Immunoenzymatically Determined Pepsinogen C Concentration in Breast Tumor Cytosols: An Independent Favorable Prognostic Factor in Node-positive Patients

Andreas Scorilas, Eleftherios P. Diamandis, Michael A. Levesque, Anastasia Papanastasiou-Diamandi, M. Javad Khosravi, Maurizia Giai, Riccardo Ponzone, Riccardo Roagna, Piero Sismondi, and Carlos López-Otin

Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5 and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5G 1L5 [A. S., E. P. D., M. A. L.]; Diagnostic Systems Laboratories Canada Inc., Toronto, Ontario, Canada M5G 1X5 [A. P.-D., M. J. K.]; Department of Gynecologic Oncology, University of Turin, Turin, Italy 10121 [M. G., R. P., R. R., P. S.]; and Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain 33006 [C. L-O.]

ABSTRACT

The aim of this study was to determine the concentration and to evaluate the prognostic value of pepsinogen C (PepC) in breast cancer patients. PepC is an aspartic proteinase that is involved in the digestion of proteins in the stomach and is also synthesized by a subset of human breast tumors. PepC concentrations were measured with a highly sensitive immunofluorometric assay, which uses two monoclonal antibodies that are specific for PepC and has a detection limit of 0.1 ng/ml. Breast tumor cytosols from 151 patients (median follow-up, 67 months), stratified according to nodal status, were evaluated. An optimal cutoff value, equal to 1.75 ng/mg of extracted protein, was first defined by statistical analysis. PepC status was then compared with other established prognostic factors, in terms of disease-free survival (DFS) and overall survival (OS). High PepC concentrations were found in small (P = 0.003) and well-differentiated tumors (P = 0.042) as well as in stage I (P = 0.003) and node-negative patients (P = 0.040). Statistically significant associations of PepC concentration with patient age and estrogen receptor and progesterone receptor status were not observed. In univariate Cox regression analysis of the entire cohort of patients, negative PepC proved to be a significant predictor of reduced DFS (P = 0.0086) and OS (P = 0.025). Multivariate analysis in subgroups of patients defined by nodal status indicated that PepC status was a strong predictor of DFS (P = 0.0039) and the strongest factor for predicting OS (P = 0.0046) in node-positive but not in node-negative patients. Our results suggest that PepC may be used as an independent favorable prognostic factor in node-positive breast cancer patients because there were no significant associations between PepC and the other prognostic factors evaluated in this group of patients.

INTRODUCTION

A variety of proteinases are overproduced, either by epithelial cells or by surrounding stromal cells of the host tissue (1). These enzymes include matrix metalloproteinases as well as serine, cysteine, and aspartic proteinases. Several clinical studies have shown that overexpression of these enzymes in breast tumors may be associated with poor clinical outcomes (2-4).

PepC is the precursor of pepsin C, an aspartic proteinase that is synthesized primarily in the gastric mucosa and secreted into the gastric lumen, where it is converted to the corresponding active enzyme under acidic conditions (5, 6). PepC, also known as progastricin, is widely distributed in the gastrointestinal tract and, in some species, such as rodents, constitutes the major proteolytic enzyme present in the gastric juice (7). Isolation and characterization of cDNA and genomic clones for human PepC have shown that this protein is composed of a single polypeptide chain of 488 residues, with significant sequence similarity to other aspartic proteinases, such as pepsinogen A, procathepsin D, procathepsin E, and prorenin (8).

The association of PepC with human breast pathology, including breast cancer, was suggested after it was found that PepC is a major proteolytic enzyme in the cyst fluid from women with gross cystic disease of the breast (9, 10). PepC accumulation in cyst fluid is a pathological entity that is thought to be linked to androgen dysfunction (11, 12). Several groups have also demonstrated that normal prostate and prostatic carcinomas are able to produce PepC (13, 14). Of particular interest have been findings that PepC expression in breast carcinomas was associated with pathological and biochemical features of less aggressive disease and with favorable prognostic outcome (15). These findings parallel closely those demonstrating the favorable prognostic value in breast cancer of PSA (16). Because both PSA and PepC are androgen-regulated genes, we
hypothesized that they may have similar or complementary prognostic values in breast cancer patients. In this study, we determined the concentration of PepC with a highly sensitive immunofluorometric assay in breast tumor cytosols from 151 patients and evaluated the prognostic value of this measurement. PepC values were compared with other established prognostic factors in terms of DFS and OS using univariate and multivariate analyses.

MATERIALS AND METHODS

Study Population. Included in this study were tumor specimens from 151 patients undergoing surgical treatment for primary breast carcinoma at the Department of Gynecological Oncology at the University of Turin, Turin, Italy, during the period from January 1988 to December 1992. Tumor tissue had been frozen in liquid nitrogen immediately after surgery. The selection criteria for the specimens included the availability of sufficient tissue mass for extraction and assay; the patients represented 60% of new cases of breast cancer diagnosed and treated at the above institution during the accrual period. This study had been approved by the Ethics and Research Committee at the University of Toronto and by the Institutional Review Board of the University of Turin.

The ages of the patients ranged from 25 to 93 years; the median age was 54 years. Twenty-five % of the patients were under the age of 45 years, 25% were between 45 and 55 years, and 50% were aged 56 years or older. All patients had a histologically confirmed diagnosis of primary breast cancer and received no treatment before surgery. Modified radical mastectomy with axillary lymph node dissection was performed on 95% of the patients. For the patients who had axillary node dissection, the positivity rate for cancer involvement of lymph nodes was 61.5%. The sizes of the tumors resected during surgery ranged from 0.8 to 7.0 cm and the mean and median sizes were 2.7 and 2.5 cm, respectively. Clinical staging was performed according to the Postsurgical International Union Against Cancer tumor-node-metastasis classification system (17). Of 150 patients for whom the stage was known, 45 (30%), 87 (58%), 7 (4.6%), and 11 (7.4%) were stage I, II, III, and IV, respectively. Histological grade of the tumors was determined according to criteria reported by Bloom and Richardson (18) and was known for 107 patients: 6 patients (5.6%) had grade I, 55 (51.4%) had grade II, and 44 patients (41.1%) had grade III tumors. Most of the tumors (70%) were of invasive ductal histological type, whereas the remaining tumor were invasive lobular (12.6%), ductal in situ (2%), medullary (2.7%), papillary (2.7%), tubular (2%), inflammatory (2.7%), tubulo-lobular (2.7%), cribriform (1.3%), and muciparous (1.3%). Postoperative treatment was known for all patients. Whereas 30% received no further treatment after tumor resection, 24% were given adjuvant chemotherapy only, 41% were treated with en-
docrine therapy only, and 5% were given both chemotherapy and endocrine therapy. Disease relapse was defined as the first documented evidence of local or regional axillary recurrence or distant metastasis.

Follow-up information was available for 148 patients and included survival status (alive or deceased) and disease status (disease free or recurrence/metastasis), along with the dates of the events and cause of death, if applicable. The relapse-free survival time in each case was the time interval between the date of surgical removal of the primary cancer and the date of the first documented evidence of relapse. The OS time was the time interval between the date of surgery and the date of death or the date of last follow-up for those who were alive at the end of the study.

Preparation of Cytosolic Extracts.

Tumor tissues were stored at −80°C until their pulverization and cytosolic extraction. The extraction procedure consisted of treatment of the tissue powders (10–50 mg) with a cell lysis buffer (500 μl) containing 50 mM Tris (pH 8.0), 150 mM NaCl, 5 mM EDTA, 10 g/liter NP40 surfactant, and 1 mM phenylmethylsulfonyl fluoride for 30 min on ice and subsequent separation of cell debris from the cytosols by centrifugation at 15,000 × g for 30 min at 4°C. Supernatants were assayed for PepC and total protein immediately after centrifugation.

Steroid Hormone Receptor Analyses.

Tumor specimens (n = 151) were pulverized in liquid nitrogen and homogenized in buffer, and the cytosolic fractions were obtained by ultracentrifugation and quantified for steroid hormone receptors, as described elsewhere (19). The results of the dual ligand-binding assay, in which dextran-coated charcoal was used to separate bound from free ligand, were interpreted by Scatchard analysis (20). Protein concentrations of the cytosols were determined by the method of Lowry et al. (21). Tumors with ER and PR concentrations below or equal to 10 fmol/mg protein were considered as receptor negative, whereas tumors with receptor concentrations above such values were considered positive, as followed previously (22, 23). On the basis of these cutoffs, 99 (67.3%) and 93 (63.7%) of 147 and 146 breast carcinomas were ER and PR positive, respectively.

PepC Immunoassay.

We have used a quantitative immunofluorometric assay to determine the PepC concentrations in the tumor extracts (10), which were assayed without dilution and in duplicate. The assay, which has been described previ-
was shown to be the optimal cutoff (population. As shown in Fig. 2, a value of 1.75 ng/mg protein
of PepC values to predict the DFS and OS of the study
and -negative groups), and associations between PepC status
values were also classified into two categories (PepC-positive
this analysis, PepC was used as a continuous variable. PepC
lymph node status (described above. The cutoff value for tumor size was 2 cm.

A weak association was found between PepC concentration and
other qualitative variables were analyzed using the
assessments between two groups was performed with the nonparametric
Mann-Whitney U test. Similarly, relationships between more
than two groups were determined by the Kruskal-Wallis test. In
this analysis, PepC was used as a continuous variable. PepC
values were also classified into two categories (PepC-positive
and -negative groups), and associations between PepC status
and other qualitative variables were analyzed using the
and Fisher’s exact tests, where appropriate. An optimal cutoff point,
equal to 1.75 ng/mg, was found by \(x^2 \) analysis. ER and PR
values were categorized into positive and negative status, as
described above. The cutoff value for tumor size was 2 cm.
Lymph node status was either positive (any positive number of
nodes) or negative. Age was categorized into three groups: <45 years,
45–55 years, and >55 years. Survival analyses were
performed by constructing Kaplan-Meier DFS and OS curves
(24), where differences between curves were evaluated by
the log-rank test as well as by estimating the RRs for relapse
and death using the Cox proportional hazards regression model (25).

Only patients for whom the status of all variables was known
were included in the multivariate regression models, which
incorporated PepC and all other variables for which the patients
were characterized. Selection of prognostic variables with the
highest significant effect in relapse-free survival and OS
was performed in the Cox’s model using the stepwise regression
option from SPSS software (SPSS Inc., Richmond, CA). Only
variables for which \(P \) was <0.05 were retained in the final
model.

RESULTS

Distribution of PepC Concentration and Relationship to
Other Prognostic Variables

The PepC concentration of the 151 cytosolic samples var-
r ranged widely from 0 to 9.71 ng/mg; the median was 1.16 ng/mg,
and the mean was 1.59 ng/mg. Fig. 1 shows the distribution of
these concentrations, which was slightly positively skewed. An
optimal cutoff value was defined by \(x^2 \) analysis, based on the
ability of PepC values to predict the DFS and OS of the study
population. As shown in Fig. 2, a value of 1.75 ng/mg protein
was shown to be the optimal cutoff (\(x^2 = 7.0, P = 0.008 \), and
\(x^2 = 5.0, P = 0.026 \), for DFS and OS, respectively). This cutoff
(75th percentile) identifies 25% of patients as being PepC pos-
itive. PepC positivity was found more frequently in small \((P = 0.008) \), well-differentiated tumors \((P = 0.019) \), as well as in
patients with stage I disease \((P = 0.003) \; \text{Fig. 3} \). No significant
associations between PepC status and patient age, steroid hor-
monal receptors, and histological type were observed (Table 1).
A weak association was found between PepC concentration and
lymph node status \((P = 0.042) \; \text{Fig. 4} \).

Statistical Analysis. For analysis of data, patients were
subdivided into groups based on different clinical or pathological
parameters. Because the distribution of PepC concentrations
was not Gaussian, the analysis of differences in PepC values
between two groups was performed with the nonparametric
Mann-Whitney U test. Similarly, relationships between more
than two groups were determined by the Kruskal-Wallis test. In
this analysis, PepC was used as a continuous variable. PepC
values were also classified into two categories (PepC-positive
and -negative groups), and associations between PepC status
and other qualitative variables were analyzed using the
and -negative groups), and associations between PepC status
and other qualitative variables were analyzed using the
and Fisher’s exact tests, where appropriate. An optimal cutoff point,
equal to 1.75 ng/mg, was found by \(x^2 \) analysis. ER and PR
values were categorized into positive and negative status, as
described above. The cutoff value for tumor size was 2 cm.
Lymph node status was either positive (any positive number of
nodes) or negative. Age was categorized into three groups: <45 years,
45–55 years, and >55 years. Survival analyses were
performed by constructing Kaplan-Meier DFS and OS curves
(24), where differences between curves were evaluated by
the log-rank test as well as by estimating the RRs for relapse
and death using the Cox proportional hazards regression model (25).

Only patients for whom the status of all variables was known
were included in the multivariate regression models, which
incorporated PepC and all other variables for which the patients
were characterized. Selection of prognostic variables with the
highest significant effect in relapse-free survival and OS
was performed in the Cox’s model using the stepwise regression
option from SPSS software (SPSS Inc., Richmond, CA). Only
variables for which \(P \) was <0.05 were retained in the final
model.

PepC Protein as a Predictor of Breast Cancer

Patient Survival

Univariate and Multivariate Analysis. Follow-up in-
formation was available for 148 of the 151 patients included in
the study. During their respective follow-up periods, 56 patients
(37.1%) developed cancer relapse, and 39 (25.8%) died. In Cox
univariate survival analysis, the risks of relapse and death were
not significantly related to PepC, considered as a continuous
variable. However, significantly reduced risks for both relapse
and death were shown to be associated with PepC positivity
using the PepC cutoff of 1.75 ng/mg (Table 2). These regression
models showed that there was an extensive reduction in risk of
relapse and death in patients with PepC-positive cancer com-
pared to those with PepC-negative disease. The Kaplan-Meier
survival curves (Fig. 5) also show that PepC-positive patients
had more favorable DFS and OS rates than did PepC-negative
patients. The difference in survival rates between the two groups
was greater for DFS than for OS. In the multivariate analysis of
PepC, the Cox regression models were adjusted for age, nodal
status, tumor size, and ER and PR status, all of which were used
as categorical variables, except tumor size, which was consid-
ered a continuous variable, as described above. Tumor grade
was not included in the multivariate analysis because of the
relatively large number of patients for which this variable was
unknown. Patient age, tumor size, and nodal status were, thus,
shown to be independent factors for predicting both DFS and

Fig. 4 Relationship between PepC concentration and tumor grade (A) as well as the nodal status (B). The PepC concentrations are plotted
according to grade (I, II, or III) and axillary lymph node status \([N(+)\) or \(N(-)\), lymph node-positive or -negative, respectively\]. \(P\) was determined
from Kruskal-Wallis (A) and Mann-Whitney (B) tests. Numbers
in parentheses indicate the number of patients in each group. The
broken line indicates the cutoff level of 1.75 ng/mg protein that was
used in survival analysis. Horizontal lines, mean PepC concentrations.
OS. PepC significantly added to the prognostic power in the multivariate model in analysis for DFS (RR = 0.39; P = 0.032) but not for OS.

Univariate and Multivariate Analysis in Patients Classified by Nodal Status. Because node-positive patients are substantially different from node-negative patients in terms of their prognosis and treatment administered after the surgery, univariate and multivariate Cox regression models were developed to evaluate the effect of PepC on DFS and OS for each of the two groups of patients. The results are shown in Table 2 and Fig. 6. Breast cancer patients with tumors that were positive for PepC tended to have a 30–45% reduction in risk for relapse or death. PepC was an independent factor for predicting DFS (RR = 0.19; P = 0.0039) and OS (RR = 0.12; P = 0.0046) in node-positive patients. Age and ER significantly added to the prognostic power in the multivariate model in analysis for DFS and OS, respectively. When the relationship between PepC and survival was examined in node-negative patients, none of the differences were statistically significant.

DISCUSSION

This study was designed to investigate whether PepC concentrations determined by an immunofluorometric assay have prognostic value in primary breast carcinoma. Our findings have demonstrated the clinical relevance of PepC as an independent favorable prognostic indicator of lymph node-positive but not of node-negative breast cancer. To our knowledge, only one previous study, by Vizoso et al. (15), has addressed the relationship between PepC expression in breast tumor tissue and survival outcome. These authors similarly reported evidence for favorable prognosis conferred by PepC expression in their entire cohort of breast cancer patients but did not provide data, suggesting differences between node-positive and node-negative

<table>
<thead>
<tr>
<th>Variable</th>
<th>DFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univariate P</td>
<td>Multivariate P</td>
</tr>
<tr>
<td>Patient's age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.16</td>
<td>0.79</td>
</tr>
<tr>
<td>B</td>
<td><0.001</td>
<td>0.0023</td>
</tr>
<tr>
<td>Tumor size</td>
<td>0.0032</td>
<td>0.012</td>
</tr>
<tr>
<td>Nodal status</td>
<td>0.018</td>
<td>0.022</td>
</tr>
<tr>
<td>Grade</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>PepC status</td>
<td>0.0086</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Node-positive patients (n = 88)

<table>
<thead>
<tr>
<th>Variable</th>
<th>DFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univariate P</td>
<td>Multivariate P</td>
</tr>
<tr>
<td>Patient's age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.024</td>
<td>0.76</td>
</tr>
<tr>
<td>B</td>
<td><0.001</td>
<td>0.0073</td>
</tr>
<tr>
<td>Tumor size</td>
<td>0.054</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>PepC status</td>
<td>0.0045</td>
<td>0.0039</td>
</tr>
</tbody>
</table>

Node-negative patients (n = 55)

<table>
<thead>
<tr>
<th>Variable</th>
<th>DFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univariate P</td>
<td>Multivariate P</td>
</tr>
<tr>
<td>Patient's age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>Tumor size</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>0.089</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>PepC status</td>
<td>0.89</td>
<td></td>
</tr>
</tbody>
</table>

a P's in multivariate analyses are from the final models in which only variables with P < 0.05 were retained.

b RRs with 95% confidence intervals are presented only for the retained variables that were significant in the multivariate analysis. CI, confidence interval.

c A, 45–55 years of age versus <45 years old. B, >55 years old versus <45 years old.

d Test for trend.

e Grade was not included in multivariate analysis because of a large number of missing values.

f Positive compared with negative (cutoff point, 10 fmol/mg protein).

g Positive compared with negative (cutoff point, 1.75 ng/mg protein).
patients with respect to the effect of PepC on outcome. Whereas the detection of PepC expression in this previous study was performed by immunoperoxidase staining using a polyclonal antibody, whereby 33% of 243 cases were defined as PepC positive, in the work described here, 25% of 151 breast cancer patients were classified as PepC positive on the basis of having PepC concentrations, measured by a quantitative ELISA technique using two monoclonal antibodies, which exceeded a statistically determined optimal cutoff level. The availability of several other clinicopathological features for our sample of breast cancer patients permitted the multivariate examination of each variable for its independent contribution to DFS and OS. Thus shown to be independent markers of prognosis were nodal status, tumor size, patient age, and PepC status, among which only PepC and older age (>55 years) indicated favorable outcome. Two other proteins expressed in breast tumor tissues, PSA and pS2, have also been previously shown to be favorable prognostic indicators (16, 26, 27). In other studies, the prognostic impact of some biochemical markers have been shown to be dependent on lymph node status. For instance, cathepsin D, c-myc, and pS2 protein were found to have independent prognostic value in node-negative breast cancer patients (3, 27–29), whereas c-erbB2 oncoprotein was shown to be the strongest predictive factor of poor short-term prognosis followed by p53 protein in lymph node-positive breast cancer (30, 31).

Because very little is known about the physiological role of PepC in breast tissue, a hypothesis explaining the mechanism by which PepC expression may confer a favorable breast cancer prognosis, especially in node-positive patients, is, at present, difficult to formulate. In contrast to its function in the gastric lumen or to those of matrix metalloproteinases and aspartic proteases such as cathepsin D in the interstitium, PepC may not become functionally active as a proteolytic enzyme in breast cancer tissue, given that it is secreted as a precursor of high molecular weight that requires exposure to pH conditions lower than those found in the extracellular matrix (9). However, because large acidic vesicles within breast cancer cells have been demonstrated (32), local activation of secreted proPepC cannot be excluded. Whether PepC acts upon substrates such as matrix structural components, sequestered growth factors, cytokines, their binding proteins, or other extracellular constituents remains to be determined experimentally. In light of the fact that PepC is not synthesized by mammary epithelium under normal conditions and is expressed only in a subset of breast carcinomas (33), its function may not be required either for the maintenance of breast tissue function or for breast tumorigenesis but may simply reflect hormonal alterations involved in the breast cancer development.

Studies on the regulation of the PepC gene have revealed that it is up-regulated by androgens, glucocorticoids, and progesterone but not by estradiol (34), in contrast to the estrogen responsiveness of another gene, pS2, which displays the same pattern of tissue specificity as PepC (35). Furthermore, high levels of both PepC and pS2 are associated with favorable breast cancer prognosis (27). The relationship between steroid hormone responsiveness and PepC expression in breast tumor tissue may be reflected by our finding that PepC concentrations were higher in well-differentiated, low-grade lesions, which typically express steroid hormone receptors. In light of these considerations and the fact that poorly differentiated, high-grade tumors are frequently independent of steroid hormone regulation, it is possible that PepC may serve as a better indicator of a functional pathway than the presence of the steroid hormone receptors themselves. Because not all breast cancers respond to endocrine manipulation (36), it has been speculated that the physical existence of the receptors may not necessarily constitute proof of their functionality. Defective receptors have been shown to exist which do not have the ability to form complexes with their ligands or to bind to the hormone response elements in target genes (37). The results of our study may further indicate the ability of PepC to predict response of breast cancer patients to hormonal manipulation, given that only 13% of node-positive patients who received postoperative tamoxifen treatment and whose tumors expressed high PepC relapsed and died, compared to a 35% relapse rate and a 25% death rate of patients with PepC-positive and -negative breast tumor cytosols, followed for a median of 67 months. The cutoff value for PepC positivity was 1.75 ng/mg protein.

Fig. 5 DFS (A) and OS (B) curves in patients with PepC-positive and -negative breast tumor cytosols, followed for a median of 67 months. The cutoff value for PepC positivity was 1.75 ng/mg protein.
similarly treated node-positive patients whose tumors were PepC-negative (data not shown). Additional studies of hormonally treated patients for whom response criteria are clearly defined are needed to confirm these preliminary observations regarding PepC and tamoxifen responsiveness.

In summary, we found that PepC was present in 25% of breast cancer tissues at concentrations of >1.75 ng/mg protein. PepC was more frequently present in small tumors and in tumors of lower grade as well as in early-stage disease. The difference between the means of PepC concentrations in node-positive and -negative patients was of borderline significance. No significant association between PepC status and steroid hormone receptor status was observed. Node-positive breast cancer patients with tumors positive for PepC tended to have a marked reduction in the risk for relapse or death. This difference in survival remained significant after clinical and pathological features, also related to survival, were taken into consideration.

Therefore, the measurement of PepC concentrations in tumor extracts may provide additional information related to breast cancer prognosis, particularly in node-positive patients.

REFERENCES

Fig. 6 DFS (A and B) and OS (C and D) curves of patients with PepC-positive and -negative breast cancer, stratified by their nodal status: node positive (A and C) or node negative (B and D). The cutoff value for PepC positivity was 1.75 ng/mg protein.

Immunoenzymatically Determined Pepsinogen C Concentration in Breast Tumor Cytosols: An Independent Favorable Prognostic Factor in Node-positive Patients

Andreas Scorilas, Eleftherios P. Diamandis, Michael A. Levesque, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/5/7/1778

Cited articles
This article cites 34 articles, 14 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/5/7/1778.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/5/7/1778.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.