Advances in Brief

Use of Allelic Loss to Predict Malignant Risk for Low-grade Oral Epithelial Dysplasia

Miriam P. Rosin, Xing Cheng, Catherine Poh, Wan L. Lam, Yongqian Huang, John Lovas, Ken Berean, Joel B. Epstein, Robert Priddy, Nhu D. Le, and Lewei Zhang

Abstract

One of the best approaches to identifying genetic changes critical to oral cancer progression is to compare progressing and nonprogressing oral premalignant lesions. However, such samples are rare, and they require long-term follow-up. The current study used the large archive network and clinical database in British Columbia to study loss of heterozygosity (LOH) in cases of early oral premalignancies, comparing those with a history of progression to carcinoma in situ or invasive cancer and those without a history of progression (referred to as nonprogressing cases). Each of 116 cases was analyzed for LOH at 19 microsatellite loci on seven chromosome arms (3p, 4q, 8p, 9p, 11q, 13q, and 17p). The progressing and nonprogressing cases showed dramatically different LOH patterns of multiple allelic losses. An essential step for progression seems to involve LOH at 3p and/or 9p because virtually all progressing cases showed such loss. However, LOH at 3p and/or 9p also occurred in nonprogressing cases. Individuals with LOH at 3p and/or 9p but at no other arms exhibit only a slight increase of 3.8-fold in relative risk for developing cancer. In contrast, individuals with additional losses (on 4q, 8p, 11q, or 17p), which appeared uncommon in nonprogressing cases, showed 33-fold increases in relative cancer risk. In conclusion, analysis of LOH at 3p and 9p could serve as an initial screening for cancer risk of early premalignancies. Follow-up investigation for additional losses would be essential for predicting cancer progression.

Introduction

Oral premalignant lesions most often appear clinically as leukoplakia. The criterion for judging the malignant potential of these lesions is based mainly on the presence and degree of dysplasia. Using this criterion, premalignant lesions are classified histologically into stages with increasing risk of developing into invasive SCC, namely: epithelial hyperplasia; mild, moderate, and severe dysplasias; and CIS. High-grade preinvasive lesions (severe dysplasia and CIS) are believed to have a high probability of progression into invasive carcinoma and are therefore treated aggressively (1, 2). However, the majority of the low-grade lesions (mild and moderate dysplasia), as well as hyperplasia without dysplasia, do not progress into cancer (1, 3). Because these early lesions constitute the bulk of oral leukoplasias, and pathohistological stage assignment alone does not predict their malignant potential, a more reliable predictive test needs to be developed.

A central dogma of carcinogenesis is that alteration to critical control genes underlies malignant transformation. Therefore, progressing lesions are likely to be genetically different from their morphologically similar nonprogressing counterparts. The identification of such differences would provide genetic markers useful in predicting the behavior of low-grade lesions. As a result, clinicians would be able to identify which patients with low-grade lesions should be managed more aggressively, either by more frequent screening or by early treatment, using traditional approaches such as surgery or newer techniques such as chemopreventive regimes.

One of the more sensitive techniques available for studying clonal changes in tumors and premalignant lesions is the use of polymerase chain-based microsatellite analysis for allelic loss. The advantage of the procedure is that it requires only small quantities of DNA yet yields valuable data on the loss of chromosomal regions that contain putative suppressor genes. Hence, we can obtain information on critical genetic events even before the identification of the actual suppressor gene. This approach has been used frequently in head and neck cancers (4–10). Studies on premalignant lesions have been limited in number and scope due to the difficulty of obtaining suitable specimens for analysis and due to technical problems associated with working with very small lesions and minute amounts of DNA (11–15). However, frequent occurrence of LOH has been demonstrated in oral premalignant lesions, and several regions of loss common to SCCs have been observed in dysplastic...
lesions and occasionally in hyperplasias (11–16). Califano et al. (12) were the first to develop a genetic progression model for head and neck cancer. LOHs at 9p and 3p occur early and are present in hyperplastic or mild dysplasias in addition to high-grade lesions (11, 12). Other regions of LOH may signal alterations to genes that are more closely related to later events, such as the attainment of immortality (17, 18) or invasion and metastasis, but these associations have only recently begun being explored.

This report describes a genetic study that compared archival premalignant lesions with and without a subsequent history of cancer progression. LOH in hyperplastic and low-grade dysplastic lesions with a known clinical history were examined. The objectives of this study were as follows: (a) to characterize the pattern of genetic changes in premalignant lesions by means of LOH analysis using microsatellite markers for the seven chromosomal regions known to be frequently lost in oral tumors (3p, 4q, 8p, 9p, 11q, 13q, and 17p; Refs. 5, 8, 9, 11, and 19); and (b) to identify chromosomal differences between premalignancies that would subsequently progress to CIS or SCC and those that would not.

Patients and Methods

Sample Collection. This study used paraffin-embedded archival samples from the provincial Oral Biopsy Service of British Columbia. This centralized Oral Biopsy Service supports dentists and ear, nose and throat surgeons throughout the province, at no cost to the provider or patient. With more than 3500 biopsies of oral lesions collected per year (19 years archived), a large number of patients with early lesions can be followed over time. Cases that progressed into cancer were identified by linking the Oral Biopsy Service database to the British Columbia Cancer Registry, which tracks all histologically confirmed cases of cancer and CIS diagnosed in the province.

Two sample sets were used. The first set consisted of oral lesions from patients with no subsequent history of head and neck cancer. We refer to these cases as nonprogressing cases. The criteria for choosing these samples included a histological diagnosis of hyperplasia or mild or moderate dysplasia, with this diagnosis being confirmed by two pathologists (L. Z. and R. P.) using criteria established by the WHO (2). This set included 54 patients with biopsies of low-grade dysplasia (31 patients with mild dysplasia and 23 patients with moderate dysplasia) and 33 patients with epithelial hyperplasia.

The second sample set, the progressing cases, consisted of 29 patients with hyperplasias or low-grade dysplasias (6 hyperplasias, 9 mild dysplasias, and 14 moderate dysplasias) that later progressed to CIS or SCC. Both the primary hyperplastic or dysplastic lesions and their matching CIS or SCC had to be from the same anatomical site as recorded on pathology reports and patient charts. In addition, the interval between the primary lesions and later CIS or SCC had to be longer than 6 months. The latter criterion was used to exclude cases that might be due to inadequate biopsy.

There was no significant difference between the progressing (i.e., with subsequent clinical history of progression) and the nonprogressing (i.e., without subsequent history of progression) dysplasia sample sets in terms of gender, age distribution, and smoking history (Table 1). However, on average, nonprogressing cases were monitored for over twice the duration (96 versus 37 months) to ensure that progression did not occur. Although complete treatment history was not available for all cases, chart review suggested that progressing lesions were treated at least as aggressively as nonprogressing lesions. In British Columbia, low-grade premalignancies are generally excised without a wide margin or followed clinically after an initial incisional diagnostic biopsy. However, persisting or recurring lesions often receive further treatment involving wide excision or chemotherapy. In this study, only 7 of 55 nonprogressing dysplasias were known to be further treated by surgery. In contrast, 13 of 25 progressive dysplasias were known to have had chemotherapy or further excision, of which 6 dysplasias were removed with margin.

Tissue Microdissection and DNA Extraction. Areas of hyperplasia, dysplasia, CIS, or tumor were microdissected from sections stained with H&E. The underlying stroma were dissected and used as a source of matched control DNA. The microdissected tissue was digested in 300 μl of 50 mM Tris-HCl (pH 8.0) containing 1% SDS and proteinase K (0.5 mg/ml) at 48°C for 72 h or more. During incubation, samples were spiked with 20 μl of fresh concentrated proteinase K (20 mg/ml) twice daily. The DNA was then extracted as described previously (11). All samples were coded so that LOH analysis was performed without knowledge of diagnosis.

LOH Analysis. The microsatellite markers used for LOH analysis came from Research Genetics (Huntsville, AL) and mapped to the following regions: (a) 3p14.2, D3S1228, and D3S1300; (b) 4q26, D4S243; (c) 5p12, D5S186, and D5S187; (d) 8p21.3, D8S261; (e) 8p23.3, D8S262; (f) 8p23.3, D8S264; (g) 9p21, IFNA, D9S171, D9S1748, and D9S1751; (h) 11q13.3, INT2; (i) 11q22.3, D11S1778; (j) 13q12.3–13, D13S170; (k) 13q14.3, D13S133; (l) 17p11.2, CHRNB1; and (m) 17p13.1, p53 and D17S786. These markers are localized to regions previously shown to be frequently lost in head and neck tumors. The protocol used for LOH analysis has been described previously by Zhang et al. (11).

After PCR amplification, PCR products were separated on denaturing polyacrylamide gels and visualized by autoradiography. For informative cases, allelic loss was inferred when the signal intensity of one allele was decreased by at least 50% in the DNA sample from a lesion as compared to the corresponding allele in the matching connective tissue DNA. Samples showing allelic loss were subjected to repeat analysis after a second independent amplification whenever the quantity of DNA was sufficient.

Statistical Analysis. Associations between LOH and progression were examined using Fisher’s exact test. Time-to-
progression curves were estimated by the Kaplan-Meier method, and comparisons were performed using log-rank test. Clinical differences between progressing and nonprogressing groups were examined using either Fisher’s exact test (gender distribution and smoking habit) or an unpaired t test (age and follow-up time). $P \leq 0.05$ was considered significant. Relative risks were determined using Cox regression analysis.

Results

Frequency of Allelic Loss. LOH was present in 68 of 116 (59%) premalignant lesions studied, occurring more frequently among dysplastic (55 of 77 lesions, 71%) than hyperplastic (13 of 39 lesions, 33%) lesions ($P < 0.001$). LOH frequencies were dramatically elevated in lesions that later progressed to cancer. All progressing lesions (both hyperplastic and dysplastic) showed LOH at one or more of the 19 microsatellite loci tested. LOH was detected in only 21% of the nonprogressing hyperplasias and 59% of dysplasias.

Multiple chromosomal arm loss was characteristic of progressing lesions (50% of hyperplasia and 91% of dysplasia; see Table 1). It was absent in nonprogressing hyperplasia and occurred in only 31% of the nonprogressing dysplasias.

Pattern of Allelic Loss. The most common losses for both progressing and nonprogressing cases were on 3p and 9p and occurred with a higher frequency in the progressing cases (Table 2). Among nonprogressing cases, 3p and 9p losses were seen in 13% and 3% of hyperplasias and 25% and 46% of dysplasias, respectively. In contrast, 3p and 9p losses were seen in 67% and 50% of the progressing hyperplasias and in 64% and 83% of the progressing dysplasias, respectively.

Further increases in LOH frequencies at 4q, 8p, 11q, 13q, and 17p occurred in lesions that progressed to tumors. For dysplasias, this increase was significant for 8p, 11q, and 13q, and the increase for 4q was of marginal significance ($P = 0.057$). There was also a doubling in the frequency of LOH on 17p (from 20% to 41% of cases), although this increase was not statistically significant ($P = 0.087$). For hyperplasias, increases were significant in comparisons of progressing versus nonprogressing lesions for 4q, 8p, and 17p, with 11q being of marginal significance ($P = 0.062$).
Comparison of LOH Pattern in Premalignant and Malignant Lesions. Twenty-five of 29 progressing cases had later CIS/SCC biopsies available for LOH analysis. In 17 cases (68%), all allelic losses in the premalignant lesions (the upper versus the lower allele) were found in the later lesion (see Fig. 1b). In seven of the remaining cases (28%), all but one of the multiple LOHs in the premalignant lesion were present in the tumor. For example, in case 173, the early lesion contained a LOH at 13q that was not found in the later lesion; however, the pair showed loss of the same alleles on 3p, 9p, 8p, and 11q. These data suggest that for most progressing lesions, the later cancer was derived by clonal outgrowth from the earlier lesions.

Progression Risk. Specific LOH patterns in premalignant lesions were examined for association with disease progression by using the Kaplan-Meier method. Because virtually all progressing lesions (28 of 29 lesions, 97%) had LOH on 3p and/or 9p, we tested the value of using these two chromosomes as initial screens for lesions at risk for progression. Time-to-progression curves were plotted as a function of LOH at 9p (Fig. 2A), 3p (Fig. 2B), or a combination of 3p and/or 9p (Fig. 2C). All were significant. An additional comparison was made of cases with loss on these two arms in the presence and absence of LOH at any of the other five chromosomes (4q, 8p, 11q, 13q, and 17p; Fig. 2D). A significant difference was again observed. Finally, we separately compared time-to-progression for cases in which 3p and/or 9p LOH was restricted to these two arms alone with cases that had additional losses on each of the chromosome arms (Fig. 2, E–I). Significant P values were observed for combinations that included 8p, 11q, or 13q.

Additional analyses included an assessment of relative risk of progression for each of the LOH patterns presented in Fig. 2 and a determination of the proportion of cases without progression at 5 years of follow-up. These results are tabulated in Table 3, and an assessment of their significance is given in the “Discussion.”
Discussion

Linkage of specific patterns of genetic alteration to disease progression is often limited by the difficulty of obtaining clinical specimens from the same lesion over time. In this study, we analyzed microdissected early oral premalignant lesions from 116 patients with or without a history of progression into CIS or invasive SCC for LOH at 19 loci to identify genetic differences between progressing and nonprogressing lesions and to identify genetic profiles that have predictive value for early premalignant lesions.

Can LOH patterns be used as markers to predict risk of progression to cancer? This possibility has been raised by Mao et al. (14) on samples collected during a chemoprevention study. Thirty-seven patients with oral leukoplakia were examined for progression to cancer after 5 years follow-up. If LOH at 3p and/or 9p had been used as an initial screening for assessing cancer risk of oral premalignant lesions into SCC.

Furthermore, time-to-progression curves showed that lesions that had 3p and/or 9p loss with an additional loss on at least one of the indicated arms had a significantly shorter progression time than those with 3p and/or 9p loss only (Fig. 2D).

To determine which of the additional losses (on 4q, 8p, 11q, 13q, or 17p) would most significantly increase progression risk, we separately compared those cases with 3p and/or 9p loss alone with those cases with 3p and/or 9p loss plus each of the additional losses (Fig. 2, E–I). A significantly shorter time to progression was observed when either 8p, 11q, or 13q LOH was present in addition to 3p and/or 9p LOH. Comparisons with 4q (P = 0.10) or 17p (P = 0.09) were not statistically significant, although a trend was observed. For each premalignant LOH pattern, the probability of having no subsequent progression is summarized in Table 3. Forty to sixty percent of individuals with additional losses at 4q, 8p, 11q, or 17p developed cancer within 5 years, corresponding to a 2.2–2.6-fold increase in relative risk compared to individuals with only 3p and/or 9p LOH. In contrast, cases with additional 13q loss had a 7-fold increase in risk of progression. Six of the eight cases with loss on this arm had 5 years of follow-up, and all showed progression within this time frame.

In summary, although prospective studies involving large numbers of subjects over time are necessary to fully understand these arms in nonprogressing cases, and because the relative cancer risk for those with LOH limited to 3p and/or 9p was only increased by 3.8-fold, additional markers are essential for better prediction of prognosis.

Our study results suggest that loss at any of the other five chromosomes (4q, 8p, 11q, 13q, and 17p) in addition to LOH at 3p and/or 9p seems to provide a better predictive value. Those cases with such losses had a 33-fold increased risk of progressing to cancer compared to cases that retained both of these arms. Furthermore, time-to-progression curves showed that lesions that had 3p and/or 9p loss with an additional loss on at least one of the indicated arms had a significantly shorter progression time than those with 3p and/or 9p loss only (Fig. 2D).

Table 3 Probability of lesions not progressing to cancer after 5 years follow-up

<table>
<thead>
<tr>
<th>LOH pattern</th>
<th>No. of cases</th>
<th>Proportion (%) of nonprogressing cases (95% CI)*</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No LOH</td>
<td>48</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>9p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9p Het</td>
<td>69</td>
<td>93 (87–99)</td>
<td>1.0</td>
</tr>
<tr>
<td>9p LOH</td>
<td>47</td>
<td>61 (48–78)</td>
<td>3.97 (1.68–9.15)</td>
</tr>
<tr>
<td>3p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p Het</td>
<td>80</td>
<td>85 (76–95)</td>
<td>1.0</td>
</tr>
<tr>
<td>3p LOH</td>
<td>36</td>
<td>63 (48–83)</td>
<td>3.74 (1.76–7.93)</td>
</tr>
<tr>
<td>3p &/or 9p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p &/or 9p Het§</td>
<td>56</td>
<td>98 (95–100)</td>
<td>1.0</td>
</tr>
<tr>
<td>All cases with 3p &/or 9p LOH</td>
<td>60</td>
<td>63 (50–77)</td>
<td>24.1 (3.3–176)</td>
</tr>
<tr>
<td>3p &/or 9p LOH (but no other arms)</td>
<td>26</td>
<td>74 (57–95)</td>
<td>3.75 (1.32–10.7)</td>
</tr>
<tr>
<td>3p &/or 9p LOH (+ LOH at any other arm)</td>
<td>34</td>
<td>53 (38–74)</td>
<td>33.4 (4.48–249)</td>
</tr>
<tr>
<td>3p &/or 9p + others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p &/or 9p LOH (but no other arms)</td>
<td>26</td>
<td>74 (57–95)</td>
<td>1.0</td>
</tr>
<tr>
<td>3p &/or 9p plus 4q LOH</td>
<td>10</td>
<td>60 (36–99)</td>
<td>2.3 (0.86–6.16)</td>
</tr>
<tr>
<td>3p &/or 9p plus 8p LOH</td>
<td>18</td>
<td>52 (32–84)</td>
<td>2.59 (1.05–6.37)</td>
</tr>
<tr>
<td>3p &/or 9p plus 13q LOH</td>
<td>15</td>
<td>50 (29–86)</td>
<td>2.49 (0.98–6.31)</td>
</tr>
<tr>
<td>3p &/or 9p plus 13q LOH</td>
<td>15</td>
<td>50 (29–86)</td>
<td>7.08 (1.93–25.9)</td>
</tr>
<tr>
<td>3p &/or 9p plus 17p LOH</td>
<td>21</td>
<td>54 (35–83)</td>
<td>2.2 (0.18–5.5)</td>
</tr>
</tbody>
</table>

* CI, confidence interval; RR, relative risk; Het, no LOH or no loss.
§ Includes eight cases with LOH at other arms.
Calculation does not include two nonprogressing cases that have less than 5 years of follow-up.
the relation between chromosomal loss and tumorigenesis, our
data suggest that LOH patterns will facilitate the prediction of the
malignant potential of low-grade premalignancies. How
should this information be used clinically? Patients with LOH at
3p and/or 9p are at risk for progression; their relative risk
increases with loss on other arms. Such changes should be a
strong signal for active intervention with either traditional or
novel forms of therapy such as chemoprevention. On the other
hand, patients with 3p and/or 9p loss without changes on the
other arms should be at least monitored for further alterations.
Because microsatellite analysis can be done on exfoliative cells
collected by scraping the surface of these lesions, it should be
possible to collect this information noninvasively (4).

References
1. Wright, J. M. A review and update of oral precancerous lesions. Oral
2. WHO Collaborating Reference Centre for Oral Precancerous Les-
sions. Definition of leukoplakia and related lesions: an aid to studies on
3. Bouquot, J. E. (ed.). The Pathology and Progression of Oral Prema-
clination. Epithelial Dysplasia Symposium, 5th International Congress
4. Rosin, M. P., Epstein, J. B., Berean, K., Durham, S., Hay, J., Cheng,
X., Zeng, T., Huang, Y., and Zhang, L. The use of exfoliative cell
samples to map clonal genetic alterations in the oral epithelium of
X., Zeng, T., Huang, Y., and Zhang, L. The use of exfoliative cell
samples to map clonal genetic alterations in the oral epithelium of
5. Ah-See, K. W., Cooke, T. G., Pickford, I. R., Soutar, D., and
Balmain, A. An allelotype of squamous carcinoma of the head and neck
D. Multiple head and neck tumors: evidence for a common clonal origin.
7. Partridge, M., Emilion, G., and Langdon, J. D. LOH at 3p correlates
with a poor survival in oral squamous cell carcinoma. Br. J. Cancer, 73:
8. Maestro, R., Piccinin, S., Doglioni, C., Gasparotto, D., Vukosav-
ijevic, T., Sulfaro, S., Barzan, L., and Boiocchi, M. Chromosome 13q
deletion mapping in head and neck squamous cell carcinomas: identifi-
cation of two distinct regions of preferential loss. Cancer Res., 56:
1146–1150, 1996.
9. Nawroz, H., van der Riet, P., Hruban, R. H., Koch, W., Ruppert,
J. M., and Sidransky, D. Allelotype of head and neck squamous cell
9. Nawroz, H., van der Riet, P., Hruban, R. H., Koch, W., Ruppert,
J. M., and Sidransky, D. Allelotype of head and neck squamous cell
10. Adamson, R., Jones, A. S., and Field, J. K. Loss of heterozygosity
studies on chromosome 17 in head and neck cancer using microsatellite
11. Zhang, L., Michelsen, C., Cheng, X., Zeng, T., Priddy, R., and
Rosin, M. P. Molecular analysis of oral lichen planus: a premalignant
12. Califano, J., van der Riet, P., Westra, W., Nawroz, H., Clayman, G.,
Piolados, S., Corio, R., Lee, D., Greenberg, B., Koch, W., and Sidran-
sky, D. Genetic progression model for head and neck cancer: implica-
13. Roz, L., Wu, C. L., Porter, S., Scully, C., Speight, P., Read, A.,
Sloan, P., and Thakker, N. Allelic imbalance on chromosome 3p in oral
dysplastic lesions: an early event in oral carcinogenesis. Cancer Res.,
56: 1228–1231, 1996.
S., Hittleman, W., and Hong, W. K. Frequent microsatellite alterations
at chromosomes 9p21 and 3p14 in oral premalignant lesions and their
15. Emilion, G., Langdon, J. D., Speight, P., and Partridge, M. Frequent
gene deletions in potentially malignant oral lesions. Br. J. Cancer, 73:
809–813, 1996.
H., and Huff, V. Sequential loss of heterozygosity at microsatellite
motifs in preinvasive and invasive head and neck squamous carcinoma.
17. Loughran, O., Clark, L. J., Bond, J., Baker, A., Berry, I. J., Eding-
ton, K. G., Ly, I., Simmons, R., Haw, R., Black, D. M., Newbold, R. F.,
and Parkinson, E. K. Evidence for the inactivation of multiple replica-
tive lifespan genes in immortal human squamous cell carcinoma kerat-
18. Loughran, O., Malliri, A., Owens, D., Gallimore, P. H., Stanley,
M. A., Ouzanne, B., Frame, M. C., and Parkinson, E. K. Association of
CDK2A/p16INK4A with human head and neck keratinocyte replicative
senescence: relationship of dysfunction to immortalization and neoplasia.
19. Uzawa, K., Suzuki, H., Komiyama, A., Nakashishi, H., Ogawara, K.,
Tanzawa, H., and Sato, K. Evidence for two distinct tumor-suppressor
gene loci on the long arm of chromosome 11 in human oral cancer. Int.
Use of Allelic Loss to Predict Malignant Risk for Low-grade Oral Epithelial Dysplasia

Miriam P. Rosin, Xing Cheng, Catherine Poh, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/6/2/357

Cited articles
This article cites 18 articles, 8 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/6/2/357.full#ref-list-1

Citing articles
This article has been cited by 54 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/6/2/357.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/6/2/357.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.