Increased Expression of an ATP-binding Cassette Superfamily Transporter, Multidrug Resistance Protein 2, in Human Colorectal Carcinomas

Eiji Hinoshita, Takeshi Uchiumi,
Ken-ichi Taguchi, Naoko Kinukawa,
Masazumi Tsuneyoshi, Yoshihiko Maehara,
Keizo Sugimachi, and Michihiko Kuwano

ABSTRACT
The expression of ATP-binding cassette superfamily transporter genes, such as P-glycoprotein/multidrug resistance (MDR) 1 and MDR protein (MRP) 1, is often up-regulated in various tumor types and is involved in responses to some anticancer chemotherapeutic agents. Five human MRP subfamily members (MRP2–6) with structural similarities to MRP1 have been identified. The relationships between MRP2–6 mRNA levels and drug resistance are not well understood. Data on 45 patients with colorectal cancer were analyzed. Of the ATP-binding cassette superfamily genes, we asked whether mRNA levels of MDR1, MRP1, MRP2, and MRP3 correlated with drug resistance to anticancer agents. For this analysis, we used quantitative reverse transcription-PCR, and the sensitivity to anticancer agents in surgically resected colon carcinomas was determined using the in vitro succinate dehydrogenase inhibition test. MDR1, MRP1, and MRP3 were highly expressed in normal colorectal mucosa, and the relative mRNA levels of MDR1, MRP1, and MRP3 in cancerous tissues compared with noncancerous tissues were decreased or unchanged. By contrast, MRP2 mRNA expression was low in normal colorectal mucosa and specifically increased in cancer regions compared with noncancerous regions. Of the anticancer agents prescribed for patients with colorectal cancers, including doxorubicin, mitomycin C, cisplatin, 5-fluorouracil, etoposide, and a camptothecin derivative, mRNA expression of MRP2 was significantly associated with resistance to cisplatin. MRP2 may be important for resistance to cisplatin treatment in colorectal cancer.

INTRODUCTION
Two ABC superfamily transporters, Pgp and MRP1, confer MDR on cancer cells through enhanced drug efflux (1–4). Treatment of cancer cells with many anticancer drugs, including Vinca alkaloids (vincristine and vinblastine), anthracyclines (doxorubicin and daunomycin), taxanes (Taxol and taxotere), and epipodophyllotoxins (etoposide and teniposide), can result in overexpression of Pgp and MRP1 (1, 2). Overexpression of human Pgp and MRP1 in cancer cells leads to drug resistance against anthracyclines, Vinca alkaloids, and epipodophyllotoxins (3, 4).

Patients with colorectal cancers have been treated primarily by surgical resection, and these cancers often have decreasing sensitivities to chemotherapeutic agents (5). Intrinsic drug resistance in untreated colon cancers is thought to be due in part to Pgp because normal colon tissues themselves express Pgp (5, 6). The expression of Pgp increases in colon cancers compared with findings in noncancerous regions (7), whereas no significant difference exists in Pgp levels between cancerous and noncancerous regions (8). Many other studies have noted a decreased expression of Pgp in cancerous regions compared with noncancerous regions in colon cancers (9–12). Thus, Pgp expression does not seem to be a prognostic marker for colorectal cancer (13, 14).

The MRP1 gene is expressed in various tumor types, and MRP1 expression is associated with drug resistance in or prognosis of breast cancers, gastric cancer, neuroblastomas, retinoblastomas, and lung cancers (15–19). In a study of the expression of MRP1 in colorectal carcinomas, 7 of 30 cases showed strong MRP1 staining in tumors, whereas normal mucosal tissues showed weak MRP1 staining (12). MRP1 expression does not increase in cancerous regions compared with their noncancerous counterparts in colon cancers (20). Because expression of both Pgp and MRP1 occurs in normal colon mucosa, both ABC transporters may be involved in intrinsic drug resistance in colorectal cancers.

In addition to MDR1 and MRP1, five human MRP subfamily members (MRP2–6) that show structural similarity to MRP1 have been identified (21). The gene encoding MRP1–6 are on different chromosomes, and MRP1–6 mRNAs are expressed in a variety of normal tissues (21). Of these MRP family genes,
Expression of MRP2 in Colorectal Cancer

MRP2 appears to mediate ATP-dependent transport of various hydrophobic anionic compounds, including camptothecins and methotrexate in liver canalicular membranes and other tissues (22). MRP1 and MRP3, but not MRP2, are expressed in normal colorectal mucosa (23, 24). Introducing MRP2 antisense cDNA into human hepatic cancer cell lines results in increased sensitivity to cisplatin, vincristine, doxorubicin, and camptothecin into human hepatic cancer cell lines (25).

The complete cDNA sequence of human MRP3 (23) has a 56% amino acid identity to MRP1 and a 45% identity to MRP2. MRP3 was expressed mainly in the liver and was expressed to a lesser extent in the colon, small intestine, and prostate. Transfection of MRP3 cDNA confers drug resistance against etoposide and methotrexate (26). MRP3, like MRP1, may contribute to drug resistance against etoposide, vincristine, and cisplatin in human lung cancer cells (27). In this study, we investigated which transporter of MDR1, MRP1, MRP2, and MRP3 is specifically expressed and is responsible for the responses to the anticancer agents in colorectal carcinomas. We determined the mRNA levels of MDR1, MRP1, MRP2, and MRP3 in tissues from 45 patients with colorectal cancer. The enhanced expression of MRP2 in cancerous regions compared with noncancerous regions is discussed in association with resistance to anticancer agents.

PATIENTS AND METHODS

Patients. Between June 1994 and January 1999, 45 Japanese men and women with colorectal cancer underwent colorectal resection at the Department of Surgery II, Kyushu University Hospital (Fukuoka, Japan). Table 1 shows the clinicopathogenic characteristics of these 45 patients. No patient had received chemotherapy before surgery. Tumor and normal mucosal tissue samples were obtained after subjects provided informed consent, frozen in liquid nitrogen, and stored at −80°C until RNA extraction.

Quantitative RT-PCR. For quantitative RT-PCR, we used real-time TaqMan technology and a Model 7700 sequence detector (Perkin-Elmer Applied Biosystems, Foster City, CA) as described previously (28). Four primer pairs and four TaqMan probes for MDR1, MRP1, MRP2, and MRP3 were designed using the primer design software Primer Express (Perkin-Elmer Applied Biosystems). To avoid amplifying contaminated genomic DNA, primer pairs were placed in a different exon, and the probe was placed at the junction between two exons. Primers for GAPDH (TaqMan GAPDH control reagent kit) were purchased from Perkin-Elmer Applied Biosystems. Sequences for the TaqMan probes and primers were as follows: (a) MDR1, sense primer 5′-TGCTCAGACAGGATG TGAAGTGG-3′, antisense primer 5′-TGCCCTTTAACTTGAAGCAGG-3′, and probe 5′-AA AACACCAGGACATTGACTACACAGGC-3′; (b) MRP1, sense primer 5′-TACCTCTGTTGGTATCTG-3′, antisense primer 5′-CGAAGTTGGTTTGGGTGCT-3′, and probe 5′-ATGGCGATTAGAAAGACGCCAGT-3′; (c) MRP2, sense primer 5′-CAAACCTC TTCTTTGCTACAGGGC-3′, antisense primer 5′-TGAAGTTCAAGGCCAGCT-3′, and probe 5′-TTCTGGTGTGTTT CTTCTTATTCTAGCACGC-3′; and (d) MRP3, sense primer 5′-CTTAAGACTCTCCCCTCAACTGC-3′, antisense primer 5′-GGTCAGTTCCTTGGCCT-3′, and probe 5′-AGT GGTGTCTAGGAAAGCAGTCCGAGATCT-3′. A hybridization probe specific for each PCR product was labeled with a reporter fluorescent dye (6-carboxyl-fluorescein or 2,7-dimethoxy-4,5-dichloro-6-carboxy-fluorescein) at the 5′ end and a quencher fluorescent dye (6-carboxy-tetramethyl-rhodamine) at the 3′ end. Reaction solutions (50 μl) contained 5 μl of 10× reverse transcription sample prepared as described previously (29), 5 μl of each 3 μM primer pair, 5 μl of 2 μl TaqMan probe, 5 μl of dH2O, and 25 μl of 1X PCR mix (1.25 units of Ampli-Taq DNA polymerase, 1X PCR reaction buffer, and 0.5 unit of amperase; Perkin-Elmer Applied Biosystems). The Ct values corresponding to the cycle number at which the fluorescent emission monitored in real time reached a threshold of 10 SDs above the mean baseline from cycles 1–15 were measured. Serial 1:10 dilutions of plasmid DNA were analyzed for each target cDNA. These served as standard curves from which we determined the rate of change of threshold cycle values. Cycling parameters were as follows: 2 min at 50°C and 10 min at 95°C followed by 40 cycles of 30 s at 95°C and 2 min at 60°C.

Immunohistochemistry. Resected specimens of colorectal cancer were fixed in 10% formaldehyde, processed, and embedded in paraffin (30). Five-μm-thick sections were cut and stained immunohistochemically using the avidin-biotin-peroxidase complex method with mouse monoclonal antibodies for Pgp (C219) and MRP1 (QCRL-1) and rabbit polyclonal antibodies for MRP2 (25) as described previously.

SDI Test. The SDI test was performed using the methods described previously (31). In brief, tumor tissues were cut with scissors into fragments that were put into a sterile flask containing a mixture of pronase (protease type XXV; Sigma, St. Louis, MO) and collagenase (type 1; Sigma) in McCoy’s 5A (Life Technologies, Inc.) solution with antibiotics. Enzymatic disaggregation was performed for 20 min at 37°C with gentle stirring.

Table 1. Clinicopathological parameters (n = 45)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>25</td>
<td>55.6</td>
</tr>
<tr>
<td>Female</td>
<td>20</td>
<td>44.4</td>
</tr>
<tr>
<td>Age, (yrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>61.7</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>25–87</td>
<td></td>
</tr>
<tr>
<td>Site of primary tumor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td>30</td>
<td>66.3</td>
</tr>
<tr>
<td>Rectum</td>
<td>15</td>
<td>33.3</td>
</tr>
<tr>
<td>TNM stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8.9</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>28.9</td>
</tr>
<tr>
<td>3a</td>
<td>12</td>
<td>26.7</td>
</tr>
<tr>
<td>3b</td>
<td>15</td>
<td>33.3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Differentiation of tumor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well-differentiated</td>
<td>31</td>
<td>68.9</td>
</tr>
<tr>
<td>Moderately differentiated</td>
<td>11</td>
<td>24.4</td>
</tr>
<tr>
<td>Poorly differentiated</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Recurrence</td>
<td>3</td>
<td>6.7</td>
</tr>
</tbody>
</table>
and was ended by adding sufficient amounts of MEM. Aliquots (100 ml) of this single cell suspension (3.0 \times 10^5 cells/ml) were dispensed into 96-well microtiter plates and incubated at 37°C in a humidified 5% CO2 atmosphere for 3 days in the presence of anticancer drugs. Each anticancer drug was tested at 10^3 the peak plasma concentration. The chemosensitivity to a certain drug is given as a percentage of the succinate dehydrogenase activity in drug-treated cells compared with control cells. Chemosensitivity was defined as sensitive or resistant to the drug when the succinate dehydrogenase activity of the drug-treated cells decreased to less than 50% or more than 76% of the control, respectively.

Statistical Analysis. The correlations between groups were determined using Spearman’s test. Spearman’s test is usually used for nonparametric analysis when it is unclear whether the variables show normal distribution. Probability values of less than 0.05 were significant. The Spearman’s correlation coefficient (r) and associated probability (P) were calculated for each combination of mRNA and SDI data sets. The relationships between the MRP2 mRNA expression level and the drug sensitivity data sets were calculated using the same method. Four groups of T:N (tumor:normal) mRNA, the mRNA expression level of the cancerous region divided by the expression level of the noncancerous region, were compared using repeated-measures ANOVA with Bonferroni’s correction for multiple comparison. Probability values of less than 0.05 were statistically significant. We determined that a strong correlation would have a r value of 0.7 or above and that a weak correlation would have a r value of less than or equal to 0.5.

RESULTS

To compare the mRNA levels of **MDR1**, **MRP1**, **MRP2**, and **MRP3** in human colorectal carcinomas and adjacent noncancerous tissues, we examined surgically removed colorectal samples from 45 patients using quantitative RT-PCR with spe-
Specific primers and probes. The data were standardized against GAPDH mRNA levels of both cancerous and noncancerous regions. Fig. 1 shows the expression of ABC transporters MDR1, MRP1, MRP2, and MRP3 in both noncancerous regions and cancerous regions. In noncancerous regions, MRP3 mRNA expression was the highest, and MDR1 and MRP1 mRNA expressions were moderate among the four transporter genes. Very low or little expression of MRP2 was seen in noncancerous regions (Fig. 1). The expression of MDR1 and MRP3 mRNA decreased, whereas MRP1 mRNA expression was unchanged in cancerous regions compared with noncancerous regions. However, the expression of the MRP2 gene was significantly increased in the cancerous tissues compared with noncancerous regions (Fig. 1).

In the noncancerous tissues, MRP1, MRP2, and MRP3 mRNA expression showed a significant correlation with each other, and MRP1 mRNA expression had the strongest correlation with MRP3 mRNA expression (Table 2). In the cancerous tissues, all pairwise comparisons of mRNA expression showed significant correlations, and the MRP1 mRNA level also showed the strongest correlation with the MRP3 mRNA level (Table 2).

We next determined the relative expression of these four ABC transporter genes in cancerous tissue compared with noncancerous tissue. Table 3 summarizes the data of Fig. 1. Of the four ABC transporters, MDR1 mRNA expression was the highest, followed by MRP1, MRP3, and MRP2. The expression of MDR1 and MRP3 mRNA decreased, whereas MRP1 mRNA expression was unchanged in cancerous regions compared with noncancerous regions. However, the expression of the MRP2 gene was significantly increased in the cancerous tissues compared with noncancerous regions (Fig. 1).

![Image](image_url)

Fig. 2 Immunologically stained colorectal cancer sections. Well-differentiated adenocarcinomas were stained with a monoclonal antibody against Pgp (C219; ×80; A and B). Noncancerous mucoepithelium (A) was stained with Pgp, and Pgp was detected in the noncancerous (A) and cancerous (B) regions. Well-differentiated adenocarcinomas were stained with a polyclonal antibody against MRP2 (×50; C and D). MRP2 was not evident in noncancerous regions (C) but was detected in cancerous regions (D).

<table>
<thead>
<tr>
<th></th>
<th>MDR1</th>
<th>MRP1</th>
<th>MRP2</th>
<th>MRP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>>3-fold</td>
<td>7 (15.6%)</td>
<td>7 (15.6%)</td>
<td>19 (42.2%)</td>
<td>1 (2.2%)</td>
</tr>
<tr>
<td>1-3-fold</td>
<td>8 (17.8%)</td>
<td>18 (40.0%)</td>
<td>6 (13.3%)</td>
<td>9 (20.0%)</td>
</tr>
<tr>
<td><1-fold</td>
<td>30 (66.7%)</td>
<td>20 (44.4%)</td>
<td>20 (44.4%)</td>
<td>35 (77.8%)</td>
</tr>
<tr>
<td>Fold increase</td>
<td>0.50 ± 1.14</td>
<td>0.98 ± 3.70</td>
<td>2.24 ± 13.37</td>
<td>0.39 ± 3.35</td>
</tr>
</tbody>
</table>

* The data were derived from Fig. 1.
* Significant ($P < 0.05$) compared with the other transporters.
transporters, only MRP2 showed a significant ($P < 0.05$) increase in the cancerous regions compared with their counterparts. Moreover, 19 of 45 patients (42.2%) showed a >3-fold increase in MRP2 expression in cancerous regions compared with noncancerous regions. However, only 1–7 of 45 patients (2.2–15.6%) showed a >3-fold increase in expression of the other ABC transporters, MDR1, MRP1, and MRP3 (Table 3).

Fig. 2 shows the results of immunostaining analysis with anti-Pgp and anti-MRP2 antibodies. Positive staining for Pgp and MRP2 was found primarily in the cytoplasm and cytoplasmic membrane of cancer cells. Each case also had increased expression of Pgp and MRP2 in the cancerous region compared with adjacent noncancerous tissue (Fig. 2). Immunostaining with antibodies against Pgp and MRP2 in the other five samples showed that MDR1 and MRP2 mRNA levels were comparable to Pgp and MRP2 protein levels in these cases (data not shown).

To investigate the effects of up-regulation of MRP2 expression in response to anticancer agents, we searched for correlations between MRP2 mRNA expression and drug response to various anticancer agents, including cisplatin, 5-fluorouracil, mitomycin C, doxorubicin, etoposide, and a camptothecin derivative (CPT-11). The averages of succinate dehydrogenase activities were $67.5 \pm 20.8\%$ for cisplatin, $77.2 \pm 20.1\%$ for 5-fluorouracil, $71.6 \pm 22.4\%$ for mitomycin C, $83.9 \pm 18.2\%$ for doxorubicin, $66.1 \pm 30.0\%$ for etoposide, and $88.0 \pm 11.0\%$ for CPT-11. We previously proposed that succinate dehydrogenase activities of $<50\%$ indicated drug sensitivity, whereas succinate dehydrogenase activities of $>76\%$ indicated drug resistance (31). According to these criteria, the colorectal carcinomas appeared to be partially sensitive to cisplatin, 5-fluorouracil, mitomycin C, and etoposide but was resistant to CPT-11 and doxorubicin. Spearman’s correlation coefficients (r) and associated probabilities (P) were calculated for each combination of MRP2 mRNA expression and succinate dehydrogenase activity. SD, succinate dehydrogenase.

![Fig. 3](image_url)

Fig. 3 Correlation between MRP2 mRNA expression and succinate dehydrogenase activity of cisplatin (A), 5-fluorouracil (B), mitomycin C (C), and doxorubicin (D). The Spearman’s correlation coefficient (r) and associated probability (P) were calculated for each combination of MRP2 mRNA expression and succinate dehydrogenase activity. SD, succinate dehydrogenase.

DISCUSSION

We first compared the mRNA levels of four ABC transporter family genes, MDR1, MRP1, MRP2, and MRP3, in car-
Expression of MRP2 in Colorectal Cancer

Colorectal carcinoma regions and adjacent noncancerous tissue in 45 patients with colon cancer, using a quantitative RT-PCR assay. Consistent with previous studies (23, 26, 32, 33), MDR1, MRP1, and MRP3 were intrinsically expressed in normal colon mucosa tissue (Fig. 1). However, in colorectal cancers, either a decrease or no change in MDR1 mRNA levels occurred (Table 3), findings consistent with previous studies (8, 34). We further observed a decreased expression of MRP3 in colon cancer regions compared with noncancerous regions (Table 3). Decreased expression of both MDR1 and MRP3 in cancerous regions may perhaps lead to a sensitivity to anticancer agents targeted by both transporters. MRP1 and MDR1 are not coexpressed in colon cancers (12, 20), as we also observed (Table 2). In contrast, MRP1 and MRP3 were coexpressed, suggesting coordinate regulatory mechanisms for both ABC transporter genes in colorectal tissues and colorectal cancers. MRP2 is not intrinsically expressed in normal colorectal mucosa (24). Unlike MDR1, MRP1, and MRP3, we observed up-regulation of MRP2 in cancerous regions compared with noncancerous regions in colorectal carcinoma tissues (Table 3). MRP2 might be involved in the membrane transport of endogenous substrates, such as glutathione and glutathione conjugates, in cancerous regions of colorectal cancers. The manner in which MRP2 is specifically up-regulated in malignant colorectal tumors remains to be determined.

Of the six anticancer agents prescribed for treatment of colorectal carcinomas, we observed a significant correlation between MRP2 mRNA levels and drug response to cisplatin (r = 0.3236; P = 0.0321). MRP2 levels thus appeared to be more closely correlated with response to cisplatin than with responses to 5-fluorouracil, mitomycin C, doxorubicin, etoposide, and CPT-11. Drug sensitivities to these agents were assayed using the SDI test. SDI tests can often predict the drug sensitivity of cancer cells in patients (35), but the fact can also be argued that SDI testing does not always reflect in vivo drug sensitivity (31). This study suggests that MRP2 could be a sensitivity marker for cisplatin in patients with colorectal carcinoma. Expression of MRP2 increased in cisplatin-resistant cell lines from various human tumor types, including colon cancer (21). Drug sensitivity to cisplatin, as well as vincristine and camptothecins, is also increased in stable transfectants of antisense MRP2 cDNA in hepatic cancer cell lines (25). Sensitivity to vinblastine changes in MRP2 cDNA-transfected canine kidney cell lines (36), transfection of MRP2 cDNA confers drug resistance against methotrexate and camptothecin derivatives (37–39), and stable transfection of MRP2 cDNA into both polarized and nonpolarized cells results in acquisition of drug resistance against cisplatin as well as vincristine, camptothecins, and methotrexate (36, 40, 41). However, it is unclear whether the expression of MRP2 is directly associated with drug sensitivity to cisplatin, and whether MRP2 can increase the transport of cisplatin itself, the cisplatin-glutathione conjugate, and both glutathione and cisplatin is unclear. Further study of the molecular basis of the GS-X pump for cisplatin, as originally proposed by Ishikawa et al. (42), is required.

In human lung cancer cell lines, MRP mRNA levels correlate with resistance to doxorubicin (43). A strong correlation of MRP3 mRNA levels with drug resistance against doxorubicin exists in lung cancer cell lines (27). Moreover, mRNA levels of both MRP1 and MRP3 correlate with resistance against vincristine, etoposide, and cisplatin in human lung cancer cell lines (27). In this study, MDR1, MRP1, and MRP3 were not correlated with sensitivity to anticancer agents in colorectal cancers.

In conclusion, among MDR1, MRP1, MRP2, and MRP3, only MRP2 was up-regulated in malignant colorectal tumors and correlated with resistance to cisplatin when surgically resected clinical samples from 45 patients were analyzed. Increased expression of MRP2 might cause resistance to cisplatin in patients with human colorectal cancers.

ACKNOWLEDGMENTS

We thank Morimasa Wada, Sei Haga, and Takanori Nakamura for helpful discussion.

REFERENCES

Downloaded from clincancerres.aacrjournals.org on September 22, 2017. © 2000 American Association for Cancer Research.

22. Ito, K., Suzuki, H., Hirohashi, T., Kume, K., Shimizu, T., and Sugiyama, Y. Biliary excretion mechanism of CPT-11 and its metabo-

Increased Expression of an ATP-binding Cassette Superfamily Transporter, Multidrug Resistance Protein 2, in Human Colorectal Carcinomas

Eiji Hinoshita, Takeshi Uchiumi, Ken-ichi Taguchi, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/6/6/2401

Cited articles
This article cites 40 articles, 19 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/6/6/2401.full#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/6/6/2401.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.