromotor toxicity, neurosensory toxicity, and leukopenia experienced by each patient are shown in Fig. 3. The magnitude of the paclitaxel Css,avg was not related to the propensity to experience neuromotor or neurosensory toxicities nor to the toxicity grade (P = 0.2033 and 0.5000, respectively). Although the relationship between paclitaxel Css,avg and grade of leukopenia approached a level of marginal statistical significance (P = 0.0796), further analysis using the Tukey-Kramer honestly significant difference test revealed a very low likelihood that any single one of the multiple paired comparisons was significant. Similar results were achieved when analyses were performed using paclitaxel Css achieved during either course 1 or course 2 (results not shown).

DISCUSSION

Paclitaxel is one of the most commonly used anticancer drugs due to its broad antitumor spectrum; however, similar to the situation with many other anticancer agents, patients with similar tumor types have vastly different disease outcomes and toxicity, and pharmacokinetic determinants of disease outcome have not been identified. E5592 has addressed several relevant issues regarding the role of paclitaxel as a component of first-line therapy in patients with advanced NSCLC (19). The study demonstrated that both 1-year and overall survival were improved significantly and response rates were significantly higher in patients treated with paclitaxel and cisplatin than the reference regimen of etoposide and cisplatin. E5592 also addressed whether there was a paclitaxel dose-response effect in patients treated with two dose levels of paclitaxel (135 and 250 mg/m²) administered as a 24-h i.v. infusion followed by 75 mg/m² cisplatin i.v. and demonstrated no differences in disease outcome. In addition, paclitaxel Css was measured to evaluate relationships between paclitaxel dose and Css and, more importantly, between paclitaxel Css and outcome.

Although the 146 patients in whom paclitaxel Css,avg.s were calculated represent a subset of the 398 patients entered on both paclitaxel arms, this subset was representative of the entire
group of patients. There sole requirement for including patients in the pharmacodynamic component of the study was plasma sampling at the end of both courses 1 and 2, which should not be influenced by either demographic or disease-related factors. In fact, comparisons of the distribution of demographic and disease-related variables (age, sex, weight loss, stage, and performance status) and principal study end points (response rate, TTF, and survival) revealed no differences between the 398 total patients entered on the PC and PCG arms and the subset of patients participating in the pharmacodynamic component of the study.4

The questions of whether plasma \(C_{ss} \) is an appropriate parameter to use for the pharmacodynamic analyses performed in this study and whether alternate pharmacokinetic parameters would yield disparate results must also be considered. Because the paclitaxel plasma concentration at the end of infusion has been demonstrated to be nearly equivalent to \(C_{ss} \) when paclitaxel is administered over 24 h, relationships between it and other pharmacokinetic parameters, such as AUC and duration of exposure to drugs at concentrations of \(>0.05–0.1 \mu \text{mol/liter} \), become stronger with more prolonged infusions (25–30, 33, 34). Another consideration in using paclitaxel \(C_{ss} \) for these studies was the feasibility of obtaining plasma samples during both courses 1 and 2 in a sufficiently large number of patients in a Phase III multicenter study. However, one potential pitfall in using \(C_{ss,avg} \) is that it is derived from the first two courses only, whereas disease outcome and toxicity represent summations of effects overall courses. This concern is perhaps most applicable to neurotoxicity, which, in contrast to myelosuppression, is clearly a cumulative effect of paclitaxel and cisplatin (30, 34, 37). In this study, neither the total number of courses nor the cumulative dose of paclitaxel was considered in the pharmacodynamic analyses relating \(C_{ss} \) to toxicity. However, minimal intrasubject course-to-course variability in pharmacokinetics has been reported in previous studies of paclitaxel. In addition, there was good concordance in paclitaxel \(C_{ss} \) between courses 1 and 2 in this study, suggesting that the pharmacokinetic behavior of paclitaxel during the first two courses is a satisfactory representation of paclitaxel pharmacokinetics during subsequent courses (23, 24, 29, 38).

Even in situations in which there are true dose-, concentration-, or duration of exposure-response relationships, small, albeit significant, differences between patients treated at various dose levels may not be appreciated if there is large interindividual pharmacokinetic variability and an insufficient sample size. Because these factors may have, in part, accounted for the apparent lack of a significant differences in disease outcome between patients receiving low- and high-dose paclitaxel in combination with cisplatin in this study, population pharmacokinetic and pharmacodynamic assessments across both dose levels were undertaken to better identify relationships between paclitaxel \(C_{ss} \) and disease outcome. Indeed, there was substantial interindividual variability in paclitaxel \(C_{ss} \) in patients treated with paclitaxel doses of 135 mg/m\(^2\) (PC arm) and 250 mg/m\(^2\) (PCG arm), but there was a clear difference between patients in the PC and PCG treatment arms [median \(C_{ss,avg} \), 0.32 and 0.81 \(\mu \text{mol/liter} \), respectively (\(P < 0.0001 \)). However, no relationships between paclitaxel \(C_{ss,avg} \) and either response, TTF, survival, or worst grade of leukopenia, neurosensory toxicity, or neuromotor toxicity were apparent. In the multivariate models that included potential determinants of outcome, paclitaxel \(C_{ss,avg} \) was not a determinant of response, TTF, or survival. In fact, a lower disease stage (stage IIIb) was the only significant positive determinant of response (\(P = 0.0173 \)), female sex was the only significant predictor of time to progression (\(P = 0.0195 \)), and a lower ECOG performance status (= 0) was the only significant positive determinant of survival (\(P = 0.0121 \)) in the models.

The results of these pharmacodynamic studies support the initial clinical results indicating no differences between the PC and PCG arms in disease outcome despite ~2-fold differences in paclitaxel dose and median \(C_{ss,avg} \). At first glance, these results may not appear to be congruent with those of \textit{in vitro} studies (5–15). Although the duration of paclitaxel treatment appears to be a more important determinant of drug effect than drug concentration \textit{in vitro}, the magnitude of most biological effects of paclitaxel (\textit{i.e.}, cytotoxicity, formation of microtubule bundles and mitotic asters, increase in tubulin polymer mass, stabilization of microtubules against depolymerization, apoptosis, radiosensitization, angiogenesis, and inhibition of chemotaxis and motility) are also related to drug concentration (5–15). However, a plateauing of dose response or a situation of diminishing returns is typically noted as paclitaxel concentrations increase, and the drug concentration at which the plateauing of effect occurs varies from cell line to cell line (5–7, 18). The broad clinical implications of these results is that there may be a critical “plateau” paclitaxel concentration or dose above which toxicity but not efficacy increases, but there also appears to be a critical concentration, below which drug effects do not usually occur. The cumulative results of \textit{in vitro} studies suggest that the precise concentration at which plateauing occurs depends upon the specific treatment schedule, and the “threshold” concentration is inversely related to the duration of treatment.

In essence, clinical observations to date resemble those of \textit{in vitro} studies. On the basis of the results of both nonrandomized and randomized clinical trials that have evaluated relationships between paclitaxel dose and disease outcome, the flat or plateau portion of the dose- or concentration-response curve \textit{in vitro} is noted in the clinic with paclitaxel at doses of \(>135 \text{ mg/m}^2 \) on a 24-h schedule (18–20). For example, a pooled analysis of 191 ovarian cancer patients treated with paclitaxel doses ranging from 110 to 300 mg/m\(^2\) as a 24-h infusion in the first five disease-directed studies used for registration in the United States that controlled for the effects of individual study, performance status, number of prior regimens, platinum sensitivity, and age, demonstrated that the probability of responding and longer progression-free and overall survival were not related to paclitaxel dose in the range of 110–300 mg/m\(^2\) (24-h infusion; Ref. 39). In addition, a Phase III intergroup study in which patients with recurrent and refractory ovarian cancer were treated with 24-h infusions of paclitaxel at 175 or 250 mg/m\(^2\) plus G-CSF demonstrated only modest a difference in overall response rates, 36 \textit{versus} 28\%, respectively (18). This modest difference was even nullified by a higher response rate in

4 P. Bonomi, unpublished results.
platinum-sensitive patients treated with the lower dose and no differences in both progression-free and overall survival between the high- and low-dose groups. The dose-response issue has also been evaluated in ECOG study E1693 in which patients with metastatic or locally advanced head and neck cancer who had not previously received chemotherapy for recurrent disease were randomized to treatment with 75 mg/m² cisplatin following either low-dose paclitaxel (135 mg/m², 24-h schedule) or high-dose 200 mg/m² paclitaxel (24-h schedule) plus G-CSF. Response rates were identical (35%) with both treatments, and there was no difference in survival (20). Although the results of these studies indicate that paclitaxel doses of >135 mg/m² on a 24-h schedule produces either no or little, if any, further benefit, this generalization is applicable to the 24-h paclitaxel schedule only, and the precise dose with other schedules at which plateauing of the dose- or concentration-response curve occurs must be determined prospectively. However, the results of randomized trials in ovarian, breast, and lung cancer to date suggest that plateauing occurs at paclitaxel doses of at least 175 mg/m² on shorter (3-h) schedules (16, 17, 22).

The lack of relationships between disease outcome and both paclitaxel dose and Cₚ may be explained by saturation of paclitaxel receptors on β-tubulin at Cₚ achieved with paclitaxel doses at or above 135 mg/m² on a 24-h schedule. In addition, plasma paclitaxel Cₚ may not reflect drug effects in peripheral tissues. The pharmacokinetic behavior of a drug in plasma cannot always be generalized to actions at the cellular level, particularly when drug concentrations in plasma and peripheral tissues are disparate. For the taxanes, plasma concentrations achieved with almost any dose schedule are capable of inducing relevant biological effects in vitro, but the degree of tissue distribution for the taxanes is very large, most likely due to avid drug binding to tubulin, plasma proteins, and high tissue:plasma concentration ratios, have been noted in virtually all tissues except testes and brain in animal studies (23, 24, 40). Not only are high paclitaxel concentrations achieved in almost all peripheral tissues, but biologically relevant drug concentrations are sequestered in peripheral tissues and tumors for relatively long periods, which may not be accurately estimated from plasma concentration data (40, 41). Therefore, paclitaxel Cₚ, which is seemingly a relevant parameter based on the results of in vitro studies, may correlate poorly with drug actions in peripheral tissues. In addition, Cₚ achieved following a 24-h infusion may not reflect the duration that paclitaxel concentrations are above the threshold levels of 0.05–0.1 μmol/liter, which have been determined to be both biologically and clinically relevant (8–13, 25–27).

These results indicate that the plasma paclitaxel Cₚ alone is not a determinant of disease outcome or principal toxicities in patients with advanced NSCLC receiving treatment with paclitaxel as a 24-h infusion combined with cisplatin. On the basis of both the clinical and pharmacodynamic results of E5592, there is also no compelling reason to administer paclitaxel on a 24-h treatment schedule at doses of >135 mg/m² in combination with cisplatin in patients with advanced NSCLC, although higher doses are associated with higher paclitaxel Cₚ, on average. Although it is likely that similar dose and concentration effects occur with other paclitaxel schedules and in other disease settings, the generalizability of these results is not known, and the precise paclitaxel dose range or concentrations at which the plateauing of drug effects occurs should be based on the results of randomized prospective trials similar to the study described here.

REFERENCES

Paclitaxel Steady-State Plasma Concentration as a Determinant of Disease Outcome and Toxicity in Lung Cancer Patients Treated with Paclitaxel and Cisplatin

Eric K. Rowinsky, Micheal Jiroutek, Philip Bonomi, et al.