Oral Antisense that Targets Protein Kinase A Cooperates with Taxol and Inhibits Tumor Growth, Angiogenesis, and Growth Factor Production

Giampaolo Tortora, Roberto Bianco, Vincenzo Damiano, Gabriella Fontanini, Sabino De Placido, A. Raffaele Bianco, and Fortunato Ciardiello

INTRODUCTION

Protein kinase A type I (PKAI) transduces mitogenic signals from different growth factors and oncogenes and is overexpressed in the majority of human cancers. We and other investigators previously have reported that different PKAI inhibitors, including antisense oligonucleotides, have antitumor activity. In this study, we used a novel hybrid DNA/RNA mixed-backbone oligonucleotide (MBO) targeting the PKAI subunit R1a. We demonstrated that after oral administration, the MBO antisense R1a inhibited the growth of human colon cancer xenografts in nude mice and showed a cooperative antitumor effect with Taxol, which outlasted treatment withdrawal and significantly prolonged survival of mice compared with untreated controls or to single-agent-treated mice. Immunohistochemical analysis of tumor specimens showed inhibition of target protein RIa and of growth factor expression along with a marked inhibition of angiogenesis and an increase in p27 expression. In conclusion, a novel MBO that targets PKAI administered p.o. is effective and cooperates with the anticancer drug Taxol on both tumor growth and expression of factors involved in the control of cell proliferation, cell cycle, and angiogenesis. Because the MBO described has completed a Phase I trial involving i.v. injection in cancer patients, these results provide the biological rationale of its activity after oral administration and may be translated into a therapeutic strategy in a clinical setting.

REFERENCES

1 The abbreviations used are: PKA, protein kinase A; TGFα, transforming growth factor α; EGF, epidermal growth factor; EGFR, EGF receptor; AR, amphiregulin; MBO, mixed-backbone oligonucleotide.

Received 12/31/99; revised 3/14/00; accepted 3/16/00.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
DNA/RNA structure containing 2′-O-methyl-ribonucleosides at the 5′ and 3′ ends has been synthesized. This MBO (GEM 231) has completed a phase I clinical trial in cancer patients and showed negligible toxicity (19). Moreover, it has shown good bioavailability and consistent concentrations in tumor xenografts after oral administration in nude mice (16).

In this study, we investigated the effect of the novel 2′-O-methyl hybrid antisense Rlα given p.o., alone and in combination with Taxol, on the growth of human cancer xenografts and on the expression of a variety of factors involved in the control of proliferation, cell cycle, and angiogenesis.

MATERIALS AND METHODS

MBOs. MBOs were kindly provided by Dr. Sudhir Agrawal (Hybridon, Inc, Milford, MA). The antisense Rlα MBO is a hybrid oligonucleotide targeted against the NH2-terminal 8–13 codons of the Rlα regulatory subunit of PKA (12) with the following sequence GCCUGGCCTCCTCA-CUGGC; the control is a scramble MBO obtained by mixing all 4 nucleosides at each position. The two oligodeoxynucleotides contain phosphorothioate internucleotide linkages (regular font indicates the nucleosides flanking each position) and 2′-O-methyl-ribonucleoside modifications (in italics). MBOs were synthesized, identified, and purified by 31P nuclear magnetic resonance, capillary gel electrophoresis, hybridization melting temperatures, and the ratio of the absorbance at 269 nm to the mass according to the protocol described previously (20).

GEO Xenografts in Nude Mice. Five- to 6-week-old female Balb/cAnNCrlBR athymic (nu/nu) mice were purchased from Charles River Laboratories (Milan, Italy). The research protocol was approved, and the mice were maintained in accordance to institutional guidelines of the University of Naples Animal Care and Use Committee. Mice were acclimated to the University of Naples Medical School Animal Facility for 1 week prior to receiving injections of cancer cells. GEO human colon cancer cells (American Type Culture Collection, Rockville, MD) were cultured in DMEM supplemented with 10% heat-inactivated fetal bovine serum, as reported previously (21). Cells (107) were then resuspended in 200 μl of Matrigel (Collaborative Biomedical Products, Bedford, MA) and injected s.c. into mice (21). After 7 days, when well-established tumors of ~0.2 cm3 in diameter were detected, mice were randomized to receive different treatments. Ten mice per group were treated i.p. with Taxol and/or either antisense Rlα or scramble MBOs as described in the “Results.” In the experiments in which the MBOs were administered p.o., the daily dose of oligonucleotides was dissolled in 5% dextrose solution, and untreated mice received the 5% dextrose solution alone. Tumor volume was measured using the formula π/6 × larger diameter × (smaller diameter)2, as reported previously (21).

Immunohistochemical Analysis. Formalin-fixed, paraffin-embedded tissue sections (5 μm) were processed as reported previously (22). Reactions with the appropriate primary antibody, secondary biotinylated goat antibody (1:200 dilution, Vectastain ABC kit; Vector Laboratory, Burlingame, CA), avidin-biotinylated horseradish peroxidase H complex, diamino-benzidine, and hydrogen peroxide, and counterstaining with hematoxylin were as described previously (22).

The following antibodies were used in this study. An anti-Rlα monoclonal antibody (Transduction Laboratories, Lexington, KY) was used at 1:100 dilution, and an anti-Ki67 monoclonal antibody (clone MIB1; DBA, Milan, Italy) was used at 1:100 dilution. An anti-TGFα mouse monoclonal antibody (Ab-2, 1:100 dilution; Oncogene Science, Manhasset, NY) and an anti-AR rabbit antiserum (AR56, 1:200 dilution) were used according to the method described previously (8). Each antibody was specific for TGFα and AR and did not cross-react with the other EGF-related peptides (8). An anti-p27 monoclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA) used at 1:100 dilution.

All analyses were performed in a blind fashion. To determine the percentage of positive cells, at least 1000 cancer cells per slide were counted and scored at ×40 magnification with a microscope.

New blood vessels were detected as described previously (23), using a monoclonal antibody against the human factor VIII-related antigen (Dako, Milan, Italy) at the dilution of 1:50 and stained with a standard immunoperoxidase method (Vectastain ABC kit; Vector). Each slide was first scanned at low power (×10–100 magnification), and the area with the higher number of new vessels was identified (hot spot). This region was then scanned at a microscope magnification of ×250 (0.37 mm2). Stained blood vessels were counted in each of five different fields. For individual tumors, microvessel count was scored by averaging the five fields counts.

Statistical Analysis. The Student’s t test (24) and the Mantel-Cox log-rank test (25) were used to evaluate the statistical significance of the results. All reported P values were two-sided. All analyses were performed with the BMDP New System statistical package, version 1.0 for Microsoft Windows (BMDP Statistical Software, Los Angeles, CA).

RESULTS

We investigated the antitumor activity of the antisense Rlα MBO in nude mice bearing GEO colon cancer xenografts, using either the i.p. or the oral route of administration. When established GEO tumors of ~0.2 cm3 were detectable, groups of 10 mice were treated i.p. with either the antisense Rlα or the scramble MBO, at doses of 1, 5, or 10 mg/kg daily on days 7–11 and 14–18. Fig. 1 shows that antisense Rlα i.p. caused a dose-dependent inhibition of growth up to 50% at the dose of 10 mg/kg, whereas the scramble MBO was unable to do so even at a dose of 10 mg/kg. It has been shown that the MBOs, including the antisense Rlα used in the present study, are absorbed in the gastrointestinal tract and distributed to major organs (15, 16). Therefore, in parallel groups of 10 mice, we performed the same experiment but administered the MBOs p.o. As shown in Fig. 2, oral antisense Rlα caused a dose-dependent inhibition of growth, which achieved ~60% inhibition at the dose of 10 mg/kg after two cycles of treatment compared with untreated mice, whereas the tumor volume of the mice treated with the scramble MBO was only moderately inhibited.

We reported previously that a methylphosphonate MBO antisense Rlα administered i.p. in combination with Taxol causes a cooperative growth inhibition of GEO tumor xenografts (17). We investigated whether such cooperative effect
with Taxol could be obtained with the novel hybrid MBO administered p.o. On day 7 after tumor cell injection, one group of 10 mice was treated with Taxol at a dose of 20 mg/kg i.p.; the treatment was then repeated every 2 weeks (days 21 and 35) for a total of three cycles. Two other groups of 10 mice were treated with either the antisense RI or the scramble MBO, at a dose of 10 mg/kg p.o., daily for 5 days (days 8–12). Treatment was repeated every 2 weeks (days 22–26 and 36–40) for a total of three cycles. Two more groups of 10 mice were treated with both Taxol and either MBO, with the Taxol administered at a dose of 20 mg/kg i.p. on day 7, followed by either antisense RI or scramble oligonucleotide, administered p.o. for 5 days (days 8–12). The sequential treatment was repeated with the same schedule every 2 weeks for a total of three cycles. As illustrated in Fig. 3A, treatment with either Taxol or antisense RI alone inhibited tumor growth compared with control untreated mice or mice treated with the scramble MBO. Student’s t test was used to compare tumor volumes among different treatment groups at
day 35 after GEO cell injection. The antisense RNA was an effective treatment (Taxol versus control, P = 0.05; antisense RNA versus control, P = 0.02; Taxol plus antisense RNA versus control, P = 0.01), causing >50% reduction of tumor volume at the completion of the three cycles of treatment. However, shortly after the end of the treatment, GEO tumors resumed the growth rate of those in untreated mice or in mice treated with the scramble MBO. When the cytotoxic drug and the MBOs were used in combination, we observed a marked and sustained inhibition of tumor growth in mice receiving the oral antisense RNA in combination with Taxol (Taxol plus antisense RNA versus control, P = 0.01; Taxol plus antisense RNA versus antisense RNA, P = 0.03), whereas administration of the scramble MBO after Taxol showed an effect similar to that of the cytotoxic agent alone (Taxol plus scramble MBO versus control, P = 0.05). In fact, tumors in mice treated with Taxol and antisense RNA grew very slowly for ~60 days after the end of the treatment, and then resumed a faster growth rate (Fig. 3A).

Within ~5 weeks, GEO tumors reached a size not compatible with normal life in all untreated mice (Fig. 3B) and in mice treated with the scramble oligonucleotide. A small increase in mice survival was observed in the group treated with Taxol
Antitumor Activity of Oral Antisense PKAI

Analysis was performed at the end of the second cycle of treatment (day 27) on three different tumor specimens randomly selected in each group. Numbers represent the percentage of positive cell staining for each antigen (see “Materials and Methods”). Numbers in parentheses represent the SD (%) in the measurement of each biological parameter. The intensity of staining is represented by a score from + to +++.

<table>
<thead>
<tr>
<th>Ki67</th>
<th>Rlα</th>
<th>AR</th>
<th>TGFrα</th>
<th>p27</th>
<th>Vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>40% (±5)</td>
<td>70% (±4)</td>
<td>85% (±7)</td>
<td>50% (±4)</td>
<td>10% (±2)</td>
</tr>
<tr>
<td>Taxol</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>AS Rlα MBO</td>
<td>20% (±2)</td>
<td>60% (±5)</td>
<td>70% (±5)</td>
<td>50% (±3)</td>
<td>10% (±2)</td>
</tr>
<tr>
<td>Scramble MBO</td>
<td>28% (±5)</td>
<td>35% (±3)</td>
<td>50% (±3)</td>
<td>20% (±3)</td>
<td>15% (±3)</td>
</tr>
<tr>
<td>AS Rlα MBO + Taxol</td>
<td>30% (±4)</td>
<td>60% (±5)</td>
<td>85% (±8)</td>
<td>50% (±3)</td>
<td>8% (±2)</td>
</tr>
<tr>
<td>Scramble MBO + Taxol</td>
<td>6% (±1)</td>
<td>15% (±3)</td>
<td>25% (±3)</td>
<td>30% (±3)</td>
<td>25% (±4)</td>
</tr>
</tbody>
</table>

alone, which was similar to that of mice treated with Taxol plus the scramble oligonucleotide (data not shown). Treatment with antisense Rlα alone also resulted in a better survival compared with the control group. The delayed GEO tumor growth observed in the group treated with Taxol plus antisense Rlα was accompanied by a prolonged life span in mice that, analyzed with the log-rank test, was significantly different from controls. This delayed tumor growth was also observed in the group treated with Taxol plus antisense Rlα, which was similar to that of mice treated with Taxol plus scramble MBO plus Taxol (P < 0.0001). In fact, all mice treated with Taxol plus antisense Rlα MBO were alive 10 weeks after tumor injection, representing the only animals alive at this time point. Furthermore, ~50% of mice in this group were still alive after 15 weeks. The combined treatment with Taxol and antisense Rlα was well tolerated: no weight loss or other signs of acute or delayed toxicity were observed.

Tumor specimens from the different groups of mice were examined by immunohistochemical analysis to evaluate the expression of a variety of biological parameters. Table 1 reports the results of the analyses performed on three tumor samples, randomly selected in each group after two cycles of treatment, on day 27. Treatment with antisense Rlα inhibited the expression of the target protein Rlα and of Ki67, a protein related to cell proliferation (Fig. 4). When the MBO antisense Rlα was used in combination with Taxol, the combination markedly reduced Rlα expression and almost completely suppressed cell proliferation, as demonstrated by Ki67 staining (Table 1 and Fig. 4). Interestingly, no other treatment was able to affect Rlα expression, not even Taxol, although it showed antitumor activity and ~50% inhibition of expression of Ki67 (Table 1). These results suggest that inhibition of Rlα expression can be selectively obtained only by treatment with the specific antisense Rlα MBO and, therefore, is not a consequence of growth inhibition.

We then examined the expression of several factors that have been implicated in the growth and metastasis of colon cancer, such as TGFFrα and AR (7, 8). Unlike Taxol, treatment with antisense Rlα inhibited the expression of TGFrα and AR. Inhibition of AR was further enhanced when Taxol was used in combination with antisense Rlα. Reduced expression of p27, a protein involved in cell cycle control, correlates with a worse prognosis in colon cancer patients (26). We have demonstrated that, unlike Taxol, oral antisense Rlα alone is able to increase p27 expression. Moreover, a 2.5-fold increase in cells staining intensely positive for p27 was observed in the tumor samples from mice treated with Taxol and antisense Rlα (Table 1).

In recent years, the key role of tumor-induced neovascularization in neoplastic development, progression, and metastasis has been elucidated (27). In the present study, we quantified by immunohistochemistry the tumor-induced vascularization, as microvessel count, in the most intense areas of neovascularization using a monoclonal antibody for an anti-factor VIII-related antigen (23). As reported in Table 1, a significant inhibition of staining was obtained with antisense Rlα (~80%) as well with Taxol (>60%) compared with samples from untreated mice or mice treated with the scramble MBO. Combined treatment with Taxol and antisense Rlα completely suppressed vessel formation in GEO tumors, demonstrating that the cooperative antitumor effect was associated with marked inhibition of several factors that control cell cycle, proliferation, and angiogenesis of this human colon cancer model.

DISCUSSION

The central role of PKAI in mitogenic signaling and cell cycle progression in the process of neoplastic transformation renders this kinase a relevant target for cancer growth control. Several pharmacological tools devised in the past years to inhibit PKAI expression and function, including antisense oligonucleotides that target its Rlα subunit, have shown antitumor activity in vitro and in vivo. A novel class of modified oligodeoxynucleotides with mixed backbones, the MBOs, has demonstrated improved pharmacokinetic properties and antitumor activity in vivo. The most advanced of this class of oligodeoxynucleotides, a hybrid RNA/DNA MBO antisense Rlα, contains 2-O-methyl-ribonucleosides at the 5′ end. This compound (GEM 231) given by i.v. route, has successfully completed a phase I study in cancer patients, with minor toxicity (19). GEM 231 was administered i.v. in a 2-h infusion twice weekly. Cumulative toxicity after 4 weeks was seen, with a grade III increase in transaminases in three of six patients at 240 mg/m2 and in three of three patients at 360 mg/m2. 

Downloaded from clincancerres.aacrjournals.org on April 14, 2017. © 2000 American Association for Cancer Research.
toxicities were negligible. Therefore, 240 mg/m² for a 4-week treatment was considered the recommended dose for phase II studies (19).

In the present study, we have shown that this compound has antitumor activity in mice bearing GEO human colon carcinoma xenografts when administered p.o.

A most promising strategy in cancer treatment is the integration of conventional drugs with novel agents able to selectively target the pathways controlling mitogenic signaling and angiogenesis. It has been proposed that the success of this strategy relies on the possibility of affecting the expression and function of the mitogenic proteins, growth factors, and angiogenic factors responsible for tumor growth and relapse, inducing a status of tumor dormancy (27). In this study, we have demonstrated that MBO antisense Rlα administered p.o. has a cooperative antitumor effect when used in combination with Taxol. The growth inhibitory effect is sustained, lasting ~10 weeks after suspension of treatment and causing a remarkable increase in the survival of treated mice. We have demonstrated that the oral antisense Rlα inhibits the expression of its target Rlα protein in the tumor in a selective fashion. In fact, although Taxol also inhibits tumor growth and reduces expression of the proliferation-related protein Ki67, it does not affect Rlα expression. Moreover, oral antisense Rlα alone, or even more dramatically when used in combination with Taxol, inhibits the expression of growth factors of the EGF family, such as TGFα and AR, and neovascularization. It has been demonstrated that the cyclin-dependent kinase inhibitor p27 is directly related to cell entry into S phase and proliferation and that reduction of its expression correlates with a poor prognosis in colon cancer patients (26). We have shown that the combined treatment with oral antisense and Taxol increases p27 expression.

A clinically relevant aspect of this report is provided by the tumor model studied and by the schedule of drug administration used. In fact, in GEO xenograft-bearing mice, treatment was started when well-established palpable tumors were detectable, mimicking a locally advanced tumor mass. Moreover, this schedule of treatment could be translated into a clinical setting because the cytotoxic agent is administered in repeated cycles in combination with the Rlα antisense.

Our results represent the first demonstration of the antitumor activity of a combination of a second-generation hybrid oligonucleotide that targets a mitogenic protein after oral administration and a cytotoxic drug like Taxol. Moreover, the results show that this cooperative effect can produce sustained control of cancer growth by affecting the expression of mitogenic factors, neoangiogenesis, and cell cycle controllers. These results are in agreement with the most recent observation that this MBO has antitumor activity and elevated retention in tumor tissue in different human cancer xenografts after oral administration (28). Because the antisense Rlα MBO has completed with negligible toxicity a phase I trial (19), these data collectively represent a rationale for transferring this therapeutic strategy into a clinical setting.

ACKNOWLEDGMENTS

We thank Dr. S. Agrawal for the supply of oligonucleotides and helpful discussions.

REFERENCES

Oral Antisense that Targets Protein Kinase A Cooperates with Taxol and Inhibits Tumor Growth, Angiogenesis, and Growth Factor Production

Giampaolo Tortora, Roberto Bianco, Vincenzo Damiano, et al.


Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/6/6/2506

Cited articles
This article cites 25 articles, 10 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/6/6/2506.full.html#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
/content/6/6/2506.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.