Combined Blockade of Protein Kinase A and Bcl-2 by Antisense Strategy Induces Apoptosis and Inhibits Tumor Growth and Angiogenesis

Giampaolo Tortora, Rosa Caputo, Vincenzo Damiano, Roberto Bianco, Gabriella Fontanini, Sabina Cuccato, Sabino De Placido, A. Raffaele Bianco, and Fortunato Ciardiello

Cattedra di Oncologia Medica, Dipartimento di Endocrinologia e Oncologia Molecolare e Clinica, Università Federico II, 80131 Napoli, Italy. Phone: 39-081-7462061; Fax: 39-081-7462066; E-mail: gtortora@unina.it.

INTRODUCTION

Protein kinase A type I (PKAI) plays a key role in neoplastic transformation, conveys mitogenic signals from different sources, and is overexpressed in the majority of human tumors. Inhibition of PKAI by different tools results in cancer-cell growth inhibition in vitro and in vivo. We and others have recently shown that a novel class of mixed-backbone oligonucleotides targeting the PKAI subunit R1α exhibits improved pharmacokinetic properties and antitumor activity accompanied by increased apoptosis in several human cancer types in vitro and in vivo. The role of bcl-2 in the control of apoptosis has been widely documented, and the inhibition of bcl-2 expression and function may have important therapeutic implications. In fact, oligonucleotides antisense bcl-2 have shown antitumor activity in animal models and have successfully completed early clinical trials. Recent studies have demonstrated a direct role of PKA in the regulation of the bcl-2-dependent apoptotic pathway. Therefore, we have investigated the combined blockade of PKA and bcl-2 by antisense strategy as a potential therapeutic approach. The novel hybrid DNA/RNA mixed-backbone oligonucleotide antisense R1α (AS R1α) in combination with the antisense bcl-2 (AS bcl-2), cooperatively inhibited bcl-2 expression and soft agar growth and induced apoptosis in different human cancer cell lines. p.o. administration of AS R1α in combination with i.p. AS bcl-2 caused a marked antitumor effect and a significant prolongation of survival in nude mice bearing human colon cancer xenografts. Moreover, histochemical analysis of tumor specimens showed inhibition of R1α and Ki67 expression, inhibition of angiogenesis, and parallel induction of apoptosis in vivo. The results of our study imply an interaction between the PKA and bcl-2 signaling pathways and, because both antisenses have now entered Phase II trials, provide the rationale to translate this novel therapeutic strategy in a clinical setting.

Received 11/16/00; revised 5/17/01; accepted 5/22/01.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This study was supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC) and from the Consiglio Nazionale delle Ricerche (CNR) Target Project on Biotechnologies.

2 To whom requests for reprints should be addressed, at Cattedra di Oncologia Medica, Dipartimento di Endocrinologia e Oncologia Molecolare e Clinica, Università di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy. Phone: 39-081-7462061; Fax: 39-081-7462066; E-mail: gtortora@unina.it.

3 The abbreviations used are: PKA, protein kinase A; PKAI, PKA type I; PKAII, PKA type II; AS, antisense; MBO, mixed-backbone oligonucleotide; PS, phosphorothioate; JNK, c-Jun NH2-terminal kinase; TdT, terminal deoxynucleotidyl transferase; MAb, monoclonal antibody.
(8). We and others have recently shown that the novel AS RIs exhibits a good pharmacokinetic profile and inhibits tumor growth in cooperation with several anticancer drugs with p.o. administration (9, 10).

Bcl-2 is the prominent member of a family of proteins responsible for dysregulation of apoptosis, prevention of cancer-cell death, and resistance to chemotherapy and radiotherapy (11, 12). Antiapoptotic bcl-2 family members counteract proapoptotic proteins, such as BAD and BAX, in the control of the pathways leading to the release of cytochrome c from the mitochondrial membrane, to the activation of the caspases cascade, and, finally, to the execution of apoptosis (11–13). Paclitaxel and other microtubule-damaging agents cause apoptosis, inducing bcl-2 phosphorylation and inactivation (12, 14). These effects may be obtained also by nontoxic tools, including AS bcl-2 oligonucleotides. A 18-mer PS- oligonucleotide targeting the human bcl-2 (G3139; GENTA) is able to block bcl-2 expression, inhibit the growth of human melanoma and prostate cancer in animal models, and synergize with cytotoxic drugs (15, 16). Moreover, it is able to delay the progression to androgen-independence (16). This same effect was obtained in a Shionogi murine tumor by an oligonucleotide targeting the murine bcl-2 (17). The AS human bcl-2 has completed early clinical studies in different malignancies including melanoma, non-Hodgkin’s lymphoma, and prostate cancer, demonstrating antitumor activity alone and in combination with cytotoxic drugs (18–20).

In past years, a large number of studies elucidated the role of different signaling proteins in the control of bcl-2-dependent apoptotic events. In addition to JNK and Akt proteins (11, 12, 21, 22), PKA seems to play a prominent role. In fact, after treatment with paclitaxel and other microtubule-damaging agents, PKA as well as JNK cause specific phosphorylation of bcl-2 and activate the cascade that leads to apoptosis (23, 24). Agents that inhibit PKAI and induce PKAII, such as AS RIs or DBcAMP, are able to inhibit bcl-2 expression and function, to induce cleavage of PARP and caspase 3 activation, causing apoptosis (25, 26). Taken together, these data suggest that the combined blockade of PKAI and bcl-2 may have a therapeutic potential. Therefore, in the present study, we have used two AS oligonucleotides as selective tools. We have investigated whether the hybrid MBO AS RIs and the PS-AS bcl-2, used in combination, have any cooperative effect on tumor growth and apoptosis of different human cancer cells in vitro and in vivo. Moreover, we have performed immunohistochemical analysis of tumor specimens to evaluate their in vitro effect on cell proliferation, angiogenesis, and apoptosis.

MATERIALS AND METHODS

Oligodeoxynucleotides. All oligonucleotides were synthesized by Dr. Sudhir Agrawal at Hybridon, Inc. (Milford, MA). The PS-AS bcl-2, corresponding to the first six codons of bcl-2 mRNA site and its mismatch control oligonucleotide have the following sequences: TCTCCCATGCTCGCCAT and TCTCCACATGTTGCCAT, respectively, as published previously (15). The AS RIs MBO is a hybrid oligonucleotide targeted against the NH2-terminal 8–13 codons of the RIs regulatory subunit of PKA (5) with the following sequence: GCGUGCTCTCCTACUGGC; the RIs control oligonucleotide is a scramble MBO obtained by mixing all four nucleosides at each position (10). The two MBO oligonucleotides contain PS internucleotide linkages, identified by roman type for the nucleosides flanking each position, and 2’-O-methyl-ribonucleosides modifications, identified by italic type. Oligonucleotides were synthesized, identified, and purified according to the protocol described earlier (27).

Cell Growth Experiments and AS Treatment. GEO human colon cancer cells were grown in McCoy medium, OVCCAR-3 human ovarian and ZR-75-1 human breast cancer cell lines were maintained in DMEM (Flow Laboratories, Irvine, Scotland) supplemented with 10% heat-inactivated fetal bovine serum, 20 mM HEPES, (pH 7.4), penicillin (100 IU/ml), streptomycin (100 μg/ml), and 4 mM glutamine (ICN, Irvine, United Kingdom) in a humidified atmosphere of 95% air and 5% CO2 at 37°C. For cell growth experiments in soft agar, 104 cells/well were seeded in 24 multiwell cluster dishes as described previously (28) and treated with different concentrations of the indicated oligonucleotides. In all of the combination experiments shown, the two oligonucleotides were administered simultaneously, (AS bcl-2 on days 1–3, AS RI MBO or Scramble MBO on days 1 and 3). We also performed experiments by administering the compounds in a sequential fashion, using the AS bcl-2 on days 1, 2, and 3 with the MBOs on days 4 and 6 or, alternatively, the MBOs on days 1 and 3 and the AS bcl-2 on days 4, 5, and 6. Twelve days after the last treatment, cells were stained with nitroblue tetrazolium (Sigma Chemical Co., Milan, Italy), and colonies >0.05 mm were counted.

Western Blot Analysis. Total cell lysates (50 μg) were fractionated through 7.5% or 12% SDS-polyacrylamide gels, transferred to nitrocellulose filters, incubated with specific Mabs and then horseradish-peroxidase antiserum (Bio-Rad Laboratories, Milan, Italy). Immunoreactive proteins were visualized by enhanced chemiluminescence (Amersham International, United Kingdom), as described previously (3). Anti-human RIs mouse MAb (Transduction Laboratories, Lexington, KY), anti-human bcl-2 mouse MAb (Santa Cruz Biotechnology, Santa Cruz, CA), and anti-human actin mouse MAb (Sigma Chemical Co.) were used following the methods described previously (3).

Apoptosis in Cultured Cells. The induction of apoptosis was determined by the Cell Death Detection ELISA Plus Kit, which detects cytosolic histone-associated DNA fragments (Roche Molecular Biochemicals, Mannheim, Germany). Briefly, GEO and OVCCAR-3 cells (5 × 104 cells/dish) were seeded into 35-mm dishes. After treatment with different concentrations of either AS RI (days 1 and 3), Scramble MBO (days 1 and 3), or AS bcl-2 (days 1, 2, and 3), alone and in combination, on day 4 cells were washed once with PBS then 0.5 ml of lysis buffer was added. After a 30-min incubation, the supernatant was recovered and assayed for DNA fragments as recommended by the manufacturer. Each treatment was performed in quadruplicate. Total number of cells was measured with an hemocytometer in additional plates receiving an identical treatment. The values resulting from the readings of optical density at 405 nm (A280 nm) were normalized for cell number, and the ratio of optical density-treated cells/optical density-untreated cells was defined as the apoptotic index.
GEO Xenografts in Nude Mice. Female Balb/cAnNCrI BR athymic (nu+/nu+) mice 5–6 weeks of age were purchased from Charles River Laboratories, Milan, Italy. The research protocol was approved and mice were maintained in accordance with institutional guidelines of the University of Naples Animal Care and Use Committee. Mice were acclimated to the University of Naples Medical School Animal Facility for 1 week before being injected with cancer cells. GEO cells were cultured in DMEM supplemented with 10% heat-inactivated fetal bovine serum, as described above. Then, 10^7 cells were resuspended in 200 µl of Matrigel (Collaborative Biomedical Products, Bedford, MA) and injected s.c. in mice (7, 29). After 7 days, when well established tumors of approximately 0.2 cm³ were detected, mice were randomized to receive different treatments. Ten mice for each group were treated with either p.o. AS R1x (10 mg/kg/dose) in a 5% dextrose solution, i.p. AS bcl-2 (10 mg/kg/dose), or i.p. mismatch control bcl-2 (10 mg/kg/dose) alone or in combination (AS R1x + AS bcl-2 or AS R1x + mismatch bcl-2) for 5 days a week for a total of 3 weeks. Tumor volume was measured using the formula: π/6 × larger diameter × (smaller diameter)^2, as previously reported (29).

Immunohistochemical Analysis. Formalin-fixed, paraffin-embedded tissue sections (5 µm) were processed as reported previously (30). Reactions with appropriate primary antibody, secondary biotinylated goat antibody (1:200 dilution; Vectastain ABC kit; Vector Laboratory, Burlingame, CA), avidin-biotinylated horseradish peroxidase H complex, dianisobenzidine, and hydrogen peroxide and counterstaining with hematoxilin were as described previously (30).

The following antibodies were used in this study: an anti-R1x MAb (Transduction Laboratories, Lexington, KY), 1:100 dilution; and an anti-Ki67 MAb (clone MIB1; DBA, Milan, Italy), 1:100 dilution. All analyses were performed in a blind fashion. To determine the percentage of positive cells, at least 1000 cancer cells/slide were counted and scored at ×40.

New blood vessels were detected as described previously (31) using a MAb against the human factor VIII-related antigen (Dako, Milan) at a dilution of 1:50 and stained using a standard immunoperoxidase method (Vectastain ABC kit; Vector). Each slide was first scanned at low power (×10–100), and the area with the higher number of new vessels was identified (the “hot spot”). This region was then scanned at ×250 (0.37 mm²). Stained blood vessels were counted in each of five different fields. For individual tumors, microvessel count was scored by averaging the five fields counts.

Determination of apoptosis was performed by a modified TdT-mediated nick end labeling assay (32) with the ApopTag Kit (Intergen, DBA, Milan, Italy). The processing of paraffin-embedded tissues, washings, the addition of working-strength TdT enzyme, antidigoxigenin peroxidase conjugate, and dianisobenzidine and counterstaining with hematoxilin were carried out according to the ApopTag Kit manual and as described previously (32). The counting of apoptotic nuclei was performed at ×40, evaluating at least 100 cells and an average of 10 fields.

Statistical Analysis. The Mantel-Cox log-rank test (33) was used to evaluate the statistical significance of the results. All reported P values were two-sided. All analyses were performed with the BMDP New System statistical package version 1.0 for Microsoft Windows (BMDP Statistical Software, Los Angeles, CA).

RESULTS

Effect of Different Oligonucleotides on the Growth of Human Cancer Cells. We have evaluated the antitumor activity of the MBO AS R1x, its control scramble MBO, the PS-AS bcl-2, and its mismatch control on the soft agar growth of a variety of human cancer cells, including GEO colon, OVCAR-3 ovarian, and ZR-75-1 breast cells. As shown in Table 1, the AS R1x caused a dose-dependent growth inhibition on all tested cells, achieving the IC50 at doses ranging between 0.7 and 1.2 µM. Conversely, an IC50 could not be reached with the control scramble MBO, even with doses as high as 25 µM. A dose-dependent growth inhibitory effect was also observed in all cell lines with the AS bcl-2, with an IC50 ranging between 3 and 7 µM, whereas the same degree of inhibition was reached only by higher concentrations of mismatch bcl-2 oligonucleotide (Table 1).

Cooperative Effect of AS R1x and AS Bcl-2. We evaluated whether the AS R1x and AS bcl-2 in combination were able to cooperate in inhibiting human cancer cell growth. We selected different doses of AS R1x (0.1–1 µM), Scramble MBO (0.5 and 1 µM), AS bcl-2 (0.5–5 µM), and mismatch bcl-2 (1–5 µM) and used these oligonucleotides alone or in combination. Different schedules of treatment were studied, administering the two oligonucleotides simultaneously and, in a sequential order, giving either the AS bcl-2 first and then the AS R1x or vice versa. Remarkably, the antiproliferative effect obtained was similar, regardless of the schedule used (data not shown). For this reason, thereafter we performed all of the experiments using a simultaneous administration, as described in “Materials and Methods.” Fig. 1 shows that AS R1x and AS bcl-2, when used in combination, have a dose-dependent cooperative effect, which is particularly evident with lower doses, on GEO, ZR-75-1, and OVCAR-3 soft agar colony formation. For instance, in ZR-75-1 breast cancer cells, AS R1x (0.1 µM) and AS bcl-2 (2 µM), which alone cause 10% and <40% inhibition, respectively, completely suppressed colony formation in soft agar (Fig. 1, middle). Conversely, the combination of Scramble MBO (0.5 µM) with increasing doses of AS bcl-2 caused, at most, an additive effect (Fig. 1). In the same fashion, the addition of mismatch bcl-2 oligonucleotide to AS R1x MBO did not modify the inhibitory effect obtained with the latter alone in GEO cells (data not shown).

Inhibition of Bcl-2 Expression. We measured the effect of the AS oligonucleotides on the expression of the target gene

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>IC50 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS R1x</td>
<td>0.8</td>
</tr>
<tr>
<td>ZR-75-1</td>
<td>1.2</td>
</tr>
<tr>
<td>OVCAR-3</td>
<td>0.7</td>
</tr>
</tbody>
</table>
products Rlα and bcl-2 by Western blotting analysis. Rlα protein expression was inhibited in GEO cells by AS Rlα, as shown previously (34), whereas it was unaffected by AS bcl-2 (data not shown). Fig. 2 illustrates the effect on bcl-2 expression of the different oligonucleotides at concentrations close to the IC50. AS bcl-2 (5 μM) inhibited the total bcl-2 protein expression, reducing >70% its nonphosphorylated form, whereas the AS Rlα (1 μM) prevalently increased the relative amount of phosphorylated bcl-2 without affecting the total amount of protein. Interestingly, the combined treatment with the two oligonucleotides caused an additive effect, markedly decreasing the total amount of bcl-2 protein and inducing a prevalently phosphorylated bcl-2 (Fig. 2). Combination of either AS with an equal dose of the relative control sequence did not affect the results obtained with each AS alone (data not shown).

Cooperative Effect of the Two Oligonucleotides on Apoptosis. We measured the effect of different AS treatments on the induction of apoptosis in vitro. Previously, we have shown by flow cytometry that the apoptotic cells are ~4% in untreated GEO cells and ~6% in untreated OVCAR-3 cells (35). In GEO, we have observed that the AS Rlα (1 μM) is able to double the rate of cells undergoing apoptosis as compared with untreated control cells, whereas the AS bcl-2 causes a 1.5-fold increase in the apoptotic index at 1 μM and a 4-fold increase at 2 μM, respectively (Fig. 3A). When the MBO AS Rlα was combined with the PS-AS bcl-2, either 1 μM or 2 μM, they determined a supraadditive apoptotic effect, causing an 8-fold and an ~13-fold increase in apoptotic index, respectively. Conversely, the addition of scramble MBO to either dose of AS bcl-2 did not modify the effect observed with the latter oligonucleotides alone. A supraadditive effect, although less pronounced, was also observed in ovarian OVCAR-3 cells (Fig. 3B). In fact, AS Rlα (1 μM) caused a 1.8-fold increase in the apoptotic index and AS bcl-2 (1 μM and 2 μM), caused a 1.5-fold and a 2.4-fold increase, respectively. The AS Rlα combined with the AS bcl-2 (1 μM and 2 μM) induced a 4.3-fold and a 6.1-fold increase in apoptosis, respectively. The scramble MBO was not effective, causing a less-than-additive effect when added to either dose of AS bcl-2 (Fig. 3B).

Cooperative Antitumor Activity in Vivo. We evaluated whether the cooperative antitumor effect observed in vitro could be reproduced in vivo using the model of nude mice bearing GEO xenografts. Seven days after tumor injection, groups of 10 mice were randomly selected to receive different treatments, including p.o. AS Rlα, i.p. AS bcl-2, i.p. mismatch bcl-2 oligonucleotide, or the combination of either p.o. AS Rlα plus i.p. AS bcl-2 or p.o. AS RI plus i.p. mismatch bcl-2 oligonucleotide (described in “Materials and Methods”). Treatment was performed for 5 days a week, for 3 consecutive weeks, up to day 25.
As illustrated in Fig. 4A, treatment with either AS R1α or AS bcl-2 alone inhibited tumor growth as compared with untreated mice. In fact, by day 35, each AS oligonucleotide caused a 80–90% inhibition of tumor growth as compared with control untreated mice. However, shortly after the end of treatment, tumors resumed the growth rate observed in untreated mice, achieving their same size by day 56. We have shown previously that a scramble MBO oligonucleotide is ineffective in the same tumor model (10). Similarly, the mismatch control bcl-2 oligonucleotide was ineffective (Fig. 4A). When the p.o. AS R1α was used in combination with the AS bcl-2, we observed a marked and sustained inhibition of tumor growth. In fact, tumors achieved an average volume of about 2 cm³ 6 weeks later than mice that were untreated or treated with mismatch control and 3 weeks later than animals treated with each single AS alone. In contrast, treatment with AS R1α plus mismatch bcl-2 caused an antitumor effect similar to that obtained with the AS R1α alone. Within ~6 weeks, GEO tumors reached a size not compatible with normal life in all untreated mice and in mice treated with the control bcl-2 oligonucleotide (Fig. 4B). A significant increase in survival was observed in mice groups treated with
Table 2 Immunohistochemical analysis of GEO tumors subsequent to treatment with different oligonucleotides

<table>
<thead>
<tr>
<th></th>
<th>Ki67</th>
<th>Rlx</th>
<th>Vessels</th>
<th>Apoptosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>60% (+±)</td>
<td>+ + + + +</td>
<td>10 (+1)</td>
<td>+ +</td>
</tr>
<tr>
<td>AS bcl-2</td>
<td>40% (+±)</td>
<td>+ + + + +</td>
<td>7 (+1)</td>
<td>+ + + + +</td>
</tr>
<tr>
<td>AS Rlx</td>
<td>40% (+±)</td>
<td>+ + + + +</td>
<td>7 (+1)</td>
<td>+ + + + +</td>
</tr>
<tr>
<td>AS bcl-2 + AS Rlx</td>
<td>20% (+±)</td>
<td>+ + + + +</td>
<td>3 (+1)</td>
<td>+ + + + +</td>
</tr>
</tbody>
</table>

either AS Rlx or AS bcl-2 alone, as compared with control mice (P < .001). A remarkable result was obtained in mice treated with AS Rlx plus AS bcl-2 in combination. In fact, the delayed GEO tumor growth observed in this group was accompanied by a prolonged life span in mice, significantly different when compared by log-rank test to controls (P < .0001), to either the AS alone-treated group (P < .001) or to the AS Rlx plus mismatch bcl-2-treated group (P < .001). Approximately 60% of mice treated with AS Rlx plus AS bcl-2 were still alive 11 weeks after tumor injection, representing the only animals alive at this time point. The combined treatment with AS Rlx plus AS bcl-2 was well tolerated, inasmuch as no weight loss or other signs of acute or delayed toxicity were observed.

Effect on Angiogenesis, Proliferation, and Apoptosis in Vivo. Tumor specimens from the different groups of mice were examined by immunohistochemical analysis to evaluate the expression of a variety of biological parameters. Table 2 reports the results of the analyses performed on two tumor samples randomly selected in each group after the 2nd week of treatment on day 21. Treatment with AS Rlx was able to inhibit the expression of both the target protein, Rlx, and Ki67, a protein related to cell proliferation, confirming our previous results (10). Interestingly, AS bcl-2 inhibited Ki67 but did not affect Rlx expression (Table 1). Additional inhibition of Rlx and Ki67 expression was observed when the MBO AS Rlx was used in combination with the AS bcl-2 (Table 2).

We quantified by immunohistochemistry the tumor-induced vascularization as microvessel count in the most intense areas of neovascularization using an anti-factor VIII related-antigen MAb (31). As reported in Table 2, the AS Rlx as well as the AS bcl-2 caused inhibition of specific vessel staining, as compared with samples from untreated mice. Combined treatment with AS Rlx and AS bcl-2 inhibited by >70% the vessel formation in GEO tumors (Table 2).

Finally, we studied the effect of treatment on the induction of apoptosis in vivo by a modified TdT-mediated nick end labeling technique (32). We observed that the i.p. AS bcl-2 was very effective after only 2 weeks of treatment, doubling the percentage of cells undergoing apoptosis, whereas at the same time point, p.o. AS Rlx only slightly increased apoptosis. Combination of two oligonucleotides caused an additive effect on apoptosis.

DISCUSSION

Increased tumor expression of bcl-2 and other members of the antiapoptotic bcl-2 family as well as reduced expression of proapoptotic proteins are considered among the major determinants of resistance to chemotherapeutic drugs and radiotherapy and the persistence of microscopic proliferating clones, indicating a poor prognosis in several types of cancer (11, 12). Blockade of bcl-2 expression and function may represent a relevant therapeutic strategy, and AS bcl-2 oligonucleotides have been successful in several preclinical and clinical studies (15–20). Several studies suggest that PKA may play a major role in the control of bcl-2-dependent apoptosis. The PKAI isofrom is involved in the transduction and amplification of a variety of mitogenic signals from cell membrane to core cellular machineries (2). Recently, different studies have linked PKA to the apoptotic machinery. For instance, microtubule-damaging agents determine apoptosis by a serine kinase-dependent phosphorylation of bcl-2. Both PKA and JNK have shown the ability to phosphorylate the specific serine-70 residue of bcl-2, to induce the cleavage of PARP, to activate caspase 3, and, finally, to cause apoptosis (21, 23, 24). It has also been demonstrated that selective inhibitors of PKAI and inducers of PKAIβ, such as AS Rlx, cAMP analogues, or selective unhydrolyzable cAMP analogues, can inactivate bcl-2 and induce activation of the caspases cascade, cleavage of PARP, and apoptosis (24–26). A recent study has shown that a PKAI isoform is targeted by an anchoring protein to phosphorylate and inactivate BAD and that a selective inhibitor of PKAI activation may prevent this effect (36), suggesting that PKAI may be involved also in BAD functions. In this regard, an even more direct link between the apoptotic machinery and PKAI has been unraveled by Yang et al. (37), showing that PKAI subunit Rlx is directly bound to cytochrome c oxidase subunit Vb. Pharmacological inhibition of PKAI causes cytochrome c release and apoptosis, whereas overexpression of mutant PKAI, harboring a defective Rlx, prevents these events (37).

This large body of experimental evidence would imply that the selective blockade of bcl-2, combined with a selective inhibition of the multifunctional signaling protein PKAI, could trigger the apoptosis and suppress the transduction of survival signals, thus leading to cancer cell growth inhibition.

To experimentally demonstrate this hypothesis, in the present study we have used two AS oligonucleotides that have shown their therapeutic potential in different preclinical and clinical settings. The PS-AS bcl-2 has shown antitumor activity in human melanoma and prostate cancer models in nude mice (15, 16). The same compound has shown antitumor and chemosensitizing activity in Phase I/II clinical trials in melanoma, non-Hodgkin’s lymphomas, and prostate cancer subsequent to i.v. as well as s.c. administration (18–20). The AS Rlx is a novel 2’-O-methyl-modified MBO that has shown antitumor activity in vitro and in vivo in a variety of tumor models in nude and severe combined immunodeficient mice (7, 8). We and others have also shown that this compound has good bioavailability and antitumor activity in the same tumor models after...
p.o. administration (9, 10). Recently, the AS Rlα MBO has completed a Phase I trial in cancer patients with negligible toxicity (8).

We have here demonstrated that both the AS bcl-2 and the MBO AS Rlα are able to inhibit, in a dose-dependent fashion, the anchorage-independent growth of GEO colon, ZR-75-1 breast and OVCAR-3 ovarian cancer cells. When used in combination at doses causing only moderate inhibition as single agents, they show a marked cooperative growth-inhibitory effect, allowing the suppression of colony formation in agar. The fact that the cooperative antiproliferative effect can be obtained regardless of the schedule of administration used, further supports the hypothesis that the two pathways are distinct yet related to each other. Inhibition of bcl-2 expression as well as bcl-2 phosphorylation are critical events in the commitment to apoptosis. In this study we have demonstrated that AS Rlα causes bcl-2 phosphorylation in GEO cells and that combination with AS bcl-2 markedly reduces the total expression of bcl-2, which then results mostly in a phosphorylated form. These data are in agreement with previous observations, showing that AS Rlα affects bcl-2 expression and causes bcl-2 phosphorylation (23, 34). More importantly, the combination of AS oligonucleotides caused a remarkable cooperative effect on the induction of apoptosis in vitro. These data suggest that combined blockade of PKAI and bcl-2 imbalance antiapoptotic cellular mechanisms, causing cell death. We have then evaluated whether the effects in vitro could be obtained also in vivo in nude mice bearing GEO tumors. Previously, we have shown the inhibitory effect of p.o. MBO AS Rlα in GEO tumor xenografts. In this study we have demonstrated the cooperative antitumor effect of p.o. AS Rlα in combination with i.p. PS-AS bcl-2 after 3 weeks of treatment. The growth-inhibitory effect was sustained, lasting for several weeks after treatment withdrawal and causing a remarkable increase in the survival of treated mice. In fact, ~60% of mice treated with the two oligonucleotides in combination were still alive 11 weeks after tumor injection. We and others have shown previously that either the p.o. AS Rlα or an AS bcl-2 cooperate with paclitaxel in inhibiting the growth of tumors in mice (10, 17). Interestingly, in the present study we have observed that the addition of paclitaxel to both ASs together minimally increases the antiproliferative and apoptotic effect obtained by the two oligonucleotides in combination.4 We have demonstrated that the p.o. AS Rlα selectively inhibits the expression of its target in the tumor. In fact, although bcl-2 also inhibits tumor growth and reduces expression of the proliferation-related protein Ki67, it does not affect Rlα expression. The critical role of tumor-induced neovascularization in neoplastic development, progression, and metastasis has been emphasized in recent years (38). In the present study, we have shown that either oligonucleotide alone was active in inhibiting vessel staining after only 2 weeks of treatment and that combined treatment with the two oligonucleotides reduced >70% vessel formation in GEO tumors. Finally, we have observed that AS bcl-2 induced a more-than-double increase in apoptosis, whereas the AS Rlα was modestly effective after 2 weeks of treatment. Interestingly, the two oligonucleotides in combination caused an additive apoptotic effect.

It has been proposed that novel therapeutic strategies should target the expression and function of mitogenic and antiapoptotic proteins as well as angiogenesis, causing apoptosis and/or inducing a status of tumor dormancy (39). In the same fashion it can be proposed that multiple selective inhibitors may be used to interfere with different growth-escape pathways. In this study, we have demonstrated that two AS oligonucleotides, a PS-oligonucleotide targeting bcl-2 and a hybrid MBO targeting PKAI, cooperatively inhibit the growth of and induce apoptosis in human cancer cells in vitro. The same compounds administered i.p. and p.o. for a short term caused a marked antitumor effect, accompanied by the inhibition of angiogenesis and the induction of apoptosis in nude mice bearing established GEO tumors.

This study represents the first demonstration that two oligonucleotides targeting two preeminent signaling pathways have a cooperative antitumor activity in vivo and further supports the hypothesis of a direct link between PKA and bcl-2. Because both AS Rlα and AS bcl-2 have shown promising results in clinical trials and also can be used by p.o. and s.c. routes, respectively, our study provides the rationale to translate a feasible and novel treatment in cancer patients.

ACKNOWLEDGMENTS

We thank Dr. Sudhir Agrawal for the generous supply of oligonucleotides and Dr. Michelino De Laurentiis for statistical analysis.

REFERENCES

Unpublished results.
Antisense Blockade of PKAI and Bcl-2

Combined Blockade of Protein Kinase A and Bcl-2 by Antisense Strategy Induces Apoptosis and Inhibits Tumor Growth and Angiogenesis

Giampaolo Tortora, Rosa Caputo, Vincenzo Damiano, et al.