Inhibition of Insulin-like Growth Factor I Receptor Increases the Antitumor Activity of Doxorubicin and Vincristine against Ewing’s Sarcoma Cells

Stefania Benini, Maria Cristina Manara, Nicola Baldini, Vanessa Cerisano, Massimo Serra, Mario Mercuri, Pier-Luigi Lollini, Patrizia Nanni, Piero Picci, and Katia Scotlandi

Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli, 40136 Bologna, Italy [S. B., M. C. M., N. B., V. C., M. S., P. P., K. S.]; and Dipartimento di Scienze Anatomiche Umane, Sezione di Fisiopatologia dell’Apparato Locomotore, cv Clinica Ortopedica [M. M.] and Dipartimento di Patologia Sperimentale, Sezione di Oncologia [P. L., P. N.], Università degli Studi di Bologna, 40126 Bologna, Italy

ABSTRACT

Innovative treatment modalities are needed for Ewing’s sarcoma (ES), a neoplasm with a disappointingly low survival rate despite the use of aggressive multimodal therapeutic approaches. We and others (D. Yee et al., J. Clin. Invest., 86: 1806–1814, 1990; K. Scotlandi et al., Cancer Res., 56: 4570–4574, 1996) have previously shown the existence and the pathogenetic relevance of an autocrine loop, mediated by the insulin-like growth factor-I receptor (IGF-IR), which is crucial for survival and proliferation of ES cells in vitro. Moreover, we reported that the IGF-IR-blocking monoclonal antibody (MAb), αIR3, as well as suramin, a drug that can interfere with growth factor by binding to the receptors, inhibited both the tumorigenic and the metastatic ability of ES cells in athymic mice. In this study, we analyzed whether agents that can block the IGF-IR-mediated loop are of value in association with conventional cytotoxic drugs for the design of more effective therapeutic regimens. Both αIR3 MAb and suramin treatment significantly increased the antitumor in vitro effects of doxorubicin and vincristine, two drugs with a leader action on ES. These findings were obtained by both simultaneous and sequential treatments. Analysis of the proliferation rate and of apoptosis revealed that αIR3 MAb and suramin significantly enhanced the G1-phase rate induced by doxorubicin, without substantially affecting doxorubicin-G2-M-blockage of cell cycle, and significantly increased the induction of apoptosis, which confirmed that the specific blockage of IGF-IR deprives ES cells of an important tool for the prevention of drug-induced apoptosis. Moreover, combination treatments of doxorubicin plus αIR3 MAb significantly increase the doxorubicin-induced impairment of the ability of ES cells to form colonies in soft agar. In conclusion, we showed that, in ES, the blockage of IGF-IR by a neutralizing MAb or by suramin may greatly potentiate the antitumor activity of conventional chemotherapeutic drugs.

INTRODUCTION

ES,3 which includes conventional ES, Askin’s tumor, and PNET, ranks second in frequency among primary bone tumors. It is an extremely aggressive, poorly differentiated neoplasm of uncertain histogenesis, usually arising in children and young adults. Combination chemotherapy associated with local control with surgery or radiation therapy have become standard practice in the treatment of patients with ES (1–3). However, despite the use of multimodal treatments and of very aggressive chemotherapeutic regimens, the long-term disease-free survival of ES patients is still disappointingly low, particularly in high-risk groups (2, 4, 5). The identification of valuable new therapeutic targets for the design of innovative, more effective strategies is, therefore, urgently needed. In recent years, by analyzing the role of growth factors in the pathogenesis of ES, we and others have reported on the autocrine production of IGF-I and the constant presence of its corresponding receptor, the IGF-IR, in ES cells (6, 7). IGF-IR, a membrane-bound heterotetramer receptor with intrinsic tyrosine kinase activity, is emerging as an important factor in the regulation of cell growth in different tumor types, both in vitro and in vivo. In particular, IGF-IR, activated by its ligands, appears to regulate cell growth in at least three different ways: it is mitogenic; it is mandatory for the establishment and the maintenance of the transformed phenotype; and it protects cells from apoptosis. Targeting IGF-IR by using different approaches, including antisense technologies (8–10), antibodies against IGF-IR (11, 12), and dominant negative mutants of IGF-IR (13–15), resulted in the reversal of the transformed phenotype in several types of tumor cells. In ES, the blockage of IGF-IR-mediated circuit by αIR3 MAb, which specifically neutralizes IGF-IR greatly inhibits the growth and the migration ability of ES cells in vitro (6), as well as their tumorigenic and metastatic potential.

3 The abbreviations used are: ES, Ewing’s sarcoma; PNET, peripheral neuroectodermal tumor; IGF-I, insulin-like growth factor I; IGF-IR, IGF-I receptor; IMDM, Iscove’s modified Dulbecco’s medium; MAb, monoclonal antibody; BrdUrd, bromodeoxyuridine.
metastatic ability in vivo (16). A significant inhibition of ES growth has also been successfully achieved in vivo by using suramin, a nonspecific growth factor antagonist that inhibits a number of autocrine circuits, including the IGF-IR-mediated loop (17). Therefore, impairment of IGF-IR appears to be a valuable therapeutic approach against ES. Moreover, Toretsky et al. recently reported that ES cells use an IGF-IR initiated signaling pathway through phosphoinositide 3-OH kinase and Akt for survival when treated with doxorubicin (18), indicating in IGF-IR a possible mechanism of ES resistance to chemotherapy. In this study, we investigated whether impairment of IGF-IR by αIR3 neutralizing MAb and/or suramin may be advantageously combined with conventional cytotoxic drugs for the design of more effective therapeutic regimens. Although suramin does not exert a specific action against IGF-IR, in ES/PNET its effects substantially overlap those obtained with the specific neutralizing antibody anti-IGF-IR. This is probably attributable to the peculiar and unique presence, in this neoplasm, of a autocrine IGF-IR-mediated loop (7). Suramin ability to specifically block IGF-IR function in ES/PNET was demonstrated previously (16).

MATERIALS AND METHODS

Cell Lines. The ES cell line TC-71 was a generous gift from T. J. Triche (Childrens Hospital, Los Angeles, CA). The Askin’s tumor cell line SK-N-MC was obtained from the American Type Culture Collection (Rockville, MD). The PNET cell line IOR/LAP-35 was previously established and characterized at the Istituti Ortopedici Rizzoli. Cells were routinely cultured in IMDM (Life Technologies, Inc., Paisley, Scotland), supplemented with 100 units/ml penicillin, 100 μg/ml streptomycin, and 10% inactivated FCS (Biological Industries, Kibbutz Beth Haemek, Israel). Cells were maintained at 37°C in a humidified 5% CO₂ atmosphere.

Cell Culture and Growth Assay. Cells (200,000) of TC-71 and SK-N-MC or 500,000 cells of IOR/LAP-35 were
seeded in 6-well plates in IMDM plus 10% FCS. After 24 h, cells were treated with varying concentrations of doxorubicin (range 10 µg/ml–100 ng/ml) or vincristine (range 10 µg/ml–1 ng/ml) without (control) or with the blocking MAb αIR3 (1 µg/ml; Calbiochem-Novabiochem Co., San Diego, CA) or suramin (250 µg/ml; kindly provided by Bayer AG, Leverkusen, Germany; 100 µg/ml was used for the SK-N-MC cell line because these cells are particularly sensitive to suramin). As an additional control, the isotype-matched control MAB MOPC-21 (1 µg/ml; Sigma Chemical Co., St. Louis, MO) was also used. After 96 h of treatment, cell growth was evaluated on harvested cultures by trypsin blue vital cell count. For sequential treatments, cells were distributed into 6-well plates, and treatment started the following day. Doxorubicin or vincristine were added to appropriate wells, at the concentrations indicated in the figure legends. After 12–24 h, depending on the doubling time of the cell line, the drugs were removed by washing the cells twice, followed by the addition of cell culture medium plus suramin (250 µg/ml; 100 µg/ml was used for the SK-N-MC cell line, because these cells are particularly sensitive to suramin). After 96 h of continuous presence of αIR3 MAb or suramin, cell growth was evaluated on harvested cells by trypsin blue vital cell count.

BrdUrd Labeling Index. Five thousand to 10,000 TC-71 cells/cm² were seeded in IMDM plus 10% FCS. After 24 h, cells were treated with varying concentrations of doxorubicin (range, 13–100 ng/ml) either without (control) or with αIR3 MAb (1 µg/ml), or suramin (250 µg/ml), respectively. After 36 h from seeding, cell cultures were incubated with 10 µM BrdUr (Sigma Chemical Co.) for 1 h in a CO₂ atmosphere at 37°C. Harvested cells were fixed in 70% ethanol for 30 min. After DNA denaturation with 2 N HCl for 30 min at room temperature, cells were washed with 0.1 M Na₂B₄O₇ (pH 8.5). Cells (10⁵) were then processed for indirect immunofluorescence staining, using α-BrdUr (Euro-Diagnostics, Milan, Italy) diluted 1:4 as a primary MAb, and analyzed by flow cytometry (FACSCalibur, Becton Dickinson, Milan, Italy). For the cell cycle analysis, 70% ethanol-fixed cells were pretreated with 100 µg/ml RNase for 30 min at 37°C and stained with 20 µg/ml propidium iodide before flow cytometric analysis.

Morphological Assessment of Apoptotic Nuclei. TC-71 Cells were seeded and treated with doxorubicin with or without αIR3 MAb on TC-71 cells after sequential treatments. TC-71 cells were treated with DXR or VCR at indicated concentrations on the 1st day after cell seeding for a total of 12 h. Cells were then continuously exposed to αIR3 MAb or control MOPC-21 MAb for another 96 h. Results represent the mean ± SE of triplicate experiments, *P < 0.05; **P < 0.01; ***P < 0.001; Student’s t test, compared with the corresponding dose of DXR or VCR.

![Image](https://clincancersres.aacrjournals.org/10.1158/1078-0432.CCR-01-0075.1.large.jpg)
RESULTS

Increased Cytotoxicity of Combined in Vitro Treatments. Experiments were carried out to determine the effect on the growth of ES/PNET cells of two conventional chemotherapeutic drugs (doxorubicin or vincristine) in combination with anti-IGF-IR MAb αIR3 or suramin. Continuous treatments with either αIR3 MAb or suramin produced a dose-dependent inhibition of growth (7, 16). The combined treatment with increasing concentrations of doxorubicin or vincristine and 1 µg/ml of αIR3 MAb resulted in a synergistic or additive inhibition of TC-71 cell growth with respect to the therapeutic efficacy of doxorubicin or vincristine alone, respectively (Fig. 1, A and B). The increased antitumor activity of anticancer agents was not observed when cells were treated with chemotherapeutic drugs in combination with MOPC-21 MAb, an isotype-matched MAb, used as a control. An additive cytotoxic effect was also obtained when doxorubicin or vincristine was used in combination with suramin (Fig. 2A and B).

Table 2 Sensitivity of ES/PNET cells to chemotherapeutic agents after combined sequential treatments

<table>
<thead>
<tr>
<th>Cell lines</th>
<th>Treatment</th>
<th>IC⁰ valuesa (ng/ml)</th>
<th>Fold-increase in DXR and VCR sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-71</td>
<td>DXR→medium</td>
<td>21.2 ± 1.25</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DXR→MOPC-21 MAb</td>
<td>33.8 ± 2.52</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DXR→αIR3 MAb</td>
<td>0.016 ± 0.002b</td>
<td>1325</td>
</tr>
<tr>
<td></td>
<td>DXR→suramin</td>
<td>0.301 ± 0.056b</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>VCR→medium</td>
<td>1.38 ± 0.095</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>VCR→MOPC-21 MAb</td>
<td>1.17 ± 0.042</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>VCR→αIR3 MAb</td>
<td>0.34 ± 0.025b</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>VCR→suramin</td>
<td>0.15 ± 0.023c</td>
<td>8</td>
</tr>
<tr>
<td>SK-N-MC</td>
<td>DXR→medium</td>
<td>5.9 ± 1.5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DXR→αIR3 MAb</td>
<td>0.843 ± 0.04c</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DXR→suramin</td>
<td>0.443 ± 0.02c</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>VCR→medium</td>
<td>0.466 ± 0.09c</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>VCR→αIR3 MAb</td>
<td>0.072 ± 0.01c</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>VCR→suramin</td>
<td>0.086 ± 0.005c</td>
<td>5</td>
</tr>
<tr>
<td>LAP-35</td>
<td>DXR→medium</td>
<td>2.95 ± 0.15</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>DXR→αIR3 MAb</td>
<td>0.008 ± 0.0000c</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>DXR→suramin</td>
<td>0.38 ± 0.04c</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>VCR→medium</td>
<td>2.5 ± 0.2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>VCR→αIR3 MAb</td>
<td>0.01 ± 0.008c</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>VCR→suramin</td>
<td>0.008 ± 0.002c</td>
<td>312</td>
</tr>
</tbody>
</table>

Table 2 Sensitivity of ES/PNET cells to chemotherapeutic agents after combined sequential treatments

ES/PNET cells were treated with progressive doses of doxorubicin (DXR) or vincristine (VCR) for 12–24 h and then were exposed to αIR3 MAb (1 µg/ml), or control MOPC-21 MAb (1 µg/ml), or suramin (250 µg/ml) for TC-71 and LAP-35 cells; 100 µg/ml for SK-N-MC cells). Results represent the mean ± SE of triplicate experiments.

33258 (Sigma Chemical Co.). Cells with three or more chromatin fragments were considered as apoptotic. The percentage of apoptotic nuclei was evaluated based on 1000–2000 nuclei.

Soft-Agar Assay. Anchorage-independent growth was determined in 0.33% agarose (SeaPlaque; FMC BioProducts, Rockland, ME) with a 0.5% agarose underlay. TC-71 cell suspensions (1000–3300 cells/dish) were plated in a semisolid medium (IMDM plus 10% FCS containing 0.33% agarose) with or without varying concentrations of doxorubicin (range 3–100 ng/ml) or vincristine (300 pg/ml–1 ng/ml) plus anti-IGF-IR αIR3 MAb (1 µg/ml). The MAb MOPC-21 (1 µg/ml) was also used as an additional control. Dishes were incubated at 37°C in a humidified atmosphere containing 5% CO₂, and colonies were counted after 7 days.

Statistical Analysis. Differences among means were analyzed using a two-sided Student’s t test. The analysis of drug combination effects was performed by using the fractional product method.
MAb or suramin for an additional 96 h. Again, a synergistic or additive inhibitory effect on TC-71 cell growth was observed (Fig. 3, A and B; Fig. 4, A and B) and the sensitivity of ES/PNET cells to doxorubicin or vincristine was significantly enhanced with combined sequential treatments (Table 2). These effects occurred at clinically relevant drug concentrations. The in vitro conditions closely simulated drug plasma levels that may persist for a prolonged period and are sufficient to kill tumor cells without severe toxic effects (17, 19, 20).

Analysis of Cell Cycle and Apoptosis after Combined Treatments. To ascertain whether the inhibitory effect on TC-71 cell growth in vitro was attributable to IGF-IR impairment on the cell cycle and/or induction of apoptosis, the incorporation of BrdUrd and the percentage of cells in the different phases of cell cycle, as well as the percentage of apoptotic nuclei, were analyzed after treatment with different doses of doxorubicin alone or in association with αIR3 MAb (1 μg/ml) or suramin (250 μg/ml). Doxorubicin progressively induced a consistent reduction in the G1 and S-phase rate, as well as an enhancement in the percentage of cells in G2-M phase of the cell cycle. In combined treatments, αIR3 MAb and suramin significantly increased the G1-phase rate, only partly affected the doxorubicin-induced decrease of BrdUrd-positive cells, and failed to significantly modify the G2-M blockage induced by doxorubicin (Fig. 5). With regard to the percentage of apoptotic nuclei after treatment with αIR3 MAb or with suramin and doxorubicin, a synergistic effect was observed in the combined treatment using αIR3, whereas the association of suramin with doxorubicin gave an additive increase in the apoptotic rate observed with doxorubicin alone (Fig. 6, A and B). These findings confirmed the hypothesis that the specific blockage of IGF-IR deprives ES cells of an important tool for preventing apoptosis that is induced by chemotherapeutic agents.

Effect on Colony Formation in Soft Agar. Treatment of TC-71 cells with increasing concentrations of doxorubicin induced a progressive inhibition in the number of colonies observed in semisolid medium (Table 3). Combined treatments of doxorubicin plus αIR3 MAb synergistically increased growth inhibition induced by doxorubicin alone, whereas the combined treatment with vincristine had an additive effect. These findings appeared to be specific for the blockage of IGF-IR, because MOPC-21 MAb did not affect the cytotoxic effect of doxorubicin.

DISCUSSION

In recent years, treatment modalities based on growth factor-receptor interactions or on interference with their signal transduction pathways seemed to be promising therapeutic possibilities, especially for those neoplasms such as ES in which conventional chemotherapy, although successful in many cases, has clearly shown an impasse (2). In previous studies, we found that IGF-IR signal transduction plays a critical role in the regulation of in vitro and in vivo ES cell growth (7, 16). In particular, impairment of IGF-IR functions by using a specific neutralizing MAb or suramin, a drug that is able to disrupt IGF-I
binding from its receptor (17), resulted in a loss of tumorigenic and metastatic ability of ES cells in nude mice (16). Targeting IGF-IR seems, therefore, to be of potential therapeutic help in the treatment of ES patients. However, from a clinical point of view, to be of significant therapeutic value, MAbs against IGF-IR and suramin should be effectively combined with anticancer drugs in mediating their antitumor activity. The present study showed that combined treatments using IGF-IR inhibiting agents (both αIR3 MAb or suramin) in association with conventional cytotoxic agents, such as doxorubicin and vincristine, currently included in all ES/PNET chemotherapeutic regimens, significantly enhance the in vitro cytotoxic effects of chemotherapeutic drugs.

Most anticancer agents, including doxorubicin and vincristine, kill cancer cells by inhibiting cell cycle and/or inducing apoptosis (21–23). The apoptotic action of chemotherapeutic drugs has been extensively studied in the last few years, and it has been claimed to be the main mechanism of action. On the other hand, IGF-IR, activated by its ligands, is emerging as a powerful inhibitor of apoptosis induced by a variety of agents, including anticancer drugs and ionizing and nonionizing radiation (24–27). In particular, Dunn et al. (27) first showed that IGF-I could induce a 20–40% increase in cell survival of breast cancer cells treated with clinically relevant and functionally diverse anticancer drugs, which supported the idea that IGF-I may significantly contribute to decreasing the effectiveness of chemotherapy. In ES, a recent study clearly indicates that IGF-I can act as a survival factor and that the activation of IGF-IR makes cells more resistant to doxorubicin-induced apoptosis (18). Therefore, blockade of IGF-IR functions by using a neutralizing MAb or suramin might sensitize ES cells to apoptosis that is induced by chemotherapeutic drugs, potentiating in this way their cytotoxic action. Indeed, by targeting IGF-IR, we observed an additive or, in some cases, a synergistic effect of growth inhibition induced by doxorubicin or vincristine. The percentage of growth inhibition from simultaneous or sequential treatments with chemotherapeutic drugs plus αIR3 MAb or suramin was enhanced by 30–35% compared with the effects induced by anticancer agents alone. This percentage corresponds to the percentage of growth inhibition induced by αIR3 MAb or suramin as single agents. As may be expected, αIR3 MAb, which specifically blocks IGF-IR, generally gave better results than suramin. However, despite the specificity of αIR3 MAb, the potential of anticancer strategies based on IGF-IR blockade by delivery of a murine antibody are of limited practical value in clinical settings because of the emergence of immune responses, the short peptide half-life, and the high cost. The use of suramin may, therefore, be an attractive alternative.

The analysis of the cell cycle indicated that the blockade of IGF-IR induces a blockage of the cells in G₁ phase that joins the G₂-M blockage induced by doxorubicin. The mitogenicity of IGF-IR has been known for a long time (28), and, for an optimal growth, IGF-IR is required in all cell cycle phases. The inhibition of IGF-IR mitogenic activity diminishes cell entry into S phase, but this effect does not antagonize the action of anticancer agents, such as doxorubicin, on the cell cycle. Indeed, agents that block IGF-IR and doxorubicin appeared to act on different phases of the cell cycle, and targeting IGF-IR may potentiate the action of doxorubicin. On the other hand, the analysis of apoptotic nuclei showed that αIR3 MAb or suramin actually have a significant effect in enhancing the apoptotic effects of doxorubicin. These findings confirmed that the disruption of IGF-IR antiapoptotic action may potentiate in vitro drug-induced cell death. Because the proapoptotic effects attributable to targeting IGF-IR are more dramatic when cells are in anchorage-independent conditions (28), we ascertained the effects of a combination treatment in semisolid medium. αIR3 MAb treatment induced a highly significant increase in the anchorage-independent growth inhibition of TC-71 cells observed after doxorubicin exposure.

The ability of tumor cells to grow in the absence of contact with extracellular matrix should not be considered as an artifact of cultured cells: anchorage-independence correlates quite well with tumorigenicity (29) and is probably the property that allows tumor cells to infiltrate surrounding tissues and to establish distant metastases. In this context, the favorable effect derived from the inhibition of antiapoptotic signaling of IGF-IR, which
renders the cells more sensitive to the apoptotic action of doxorubicin, might be particularly relevant.

Taken together, our findings indicate that therapeutic strategies aimed at the blockage of IGF-IR, by using either αIR3 MAb or suramin, could yield a potential advantage in combined treatments with conventional therapeutic agents for ES patients.

ACKNOWLEDGMENTS

The authors thank Dr. Alba Balladelli (Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli, Bologna, Italy) for critical reading of the manuscript.

REFERENCES

Inhibition of Insulin-like Growth Factor I Receptor Increases the Antitumor Activity of Doxorubicin and Vincristine against Ewing's Sarcoma Cells

Stefania Benini, Maria Cristina Manara, Nicola Baldini, et al.

Clin Cancer Res 2001;7:1790-1797.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/7/6/1790

Cited articles
This article cites 25 articles, 18 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/7/6/1790.full#ref-list-1

Citing articles
This article has been cited by 29 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/7/6/1790.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.