Thymidylate Synthase Expression Correlates Closely with E2F1 Expression in Colon Cancer

Mitsuko Kasahara, Yasuo Takahashi, Toshihito Nagata, Satoshi Asai, Teruo Eguchi, Yukimoto Ishii, Masashi Fujii, and Koichi Ishikawa

The 3rd Department of Surgery [M. K., T. E., Y. I., M. F.] and Department of Pharmacology [Y. T., T. N., S. A., K. I.], Nihon University School of Medicine, Tokyo 173-8610, Japan

ABSTRACT

Thymidylate synthase (TS) is thought to be one of the target genes that the E2F1 transcription factor binds to and regulates. However, the relationship between the expressions of TS and E2F1 in primary colon cancer specimens remains unclear. The aim of this study was to define the relation of TS and E2F1 gene expressions in tumor samples from 23 colon cancer patients. TS and E2F1 gene expressions were measured by TaqMan reverse transcription-PCR assay using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal standard and expressed as a TS: GAPDH or E2F1:GAPDH mRNA ratio. A close relationship was found between TS gene expression and E2F1 gene expression ($r^2 = 0.598$, $P < 0.001$) in 23 tumor samples analyzed. Surprisingly, a high correlation between TS gene expression and E2F1 gene expression was observed even in advanced tumors from stage IV colon cancer patients. These results suggest that transcription of the TS gene may be regulated by E2F1 in primary colon cancer specimens and that this gene-regulatory pathway from E2F1 to TS may be highly conserved during malignant progression. Four of the 23 patients showed TS overexpression with increased E2F1 expression. These results suggest that the ability of a tumor to increase TS expression may possibly be due to an overexpression of E2F1. Although the number of patients was relatively small, our study provides new insights into the molecular mechanisms underlying the regulation of TS expression in colon cancers.

INTRODUCTION

TS is a key enzyme in the synthesis of DNA and is the target enzyme of 5-FU, the most widely used chemotherapeutic agent for colon cancer (1-4). Previous investigations have demonstrated that the expression of TS mRNA or protein predicts overall survival for colon cancer patients and correlates with resistance to 5-FU (5, 6). Berger et al. and Swain et al. have shown that acquired resistance to 5-FU is caused by overproduction of TS as a result of gene amplification (7-9). In a study of human breast and colon cancer cell lines exposed to 5-FU, Chu et al. (10) noted that resistance correlated with increased levels of TS that resulted from a transcriptional or posttranscriptional regulatory event. Thus, mechanisms by which tumor cells may increase TS expression have been discussed in terms of the development of 5-FU resistance.

Recently, DeGregori et al. (11) have shown the genes encoding S phase-acting proteins, including TS, to be induced by the E2F1 transcription factor. Moreover, cells overexpressing E2F1, in a study of human fibrosarcoma cell lines, were reportedly resistant to 5-FU, with an up-regulation of TS expression (12). Thus, the possibility that high TS expression in tumors may be the result of E2F1 overexpression has been suggested. To date, however, the relationship between TS and E2F1 expressions has not actually been studied in surgical specimens of primary colon cancer.

In this study, we investigated the intratumoral expression of both the TS and E2F1 genes in 23 colon cancers using the TaqMan RT-PCR assay and compared the results obtained. We found that TS expression correlates closely with E2F1 expression in colon cancer specimens. Moreover, this correlation was observed in all tumors, regardless of clinical stage. We discuss herein the significance of these observations from the clinical perspective.

MATERIALS AND METHODS

Sample and RNA Preparation. Colon tumors were obtained intraoperatively from 23 colon cancer patients at the Nihon University School of Medicine (Tokyo, Japan). There were 13 men and 10 women, with a median age of 65.0 years and an age range of 43-83 years. A portion of each specimen was used for routine histopathological examinations. The tumors were classified according to the American Joint Committee on Cancer (13). None of these patients had received chemotherapy prior to the operation. All samples were immediately frozen in liquid nitrogen and stored at -80°C until further use. Total RNA was isolated using RNaseasy (Qiagen Inc., Chats-
worth, CA), and DNase treatment was performed using a MessageClean Kit (GenHunter Corp., Brookline, MA), following the manufacturer’s instructions.

TaqMan RT-PCR Assay. The TaqMan 5′ nuclease fluorogenic quantitative PCR assay that we used is a well-established method of analyzing gene expression in a wide range of samples (14, 15). Fifty microliters of reaction mixture for RT-PCR were prepared in a single tube: 30 ng of the extracted total RNA; 1× TaqMan EZ buffer [50 mM Bicine, 115 mM potassium acetate, 0.01 mM EDTA, 60 mM Passive Reference 1, 8% glycerol (pH 8.2)]; 3 mM MgCl2; 300 μM dATP, dGTP, and dCTP; 600 μM dUTP; 0.2 μM forward primer; 0.2 μM reverse primer; 0.1 μM TaqMan probe; 5 units of rTth DNA Polymerase; and 0.5 unit of AmpErase UNG (the enzymes and the buffer containing the passive reference were from Perkin-Elmer Corp.). The conditions of one-step RT-PCR were: 2 min at 50°C, 30 min at 60°C, 5 min at 95°C, and then 40 cycles of amplification for 20 s at 95°C and 1 min at 62°C. Triplicate PCR amplifications were carried out for each sample.

Primers and TaqMan Probes. Primers and the TaqMan probe for TS and E2F1 were designed in accordance with Perkin-Elmer Corp. guidelines. Primers and the TaqMan probe for GAPDH (TaqMan GAPDH control reagent kit) were also purchased. The probes were labeled with a reporter dye [FAM or JOE (2,7-dimethoxy-4,5-dichloro-fluorescein)], situated at the 5′ end of the oligonucleotide, and a quencher dye (TAMRA), located at the 3′ end. The sequences of primers and probes used were: TS-forward: 5′-CCAGAGATCGGGAGA-3′ (bases 744–763 of the TS coding sequence; Ref. 16); TS-reverse: 5′-TGAGTGCTGAAGGTCGGAGT-3′ (bases 789–809 of the TS coding sequence; Ref. 16); TS probe: 5′-FAM-CCTCGGTGTGCCTTTCAACATCGC-TAMRA-3′ (bases 765–788 of the TS coding sequence; Ref. 16); E2F1-forward: 5′-GAAGATGGTGATGGGATTTC-3′ (bases 607–627 of the E2F1 coding sequence; Ref. 17); E2F1-reverse: 5′-TTGCCAATGAGCTGGATGC-3′ (bases 1457–1474 of the E2F1 coding sequence; Ref. 17); GAPDH-forward: 5′-GAAGTGTAAGGGTGCGATGCT-3′ (bases 631–658 of the E2F1 coding sequence; Ref. 17); GAPDH-reverse: 5′-GAAGATGGTGATGGGATTTC-3′ (bases 3403–3412 of the GAPDH genomic sequence; Ref. 18); GAPDH probe: 5′-JOE-CAAGCCTTCCGGCTTACGAGCC-TAMRA-3′ (bases 3374–3393 of the GAPDH genomic sequence; Ref. 18). AmpliTaq DNA polymerase extended the primer and displaced the TaqMan probe through its 5′-3′ exonuclease activity. When the probe is intact the emission spectrum of the reporter is suppressed by the quencher. The nuclease degradation of the hybridization probe releases the reporter, resulting in increased fluorescence emission. The use of a sequence detector (ABI Prism 7700) allows measurement of the amplified product in direct proportion to the increase in fluorescence emission, continuously, during the PCR amplification. The amplification plot is examined early in the reaction, at a point that represents the logarithmic phase of product accumulation. The point representing the detection threshold of the increase in the fluorescent signal associated with the exponential growth of the PCR product for the sequence detector is defined as the cycle threshold (Ct). Ct values are predictive of the quantity of input target (Refs. 14 and 15; i.e., when the PCR conditions are the same, the larger the initial template concentration, the lower the Ct).

Statistical Analysis. The standard curve was created automatically by the ABI Prism 7700 detection system by plotting the Ct against each input amount (containing 100, 50, 10, 5, 1, or 0.1 ng) of control total RNA (total starting RNA) supplied in TaqMan EZ RT-PCR Kit (Perkin-Elmer Corp.). The coefficient of linear regression (r) for each standard curve was calculated. When the Ct value of a sample was substituted into the formula for each standard curve, the relative concentration of TS, E2F1, or GAPDH could be calculated. To normalize for differences in the amount of total RNA added to each reaction, GAPDH was selected as an endogenous RNA control. The normalized concentration of TS or E2F1, an arbitrary number that can be used to compare the relative amounts of TS or E2F1 in different samples, was determined by dividing the concentration of TS or E2F1 by the concentration of GAPDH.

Data are presented as mean ± SD. Statistical comparisons between groups of samples were made by ANOVA with the Mann-Whitney test. Differences were considered to be statistically significant when the P was <0.05. Pearson’s correlation coefficient analysis was used to evaluate the relation between TS and E2F1 expression levels.

RESULTS

Calibration Curves. For relative quantification of TS or E2F1, a standard curve was constructed using six different dilutions of control human RNA. Fig. 1 presents the standard curves for TS and E2F1 expression levels.

Expression of TS and E2F1 gene. TS and E2F1 expressions were investigated in 23 tumor samples obtained from colon cancer patients: eight in stage II, eight in stage III and seven in stage IV. The normalized concentrations of TS and E2F1 were divided by the concentration of TS or E2F1 by the concentration of GAPDH, as the endogenous control. Table 1 shows the clinicopathological factors correlating with TS and E2F1 expression. The mean levels of TS and E2F1 mRNAs in the colon tumors of all 23 patients were 0.98 and 1.52, respectively. The levels of TS or E2F1 expression for men tended to be higher than those for women; the mean respective levels of TS and E2F1 for 13 men were 1.32 and 2.11, versus 0.54 and 0.76 for the 10 women. The sex difference was significant (P < 0.05) for TS expression, but not for E2F1 expression. The median age of the 23 patients in this study was 65 years. The mean TS mRNA level for those younger than the median age was 1.04 versus 0.94 for those older than 65 years, the mean E2F1 mRNA levels 2.30 versus 1.10. TS and E2F1 expressions did not differ among stages; the mean TS mRNA

Downloaded from clincancerres.aacrjournals.org on June 6, 2017. © 2000 American Association for Cancer Research.
levels for stage II, III, and IV patients were 0.94, 0.87, and 1.16, respectively, whereas the corresponding E2F1 mRNA levels were 1.88, 1.36, and 1.30. Fig. 2 shows the significant relationship between TS and E2F1 expressions ($r^2 = 0.598$, $P < 0.001$) in the 23 tumor samples. Interestingly, at each stage, the level of TS expression correlated closely with that of E2F1 expression: stages II ($r^2 = 0.846$, $P < 0.001$), III ($r^2 = 0.868$, $P = 0.002$), and IV ($r^2 = 0.988$, $P < 0.001$).

DISCUSSION

Expression of the TS gene has been studied as a prognostic factor and a mechanism of drug resistance for various tumors, including colon cancer (5, 6). Recently, transcription factor E2F1 was suggested to regulate TS gene expression (11, 12). However, the relationship between the expression of TS and E2F1 has not actually been investigated using clinical colon cancer specimens. Moreover, the relationship between E2F1 expression of a tumor and its biological behavior remains unclear. In this study, we examined the levels of TS and E2F1 expression in 23 surgical colon cancer specimens using the TaqMan RT-PCR assay and compared the levels obtained.

As to clinicopathological variables, no significant relation was found in the current study between the expression of E2F1 and three important clinicopathological variables: age, sex, and staging (Table 1). With the exception of sex, similar results were obtained for TS expression. Previous studies found TS expression to be associated with clinical stage in colon (5, 6) and gastric cancer (19). However, there were no differences in TS expression among stages in this study. These results may be

Table 1 Associations of clinical characteristics with TS and E2F1 expressions

<table>
<thead>
<tr>
<th></th>
<th>TS/GAPDH mean ± SD</th>
<th>E2F1/GAPDH mean ± SD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>0.98 ± 1.20</td>
<td>1.52 ± 2.10</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.32 ± 1.48</td>
<td>2.11 ± 2.55</td>
<td>0.048</td>
</tr>
<tr>
<td>Female</td>
<td>0.54 ± 0.48</td>
<td>0.76 ± 1.00</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤65</td>
<td>1.04 ± 0.81</td>
<td>2.30 ± 2.94</td>
<td>NS</td>
</tr>
<tr>
<td>>65</td>
<td>0.94 ± 1.44</td>
<td>1.10 ± 1.50</td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>0.94 ± 0.72</td>
<td>1.88 ± 2.56</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.87 ± 0.61</td>
<td>1.36 ± 1.99</td>
<td>NS</td>
</tr>
<tr>
<td>IV</td>
<td>1.16 ± 2.25</td>
<td>1.30 ± 2.10</td>
<td></td>
</tr>
</tbody>
</table>

* Mann-Whitney U test.
* NS, not significant.
* American Joint Committee on Cancer staging system (11).
explained as follows. First, the sample size was small, and levels of TS and E2F1 expression were low in most (Fig. 2). Second, we evaluated TS expression using a new detection system, the TaqMan RT-PCR assay. There is a possibility that results using this new system may not be totally consistent with those using previous methods. Many samples will need to be analyzed using the TaqMan RT-PCR assay, to allow comparison of the results with those of previous studies (2, 5, 6).

This study is the first to compare TS and E2F1 expressions in the same primary colon cancer specimen. Surprisingly, a significant relationship between TS and E2F1 expressions ($r^2 = 0.598, P < 0.001$), as shown in Fig. 2, was found despite the number of patients being relatively small. Our results reinforce previous studies indicating that E2F1 is a transcription factor regulating TS expression (11, 12). We also made several novel observations. As to clinical stage, surprisingly, a high correlation between TS mRNA and E2F1 mRNA expressions was observed in stages II ($r^2 = 0.846, P < 0.001$) and III ($r^2 = 0.868, P = 0.002$), and in stage IV ($r^2 = 0.988, P < 0.001$), colon cancer. It is noteworthy that this correlation was observed regardless of clinical stage, even in advanced tumors from stage IV colon cancer patients. These results suggest that the gene-regulatory pathway from E2F1 to TS may be highly conserved during malignant progression.

Only four (two stage II, one stage III, and one stage IV) of the 23 tumors showed TS overexpression (Fig. 2), with increased E2F1 expression, although it was difficult to determine a cutoff level between high and low TS expression. These results suggest that tumors with high TS expression in these cases may be secondary to E2F1 overexpression. Similarly, DeGregori et al. (11) and Banerjee et al. (12) have shown that E2F1-overexpressing cells had increased TS levels, which is consistent with our results. Because elevated TS mRNA in colon cancer correlates with a poor response to 5-FU treatment (5), tumors with a high level of TS expression would be predicted to be 5-FU resistant. On the other hand, Banerjee et al. (12) have also shown cells overexpressing E2F1 to be more sensitive to etoposide and doxorubicin (i.e., topo II inhibitors) and SN38 (the active metabolite of irinotecan; i.e., topo I inhibitor), despite being resistant to 5-FU. Therefore, tumors with a high level of E2F1 expression, as in this study, may be more sensitive to topo I and topo II inhibitors. The levels of both E2F1 and TS mRNAs in tumors are thus potential indicators of which anticancer agents are likely to be effective for colon cancer patients. The ability to predict response and outcome based on E2F1 and TS expression in the primary tumor would provide useful information for many clinicians in planning chemotherapy.

We speculate that one mechanism by which tumor cells increase TS expression may be overexpression of E2F1, even in primary colon cancers. Because many of the genes encoding S phase-acting proteins (including DNA polymerase α, proliferating cell nuclear antigen, ribonucleotide reductase, and TS) are reportedly induced by E2F1 (11), tumors with high E2F1 expression, as demonstrated herein, may be predictive of the overexpression of not only TS but also many other genes participating in the progression of cells from the G1 to the S phase of the cell cycle. Although the ability of a tumor to overexpress TS may represent an important protective mechanism in response to 5-FU, as has previously been discussed (1, 4, 5), the possibility that many genes associated with E2F1 contribute to the mechanism of 5-FU resistance in tumors with a high level of TS expression cannot be ruled out. Additional studies are needed to define the molecular mechanism underlying the development of resistance to chemotherapy in colon cancer patients.

In conclusion, we have demonstrated that the level of TS mRNA expression correlates closely with the level of E2F1 mRNA expression; that is, E2F1 regulation of TS expression was demonstrated in colon cancer specimens. These results suggest that the ability of a tumor to overexpress TS may be due to enhanced expression of E2F1. Although the number of patients was relatively small, our study provides new insights into the molecular mechanisms underlying the regulation of TS expression in colon cancers.

REFERENCES
Thymidylate Synthase Expression Correlates Closely with E2F1 Expression in Colon Cancer

Mitsuko Kasahara, Yasuo Takahashi, Toshihito Nagata, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/6/7/2707

Cited articles
This article cites 17 articles, 14 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/6/7/2707.full.html#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
/content/6/7/2707.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.